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Abstract: Accurate grading of liver fibrosis can effectively assess the severity of liver disease and help
doctors make an appropriate diagnosis. This study aimed to perform the automatic staging of hepatic
fibrosis on patients with hepatitis B, who underwent gadolinium ethoxybenzyl diethylenetriamine
pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging with dynamic radiomics
analysis. The proposed dynamic radiomics model combined imaging features from multi-phase
dynamic contrast-enhanced (DCE) images and time-domain information. Imaging features were
extracted from the deep learning-based segmented liver volume, and time-domain features were
further explored to analyze the variation in features during contrast enhancement. Model construc-
tion and evaluation were based on a 132-case data set. The proposed model achieved remarkable
performance in significant fibrosis (fibrosis stage S1 vs. S2–S4; accuracy (ACC) = 0.875, area under the
curve (AUC) = 0.867), advanced fibrosis (S1–S2 vs. S3–S4; ACC = 0.825, AUC = 0.874), and cirrhosis
(S1–S3 vs. S4; ACC = 0.850, AUC = 0.900) classifications in the test set. It was more dominant com-
pared with the conventional single-phase or multi-phase DCE-based radiomics models, normalized
liver enhancement, and some serological indicators. Time-domain features were found to play an
important role in the classification models. The dynamic radiomics model can be applied for highly
accurate automatic hepatic fibrosis staging.

Keywords: deep learning; dynamic radiomics analysis; Gd-EOB-DTPA; hepatitis B; hepatic fibrosis;
time-domain information

1. Introduction

Hepatic fibrosis is a common pathological process in a variety of chronic liver diseases.
It reflects the response to liver damage due to various causes. During hepatic stellate
cell proliferation, large amounts of extracellular matrix components are deposited in the
extravascular space to cause hepatic fibrosis [1]. Evidence indicates that treatment is
necessary for patients with hepatic fibrosis Scheuer–Ludwig ≥S2 [2]. Liver fibrosis can be
reversed with antiviral and antifibrotic treatment, even in early cirrhosis [3,4]. Therefore,
accurate diagnosis of different grades of liver fibrosis is the prerequisite for evaluating the
liver disease status in patients and providing effective and reasonable treatment.

Liver biopsy is the gold standard for diagnosing liver fibrosis; however, approximately
2% of patients experience symptoms such as bleeding and infection during the examination
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due to the invasiveness of the test. Therefore, this method is not acceptable to all patients,
especially those with low-grade fibrosis and relatively stable disease [5]. Sampling errors
may occur in biopsy analysis due to the diffuse nature of liver fibrosis [1] and limited
material collected, and low repeatability of specimen collection is observed for different
operators [6]. As a result, identifying an accurate, non-invasive, safe, simple, reproducible,
and long-term follow-up examination approach has been a hot spot in clinical studies.

By definition, radiomics is an approach that extracts quantitative features, including
gray-scale patterns, inter-pixel relationships, and shape and spectral properties, from
specific regions of interest (ROI) in medical images. Some of these pivotal features can be
further applied to generate computational models based on machine learning algorithms,
so as to address clinical issues and provide treatment guidance [7]. Radiomics has been
adopted in studies assessing various diseases for risk prediction, tumor typing, survival
prediction, classification, and staging [8–11]. In addition, previous radiomics research
involved liver fibrosis classification [12–18].

Gadolinium ethoxybenzyl (EOB) diethylenetriamine pentaacetic acid (Gd-EOB-DTPA;
Bayer Health Care Co., Ltd.) is a new hepatocyte-specific magnetic resonance imaging
(MRI) contrast agent that can accelerate research and development in liver imaging. The
hepatocyte absorbance of Gd-EOB-DTPA is higher than those of conventional agents due
to the presence of a lipophilic EOB group in the molecular structure [19]. Moreover, the
biochemical properties of Gd-EOB-DTPA provide an overall assessment of tissue perfusion
in the arterial phase, while also assessing the specific accumulation in the liver hepatobiliary
phase (HBP) after 20 min [20,21]. Studies pointed out that liver-specific Gd-EOB-DTPA-
enhanced MRI had great potential to assess liver function and liver fibrosis [22–27].

1.1. Related Studies
1.1.1. Liver Stiffness Measurement

Amon ultrasound-based techniques, shear wave elastography and acoustic radiation
force impulse (ARFI) techniques are commonly used to stage liver fibrosis based on non-
invasive tissue stiffness [28]. Both Cassinotto and Friedrich and their collaborators noted
that liver stiffness could be detected by ultrasound elastography to assess the extent of
fibrosis [29,30]. However, this method is unreliable because of no reproducibility and
operator dependence [31]. Magnetic resonance elastography (MRE) is a non-invasive MRI-
based technique that can be used to quantitatively evaluate the mechanical properties of
body tissues [32]. Many studies demonstrated that hepatic stiffness, measured by MRE, had
a strong correlation with the stage of fibrosis according to histology [33–35]. The acquisition
time of MRE can be less than a minute. In addition, MRE is much less operator-dependent,
and has a low rate of technical failure compared with ultrasound-based techniques [32].
However, compared with conventional MRI, MRE requires additional equipment and is
more expensive. In addition, the evaluation of liver stiffness-based hepatic fibrosis may be
limited by confounders of increased tissue stiffness, which were previously analyzed in
detail [36].

1.1.2. Radiomics Analysis

Multiple studies based on radiomics analysis have been proposed for hepatic fibrosis
assessment. Duan et al. [12] evaluated hepatic fibrosis in rats based on vessel features,
including the textural features of the vessel’s inner wall, by high-resolution computed
tomography (CT) using diffraction-enhanced imaging. Zhang et al. [13] compared texture
patterns in CT and MRI for hepatic fibrosis staging and found that MRI images had an
advantage over CT findings. Kato et al. [14] performed texture analysis on T1-weighted
MRI images, with seven texture features extracted using the finite difference method
and processed by an artificial neural network program. In a study by House et al. [15],
14 texture features from T2-weighted images were used to investigate the ability of texture
analysis to stage liver fibrosis in patients with a range of liver diseases. Cannella et al. [16]
investigated the performance of texture analysis in T1-weighed MRI images for hepatic
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fibrosis evaluation in patients with nonalcoholic fatty liver disease (NAFLD). In studies
involving the HBP, Wu et al. [17] assessed the feasibility of texture analysis for hepatic
fibrosis staging on T2-weighted, T1-weighted, and Gd-EOB-DTPA-enhanced hepatocyte-
phase images in patients with hepatitis C, from which 279 texture features were extracted
in a circular ROI for each sequence, including 30 selected for the classification. Park
et al. [18] assessed a large data set including patients with 436 pathologically proven liver
fibrosis and performed a radiomics analysis in the HBP; the radiomics model significantly
outperformed for clinical parameters commonly used for liver fibrosis assessment.

1.1.3. Deep Learning Model

Deep learning has been widely reported for detection, classification, and segmentation
of lesions in recent years. In liver imaging, deep learning has also been used for assessing
of liver fibrosis. Wang et al. [37] adopted a neural network to extract radiomics features that
could provide some high-level features and result in a considerable staging performance for
hepatic fibrosis in two-dimensional shear wave elastography (2D-SWE). Yasaka et al. [38]
applied a deep convolutional neural network (DCNN) in cropped CT images and found
areas under the curves (AUC) of 0.73–0.76 for significant fibrosis, advanced fibrosis, and
cirrhosis classification. In another study by Yasaka et al. [39], DCNN in cropped HBP
MRI images was used, and AUCs of 0.84–0.85 were obtained for liver fibrosis grading.
Recent studies collected larger data sets and achieved higher accuracy [37,40]. Deep
learning models are powerful, but highly data dependent and therefore not suitable for
small-sample studies, leading to severe overfitting.

1.2. Our Contributions

Although many studies were performed for automatic liver fibrosis grading with
radiomics analysis or deep learning algorithms, few studies reported using time-domain
information, that is, the variation of imaging features in the time series. We proposed
a novel dynamic radiomics model combining imaging features from multi-phase DCE
images and time-domain features through the contrast enhancement process to assess liver
fibrosis. The proposed model outperformed conventional single-phase or multi-phase-
based radiomics models, normalized liver enhancement (NLE), as well as some clinical
serum parameters.

The main contributions of our liver fibrosis staging pipeline were as follows:

• Time-domain information was fully used based on time-varying curves and discrep-
ancy of imaging features with the contrast enhancement process, which was found to
play a critical role in all stages of classification.

• ROI extraction was based on whole-liver region segmentation using three-dimensional
(3D) U-net and transfer learning, with the post-processing algorithm for interference
information excluded. This method of ROI extraction replaced manual selection and
delineation, eliminating the influence of region selection on the results of radiomics
analysis while being more automated.

• Feature extraction was performed in liver volume and more valuable information,
such as morphological changes in the liver, was considered, which facilitated the
classification of cirrhosis.

2. Materials and Methods
2.1. Dataset
2.1.1. Study Population

This study was approved by the ethics committee of Shanghai Public Health Clinical
Center (YJ-2019-S037–02; 05/11/2019). The sample comprised mainly patients with chronic
hepatitis B and Child-Pugh score <7. A total of 132 participants were recruited from
August 2016 to February 2019. These patients, who underwent liver aspiration biopsy,
were divided into four subgroups, including the S1 (n = 30), S2 (n = 28), S3 (n = 32), and S4
(n = 42) groups, according to the Scheuer–Ludwig scoring (S) system.
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The inclusion criteria were as follows: (1) clinical diagnosis of chronic hepatitis B; (2) liver
biopsy within 3 months; (3) no MRI enhancement contraindications, such as implanted incom-
patible devices, claustrophobia, and severe renal insufficiency; (4) age >18 years; (5) alcohol
consumption <20g/day; and (6) signed informed consent. The exclusion criteria were as
follows: (1) combined with other types of viral hepatitis; (2) Child–Pugh score ≥7 points;
(3) antiviral, antifibrotic, or antifibrotic treatments before MRI examination; (4) diffuse
liver-occupying position; (5) a history of liver surgery or interventional therapy; and (6)
difficulty in breathing cooperation. The diagnosis of chronic hepatitis B complied with the
diagnostic criteria issued by the European Association for the Study of Liver Diseases in
2017. The baseline characteristics of the patients are shown in Table 1.

Table 1. Baseline characteristics of the study population and patient statistics.

Overall Significant Advanced Cirrhosis

Sex
Male 93 (70.5%) 79 (77.5%) 61 (82.4%) 36 (85.7%)

Female 39 (29.6%) 23 (22.6%) 13 (17.6%) 6 (14.3%)
Age (years) * 45.8±13.2 47.7 ± 13.3 50.8 ± 12.6 52.6 ± 11.1
Fibrosis score

S1 30 (22.7%) 0 (0%) 0 (0%) 0 (0%)
S2 28 (21.2%) 28 (27.45%) 0 (0%) 0 (0%)
S3 32 (24.2%) 32 (31.4%) 32 (43.2%) 0 (0%)
S4 42 (31.8%) 42 (41.2%) 42 (56.8%) 42 (100%)

Group + – + – + –
Training 71 21 52 40 29 63

Test 31 9 22 18 13 27

* Data are mean ± standard deviation; + represents the positive patient and – represents the control group; S means the Scheuer–
Ludwig degree.

Further, 40 of 132 patients were randomly assigned to the test set (with the original
distribution of positive and negative cases). The remaining 92 patients constituted the
training set for each liver fibrosis classification task (Table 1).

Another 120 patients with hepatocellular carcinoma (HCC) (DCE sequences) having
existing manually labeled liver contours were enrolled in this study for transfer learning in
liver segmentation.

2.1.2. MRI Protocol

The patient were required to fast for 6 h before the MRI examination. The elimination
of interference with image acquisition during the examination was achieved by training for
breath-holding and adopting the abdominal band and respiratory gating. A Philips Ingenia
3.0 T MR scanner (Philips Healthcare, Best, the Netherlands) equipped with a dStream
Torso Coil body coil was used for scanning. The scan’s field of view included the entire liver,
and the contrast agent was injected with Gd-EOB-DTPA at a rate of 2.0 mL/s and a dose of
0.025 mmol/kg. The DCE sequences were acquired within 5 min (mask, arterial, portal
venous, and delayed phases) and 20 min (hepatobiliary phase) after contrast agent injection
using an mDIXON Water (mDIXON-W) sequence. The mDIXON-W is a 3D T1−weighted
gradient echo sequence that applies multiple acquired echo-generating water images. The
specific scanning parameters were as follows: flip angle (FA): 10◦; echo time (TE1 and TE2):
1.14 and 2.0 ms, respectively; repetition time (TR): 3.3 ms; slice thickness: 3.5 mm; field of
view (FOV): 380 × 332 mm2; matrix size: 216 × 188; and scanning time: 9.2 s.

2.1.3. Reference Standard

The Scheuer–Ludwig scoring system is the standard for assessing the level of liver
fibrosis [41], which encompasses five degrees as follows: S0, not fibrotic; S1, door tube
area expansion; S2, fibrosis around the portal area and retention of the leaflet structure; S3,
fibrosis with the lobular structural disorder and no cirrhosis; and S4, possible or affirmative
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cirrhosis. In this study, grades S2–S4 indicated significant fibrosis, whereas grades S3–S4
indicated advanced fibrosis and S4 reflected cirrhosis.

2.2. Serum Fibrosis Tests

The aspartate transaminase-to-platelet ratio index (APRI) and the fibrosis-4 index
(FIB-4) were recorded, which are the two most widely studied indexes for liver fibrosis
assessment, as noninvasive tools [42]. The APRI was calculated as follows: (aspartate
aminotransferase (AST) (U/L)/upper limit of the normal AST range × 100)/(platelet count
(PLT) (109/L)) and the FIB-4 was calculated as (age (years) × AST (U/L))/(PLT (109/L) ×
(alanine aminotransferase (ALT) (U/L))1/2) [43,44].

2.3. Normalized Liver Enhancement

NLE was calculated as the relative enhancement on the pre-contrast images using
the following formula: NLE = (SIHBP − SIDYN1)/(SIDYN1), where SIDYN1 and SIHBP are the
mean signal intensities of the segmented liver ROI in the mask phase and HBP, respectively.
NLE is actually a time-domain feature reported to be associated with the liver fibrosis
grade in existing studies [22–25].

2.4. Overall Framework of the Proposed Dynamic Radiomics Model

As illustrated in Figure 1, the framework of the proposed dynamic radiomics model
mainly consisted of three steps: (a) liver ROI extraction based on transfer learning, with
the post-processing algorithm to exclude interference information; (b) extraction of ra-
diomics features from multi-phase DCE images and through time-domain information;
and (c) feature selection, training and evaluation of various classifiers, and prediction in
the test set.
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2.5. Processing Pipeline
2.5.1. ROI Extraction

This study developed a new automatic ROI extraction approach based on 3D liver
segmentation and post-processing, which was different from previous manual ROI drawing
modes. First, multiple DCE phases were co-registered to the HBP space using a symmetric
normalization algorithm [45], performed in Advanced Normalization Tools, which is a
state-of-the-art medical image registration and segmentation toolkit. Liver segmentation
was implemented on a 3D U-net [46], including multiscale encoding and decoding with
convolutional layers, batch normalization layers, max pooling layers, and concatenate
structure. The detailed network architecture is shown in Figure 2a. Transfer learning was
performed. Specifically, the neural network was pre-trained on a dataset of 120 liver MRI
scans with manually labeled liver contours, and fine-tuned and evaluated on the current
database (the liver contours of 12 patients in the current database were delineated by an
experienced radiologist, including 8 for fine-tuning and 4 for testing). The liver ROIs of the
remaining cases were predicted using the trained network.
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Figure 2. Three-dimensional U-net in liver segmentation. (a) Network architecture; (b) training strategy: image patches
with eight slices of overlap; and (c) testing strategy: image patches with eight slices of overlap and retention of prediction
results of middle eight slices.

Moreover, the segmented liver mask was post-processed using image processing
techniques, including hole filling, finding the 3D maximum connected component, eroding,
and local thresholding [47] to ensure that the extracted ROIs were in the hepatic region and
to exclude interference from large portal veins.

2.5.2. Feature Extraction

Feature extraction was first performed separately in each phase of DCE images,
collecting radiomics features, including shape and first-order statistical and textural fea-
tures [48,49]. In total, 14 common shape characteristics described differences in liver shape
affected by different degrees of fibrosis, 18 first-order statistical features showed the distri-
bution of voxel intensities, and 73 textural features reflected the internal heterogeneity of
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the ROI based on five textural matrices. Additionally, some-time domain features were
determined for considering the changes in features during the enhancement process. The
extracted time-domain features were mainly composed of two parts: (1) the feature dis-
crepancy between different DCE phases and (2) the mean (1), variance (2), skewness (3),
kurtosis (4), and entropy (5) of the time-varying curves for each feature except for the
common shape features.

mean(X = [x1 . . . xN ]) =
1
N

N

∑
i=1

xi (1)

Var(X = [x1 . . . xN ]) =
1

N − 1

N

∑
i=1

(
xi − X

)2 (2)

Skew(X = [x1 . . . xN ]) =
1
N

N

∑
i=1

[
xi − X

σ

]3

(3)

Kurt(X = [x1 . . . xN ]) =

{
1
N

N

∑
i=1

[
xi − X

σ

]4}
− 3 (4)

Entro(X = [x1 . . . xN ]) = −
N
∑

i=1

(
xnorm

i log2
(
xnorm

i + ε
))

xnorm
i = [xi−min(X)]

[max(X)−min(X)]
i f xi ≥ 0

xnorm
i = [max(X)−xi ]

[max(X)−min(X)]
i f xi < 0

xnorm
i =

xnorm
i

∑ X

(5)

where N = 5 corresponds to five DCE phases (mask, arterial, portal venous, delayed, and
hepatobiliary phases), σ =

√
Var(x1 . . . xN) is the distribution’s standard deviation, and

ε = 1e− 16 is an extremely small value to ensure the computability of the equation. Finally,
a total of 1379 features were included in the feature base, including 471 spatial domain char-
acteristics, 455 feature discrepancy features and 455 time-varying curve-based features. A
detailed breakdown of the extracted features is shown in Appendix A. After feature extrac-
tion, each feature was normalized using the z-score method based on its distribution in the
training set, and the same mean and standard deviation were applied to the normalization
of the test set to avoid the overfitting effect introduced by feature normalization.

2.5.3. Feature Selection and Classification

Feature selection aims to obtain the smallest subset of features to avoid the poten-
tial problem of overfitting [50] without reducing classification accuracy and retaining the
classification distribution. In this study, features were first filtered based on correlation.
Specifically, Spearman correlation was performed for correlation analysis, and the permu-
tation test was applied for statistical analysis. Features with correlation coefficients greater
than 0.2, and P values less than 0.05, were retained. The least absolute shrinkage and
selection operator (LASSO) logistic regression algorithm [51] was further used to filter out
the five most important features in the feature subset for classification. Due to the limited
sample size, this study adopted a small number of features (top five features) for classifier
construction underneath insignificance reduction in training performance to guarantee the
generalizability of the model.

In total, six mainstream classifiers, including logistic regression (LR), linear discrim-
inant (LD), k-nearest-neighbor (KNN), Gaussian naive Bayes (GNB), decision tree (DT),
and support vector machine (SVM), were trained and evaluated through five-fold cross-
validation in the training set. The optimal classifier with the highest AUC value was
selected to make predictions in the test set.
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2.6. Data Resampling

In this study, the data distribution in classification tasks was unbalanced and might
lead to biased prediction. The synthetic minority oversampling technique (SMOTE) ap-
proach [52] was employed to generate a new balanced data set for subsequent analysis.
In specific, the SMOTE algorithm generates new instances from existing minority cases
through interpolating new feature values between the target instance and its neighbors in
the feature space, while keeping the number of majority cases unchanged. In this study, the
number of neighbors to be considered was set as 3. Oversampling was only performed in
the training set, and data in the validation and test sets were kept real without interpolation.
The resampling process was applied after feature selection because most variable selection
algorithms were based on the assumption of sample independence [53].

2.7. Evaluation Metrics

The Dice coefficient was used to evaluate the performance in liver segmentation.
The performance of the radiomics model was evaluated using the classification accuracy,
AUC, average precision (AP), and F1 score. The receiver operating characteristic (ROC)
curve, precision-recall (PR) curve, and violin graph of distribution were constructed to
demonstrate the performance of the model visually.

2.8. Implementation Details

The liver segmentation model based on the 3D U-net architecture was trained and
tested with Keras (2.3.1, backend TensorFlow 1.14.0) on a 32 GB NVIDIA TESLA 39C
graphics processing unit (GPU). Adaptive moment estimation (Adam) was used as an
optimizer in the training procedure, with an initial learning rate of 0.001, and reduced to
half of the original value every 100 epochs. The total number of training epochs was set
to 500, with a batch size of 5. All volumetric data were downsized to 80 × 256 × 256 and
fed into the network in an overlapping manner (eight overlapping layers) with a size of
16 × 256 × 256 during the training process (Figure 2b). In prediction, we only considered
the prediction results of the middle eight layers (Figure 2c). The radiomics features were
extracted using an open-source “Pyradiomics” package (https://pyradiomics.readthedocs.
io/en/latest/features.html, version 2.1.2). All classifiers were trained and tested using
the ”sklearn“ package (version 0.22.1). The quadratic classification issue (S1–S4) was
turned into three binary classification tasks due to the limited number of cases, significant
fibrosis (S1 vs. S2–S4), advanced fibrosis (S1–S2 vs. S3–S4) and cirrhosis (S1–S3 vs. S4)
classification tasks. Statistical evaluation was based on the subject level in this study,
implying that the classifications were performed on each patient rather than on each
slice. The Mann–Whitney test was performed to compare the selected feature values and
predicted scores between the positive and control groups. A p-value < 0.05 indicated a
statistically significant difference.

3. Results
3.1. Liver Segmentation

Liver segmentation based on deep learning achieved a 3D volume Dice score of
0.961 ± 0.007 in the test set of current datasets. A segmentation slice demonstration is illus-
trated in Figure 3. The segmented mask fitted the real label well, and the post-processing
algorithms effectively removed interfering information such as large vessels.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Figure 3. Liver segmentation results. (a) Manually labeled liver contour; (b) predicted liver contour through deep learning;
and (c) final segmentation mask after post-processing.

3.2. Proposed Dynamic Radiomics Model

A total of five features were included in the final feature subset in each classification
task. The corresponding regularization parameters in LASSO logistic regression was 0.103,
0.147, and 0.129 for staging significant fibrosis, advanced fibrosis, and cirrhosis, respectively.
The selected features and their importance are demonstrated in Figure 4 (left panel). In
the classification of significant fibrosis and advanced fibrosis, three of the selected features
belonged to the variation of textural features in the time domain, one was the variation of
histogram variable in the time domain, and the other was textural feature in hepatobiliary
phase. In cirrhosis classification, two important variables were shape-based features, two
were the variation of textural features in the time domain, and the other belonged to
textural feature in delayed phase. The Mann–Whitney test was performed for each selected
feature, and p-values were further corrected by false discovery rate (FDR) method. The
results are shown in Table 2.

It can be seen that after correction, one feature in significant fibrosis classification and
four features in advanced fibrosis and cirrhosis classifications are statistically significant. In
addition, the values of features in two subsets of patients with extreme classifier prediction
scores were investigated, one was chosen as the 20% with the lowest prediction scores in
the control group, and the other was 20% with the highest prediction scores in the positive
group [54]. The results are shown in Table 3.

According to results of statistical test for each feature and statistics of feature values
for patients with extreme values of the prediction scores by the classifier, it can be found
that there was an obvious difference in studied features between the positive and control
groups, and this difference was more significant between two subgroups with extreme
classifier prediction scores. In addition, the way features change in the time domain
undoubtedly played an important role in the liver fibrosis grading model, which accounted
for a large part of the selected features. For example, dependence variance measured the
variance in dependence size in the liver region based on gray level dependence matrix
(GLDM), and it showed a bigger difference between arterial phase and mask phase for
significant fibrosis cases. Moreover, informational measure of correlation assessed the
correlation between the probability distributions of different grey levels based on gray
level co-occurrence matrix (GLCM), which can quantify the complexity of the texture, and
both in advanced fibrosis and cirrhosis, a smaller difference was obtained between HBP
and earlier phase for higher grade liver fibrosis. Furthermore, the morphology of the
liver changed significantly in cirrhosis stage, with a larger diameter in sagittal plane, and
a smaller sphericity value, which was important for identifying patients with cirrhosis.
The image comparison between a typical cirrhotic patient and a non-cirrhotic patient is
shown in Figure 5, and the normalized feature values for these two cases were as follows:
GLDM Large Dependence High Gray Level Emphasis in DYN4 (positive: −1.174, control:
1.395); Shape-based Maximum 2D diameter (positive: 0.370, control: −0.793); Shape-based
Sphericity (positive: −0.563, control: 0.032); GLCM Informational Measure of Correlation
(HBP-DYN4) (positive: −2.273, control: 1.493); and GLCM Kurtosis of Cluster Prominence
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in time domain (positive: 1.259, control: −1.285). Liver tumors were common in patients
with cirrhosis, it can be found from Figure 5a that the liver portion used for feature
extraction did not include the tumor region and thus the interference information was well
excluded, which reflected the effectiveness of the post-processing algorithms.
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The performance of the six classifiers in five-fold cross-validation and the correspond-
ing AUC value in the test set of the selected optimal classifier are shown in Figure 6
(top panel). For significant fibrosis, the best performance classifier was GNB with an AUC
value of 0.874 ± 0.078 in the validation set. The selected classifier achieved an accuracy
of 0.875, with an AUC value of 0.867 (95% confidence interval (CI): 0.723–0.954), an AP
score of 0.939, and an F1 score of 0.921 in the test set. In the stage of advanced fibrosis,
SVM was selected with a validation AUC value of 0.883 ± 0.080, whereas the performance
in the test set had an accuracy of 0.825, an AUC value of 0.874 (95%CI: 0.730–0.957), an
AP score of 0.906, and an F1 score of 0.837. The selected top classifier was LR with an
AUC value of 0.897 ± 0.059 in cross-validation, and achieved an accuracy of 0.850, with
an AUC value of 0.900 (95%CI: 0.764–0.972), an AP score of 0.866, and an F1 score of 0.750
in the test set in cirrhosis cases. The prediction scores generated by the classifier for each
case in the test set are shown in Figure 4 (right panel), the scores (median (interquartile
range)) of positive patients were significantly higher than the control group in significant
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fibrosis classification: 0.971 (0.942~0.983) vs. 0.210 (0.050~0.719), p < 0.001; advanced
fibrosis classification: 0.764 (0.552~0.837) vs. 0.283 (0.170~0.392), p < 0.001; and cirrhosis
classification: 0.768 (0.303~0.897) vs. 0.049 (0.018~0.208), p < 0.001. The confusion matrix in
the test set for each classification task is illustrated in Figure 6 (bottom panel).

Table 2. Comparison of selected features between positive and control groups and the results of statistical tests.

Feature Positive Control p-Value Adjusted p-Value

Significant fibrosis
∇GLRLM, Run Variance (DYN4-DYN3) −0.518

(−0.675~−0.257)
0.181

(−0.643~0.934)
0.067 0.084

∇GLDM, Dependence Variance
(DYN2-DYN1)

0.208
(−0.088~0.557)

−0.442
(−1.275~0.117)

0.006 ** 0.028 *

∇GLDM, the variance of Dependence
Variance in time domain

−0.617
(−0.716~−0.110)

−0.247
(−0.410~0.495)

0.037 * 0.077

GLDM, Dependence Variance in HBP −0.479
(−0.953~0.198)

0.717
(−0.521~1.271)

0.046 * 0.077

∇First Order, Median (DYN4-DYN3) 0.169
(−0.837~0.868)

0.527
(−0.192~1.202)

0.308 0.308

Advanced fibrosis
GLDM, Large Dependence High Gray

Level Emphasis in HBP
−0.310

(−0.920~0.005)
0.288

(−0.451~0.502)
0.030 * 0.037 *

∇First Order, 10th percentile difference
(DYN4-DYN3)

0.048
(−0.548~0.574)

0.204
(−0.224~1.076)

0.265 0.265

∇GLCM Informational Measure of
Correlation (DYN3-DYN2)

0.914
(0.214~1.412)

−0.258
(−0.733~0.416)

0.002 ** 0.006 **

∇GLCM Informational Measure of
Correlation (HBP-DYN1)

−0.645
(−0.864~−0.048)

0.648
(−0.279~1.357)

0.004 ** 0.006 **

∇GLCM Correlation difference
(DYN3-DYN2)

−0.680
(−0.961~0.039)

0.400
(0.038~1.064)

0.002 ** 0.006 **

Cirrhosis
GLDM Large Dependence High Gray

Level Emphasis in DYN4
−0.784

(−1.066~0.256)
0.601

(−0.403~1.027)
0.010 ** 0.034 *

Shape-based Maximum 2D diameter 0.429
(−0.060~0.800)

−0.175
(−0.763~0.481)

0.022 * 0.034 *

Shape-based Sphericity −0.699
(−1.151~0.226)

0.366
(−0.168~0.817)

0.027 * 0.034 *

∇GLCM Informational Measure of
Correlation (HBP-DYN4)

−0.428
(−1.392~0.069)

0.212
(−0.255~1.274)

0.020 * 0.034 *

∇GLCM Kurtosis of Cluster Prominence
in time domain

0.457
(0.015~1.162)

−0.725
(−1.140~0.344)

0.055 0.055

∇ Time domain features. (i-j), feature difference between i and j. Single feature values (Fi) were normalized (Fi,norm) with total feature
means and standard deviations as Fi,norm = (Fi-mean (Fi))/SD (Fi). Feature values are listed as median (Interquartile range). p-values were
calculated based on Mann–Whitney test and the adjusted p-values were corrected by false discovery rate method. DYN1, mask phase;
DYN2, arterial phase; DYN3, portal venous phase; DYN4, delayed phase; HBP, hepatobiliary phase; GLCM, gray level co-occurrence
matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix. Significance level: * p < 0.05, ** p < 0.01.
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Table 3. Comparison of selected features between two subsets of patients with extreme classifier prediction scores.

Feature Positive Subset (20%) Control Subset (20%)

Significant fibrosis
∇GLRLM, Run Variance (DYN4-DYN3) −0.786 0.289

∇GLDM, Dependence Variance (DYN2-DYN1) 0.090 −1.684
∇GLDM, the variance of Dependence Variance in time domain −0.455 0.044

GLDM, Dependence Variance in HBP −0.775 0.397
∇First Order, Median (DYN4-DYN3) −1.869 0.832

Advanced fibrosis
GLDM, Large Dependence High Gray Level Emphasis in HBP −0.883 0.149

∇First Order, 10th percentile difference (DYN4-DYN3) −0.263 0.581
∇GLCM Informational Measure of Correlation (DYN3-DYN2) 1.176 −0.948
∇GLCM Informational Measure of Correlation (HBP-DYN1) −1.070 1.087

∇GLCM Correlation difference (DYN3-DYN2) −0.984 0.657
Cirrhosis

GLDM Large Dependence High Gray Level Emphasis in DYN4 −0.851 1.050
Shape-based Maximum 2D diameter 0.855 −0.839

Shape-based Sphericity −1.809 0.531
∇GLCM Informational Measure of Correlation (HBP-DYN4) −1.691 0.901
∇GLCM Kurtosis of Cluster Prominence in time domain 1.161 −0.562
∇ Time domain features. (i-j), feature difference between i and j. Single feature values (Fi) were normalized (Fi,norm) with total feature
means and standard deviations as Fi,norm = (Fi-mean (Fi))/SD (Fi). Feature values are listed as mean value. DYN1, mask phase; DYN2,
arterial phase; DYN3, portal venous phase; DYN4, delayed phase; HBP, hepatobiliary phase; GLCM, gray level co-occurrence matrix;
GLDM, gray level dependence matrix; GLRLM, gray level run length matrix. Those were defined as the 20% patients in the positive group
with the highest prediction scores and the 20% patients in the control group with the lowest prediction scores.
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post-processing.
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3.3. Performance Comparison

The performance of the proposed model for fibrosis grading was compared with those
of single-phase DCE-based radiomics model (radiomics features from the mask phase,
arterial phase, portal venous phase, delayed phase, and HBP, individually), multi-phase
DCE-based radiomics model (combination of imaging features from the mask phase, arte-
rial phase, portal venous phase, delayed phase, and HBP, without time-domain features),
NLE, and serological indicators including APRI and FIB-4. The number of selected features
in the single-phase or multi-phase DCE-based radiomics models was five; the training and
test sets remained unchanged, and the entire radiomics analysis followed the same process
with the proposed dynamic radiomics model.

The ROC and PR curves of various liver fibrosis staging models are shown in Figure 7.
The dynamic radiomics model had the most stable and best overall performance in each
classification task, with AUC improvements of at least 0.03 in significant fibrosis, 0.05 in
advanced fibrosis, and 0.01 in cirrhosis classification. Moreover, the prediction accuracy
of the dynamic radiomics model was also the highest in each classification task. Table 4
illustrates the specific performance of each model in terms of accuracy, AUC, AP score,
and F1 score. Furthermore, violin graphs were constructed for various models to observe
their discrimination abilities in liver fibrosis grading. As shown in Figure 8, the proposed
radiomics model had the best discriminatory potential for each classification task.
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Figure 7. ROC curves (left panel) and PR curves (right panel) in the test set for various models in (a) significant fibrosis,
(b) advanced fibrosis, and (c) cirrhosis staging. Dynamic, dynamic radiomics model; DCE_opt, single-phase DCE-based
radiomics model with best overall performance between the mask phase, arterial phase, portal venous phase, and delayed
phase (delayed phase for significant fibrosis, mask phase for advanced fibrosis, and arterial phase for cirrhosis); HBP,
hepatobiliary phase based-radiomics model; DCE_comb, multi-phase DCE-based radiomics model; NLE, normalized liver
enhancement model; APRI, aspartate transaminase-to-platelet ratio index model; FIB-4, fibrosis-4 index model.

Table 4. Detailed performance comparison for the proposed model, single-phase or multi-phase DCE-based radiomics
models, NLE, and some clinical serum parameters.

Model Accuracy AUC (95%CI) AP F1

Significant fibrosis
Dynamic (proposed) 0.875 0.867 (0.723~0.954) 0.939 0.921

DYN1 0.750 0.778 (0.619~0.894) 0.934 0.839
DYN2 0.575 0.581 (0.414~0.735) 0.855 0.667
DYN3 0.725 0.814 (0.659~0.919) 0.922 0.792
DYN4 0.775 0.789 (0.631~0.901) 0.938 0.857
HBP 0.750 0.839 (0.688~0.936) 0.955 0.828

DYN combined 0.775 0.803 (0.647~0.911) 0.936 0.852
NLE 0.625 0.724 (0.560~0.853) 0.912 0.706
APRI 0.625 0.695 (0.530~0.831) 0.895 0.706
FIB-4 0.725 0.821 (0.667~0.924) 0.952 0.784
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Table 4. Cont.

Model Accuracy AUC (95%CI) AP F1

Advanced fibrosis
Dynamic (proposed) 0.825 0.874 (0.730~0.957) 0.906 0.837

DYN1 0.750 0.768 (0.607~0.886) 0.841 0.773
DYN2 0.525 0.710 (0.545~0.842) 0.768 0.387
DYN3 0.575 0.692 (0.526~0.828) 0.716 0.485
DYN4 0.650 0.715 (0.550~0.846) 0.754 0.667
HBP 0.800 0.826 (0.673~0.927) 0.852 0.818

DYN combined 0.675 0.768 (0.607~0.886) 0.830 0.723
NLE 0.700 0.692 (0.526~0.828) 0.726 0.714
APRI 0.575 0.583 (0.417~0.737) 0.663 0.541
FIB-4 0.675 0.775 (0.616~0.892) 0.839 0.629

Cirrhosis
Dynamic (proposed) 0.850 0.900 (0.764~0.972) 0.866 0.750

DYN1 0.775 0.852 (0.704~0.944) 0.825 0.640
DYN2 0.850 0.875 (0.732~0.958) 0.825 0.750
DYN3 0.825 0.855 (0.707~0.946) 0.833 0.741
DYN4 0.775 0.832 (0.680~0.931) 0.785 0.640
HBP 0.850 0.892 (0.753~0.968) 0.859 0.786

DYN combined 0.850 0.858 (0.711~0.948) 0.847 0.750
NLE 0.725 0.812 (0.657~0.918) 0.747 0.645
APRI 0.725 0.755 (0.593~0.877) 0.613 0.522
FIB-4 0.850 0.866 (0.721~0.953) 0.840 0.700

Abbreviations: AUC, Area under the curve; 95%CI, 95% confidence interval; AP, average precision; Dynamic, dynamic radiomics model;
DYN1, mask phase-based radiomics model; DYN2, arterial phase-based radiomics model; DYN3, portal venous phase-based radiomics
model; DYN4, delayed phase-based radiomics model; HBP, hepatobiliary phase-based radiomics model; DYN combined, multi-phase
DCE-based radiomics model; NLE, normalized liver enhancement model; APRI, aspartate transaminase-to-platelet ratio index model;
FIB-4, fibrosis-4 index model.
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Figure 8. Violin graph of the distribution of various models in the test set for (a) significant fibrosis, (b) advanced fibrosis,
and (c) cirrhosis staging. Dynamic, dynamic radiomics model; DCE_opt, single-phase DCE-based radiomics model with
best overall performance between the mask phase, arterial phase, portal venous phase and delayed phase (delayed phase
for significant fibrosis, mask phase for advanced fibrosis, and arterial phase for cirrhosis). HBP, hepatobiliary phase-based
radiomics model; DCE_comb, multi-phase DCE-based radiomics model; NLE, normalized liver enhancement model; APRI,
aspartate transaminase-to-platelet ratio index model; FIB-4, fibrosis-4 index model. The dotted lines in the graph indicate
the median and interquartile range.

4. Discussion

This study aimed to assess hepatic fibrosis based on dynamic radiomics analysis
combining multiple DCE phases and time-domain information. The proposed method
demonstrated a considerable value in classifying significant fibrosis, advanced fibrosis, and
cirrhosis, indicating that the dynamic radiomics analysis of Gd-EOB-DTPA MRI images
might have the potential for automatic hepatic fibrosis staging in patients with hepatitis B.
However, physicians need to depend on liver biopsy tests for grading in general.
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Non-invasive hepatic fibrosis assessment is a hot topic and has been explored in mul-
tiple studies. One of the main directions is to measure liver stiffness, usually by ultrasound
elastography [29,30] or MRE [33–35]. This approach shows a high correlation between the
degree of fibrosis and liver stiffness. However, ultrasound-based measurement methods
may suffer from unreliable issues due to the lack of reproducibility and operator depen-
dence [31]. MRE can ameliorate these drawbacks to some extent, but requires additional
equipment and is more expensive compared with conventional MRI. Therefore, radiomics
analysis has attracted increasing attention recently. The discriminating ability of radiomics
analysis has a strong correlation with histopathological characteristics. The destruction of
liver parenchyma homogeneity is reflected in the liver by textural features [17] and charac-
terized by fibrous septa and nodules of different sizes because lymphocyte infiltration and
hepatocyte damage are the characteristics of the necroinflammatory process in chronic viral
hepatitis [55,56]. Most established radiomics studies have been performed on CT and MRI
images. According to a study by Zhang et al. [13], MRI images generally have an advantage
over CT images in hepatic fibrosis evaluation based on radiomics analysis. In another study,
Watanabe et al. [57] pointed to a conspicuous correlation between the contrast enhancement
index in gadoxetate disodium-enhanced MRI and fibrosis staging. Thus, enhanced MRI is
more reliable for staging hepatic fibrosis than diffusion-weighted MRI, besides hematologic
and clinical parameters. Furthermore, previous studies demonstrated the potential of
liver-specific Gd-EOB-DTPA-enhanced MRI in hepatic fibrosis assessment, in which the
HBP after 20 min highly correlated with the degree of liver fibrosis [22–27]. In this study,
we performed a systematic work on radiomics analysis based on Gd-EOB-DTPA-enhanced
MRI. A dynamic radiomics model was proposed, which used radiomics features from
multi-phase DCE images as well as time-domain features through the enhancement process.
Time-domain information played an important role in liver fibrosis staging, which was not
discussed previously.

This study was novel in proposing fully automatic dynamic radiomics analysis for
hepatic fibrosis staging based on Gd-EOB-DTPA-enhanced MRI. The proposed model
had the most stable and best overall performance in all stages of classification compared
with the staging results of conventional single-phase or multi-phase DCE-based radiomics
models, NLE, and serological indicators. Meanwhile, this study found that the HBP
was also critical to hepatic fibrosis staging, outperforming other individual phases in
classification, corroborating previous findings. Moreover, a simple combination of imaging
features from five DCE phases did not achieve better results and was even worse than using
HBP features alone. Indeed, the time-domain features played a key role in the dynamic
radiomics model.

The strengths of this study were as follows. First, in previous studies, most texture
analyses of hepatic fibrosis were performed on a manual extraction area at a representative
slice, for example, a circular or square region [12–14,16,17]. Alternatively, the entire liver
delineated on the slice contained the largest cross-section through the liver, carefully
avoiding the portal vein, very large intrahepatic vessels, and any obvious motion-affected
regions [15]. This pattern of ROI extraction was extremely time consuming, and might
result in the loss or destruction of valid texture information due to the investigator’s
experience and other uncontrollable factors. The choice of ROI might also heavily influence
the results of radiomics models. Different from previously used methods, an automatic
liver ROI extraction strategy based on transfer learning was applied in this study and the
segmented mask was post-processed to remove interfering information effectively. This
fully automatic extraction method could reduce the workload of the radiologist to a large
extent, and eliminate the influence of region selection on the results of radiomics analysis.
Second, the radiomics features from multiple DCE phases and the time-domain features
extracted from the time-varying curves and characteristic differences in imaging features
through the enhancement process were combined in the feature extraction step to establish
a larger feature base. Hence, a more valuable feature combination was explored, resulting
in superior classification performance. Although only five features were covered after
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feature selection in the classification model, the time-domain features accounted for a large
proportion of the final feature subset, indicating the critical role of time-domain features in
the grading of liver fibrosis. Specifically, 80% of the features ultimately contributing to the
classification model were time-domain features in significant fibrosis and advanced fibrosis
classification, while 40% were time-domain features in cirrhosis classification. In addition,
feature extraction was performed based on the segmented liver volume, hence some
valuable morphological features of the liver could be considered. As a result, two shape-
based features were selected in cirrhosis classification, revealing significant changes in liver
morphology in this stage. This was also supported by a previous study [58], reporting
that the shape of the liver could be altered to some extent due to hepatocyte necrosis and
collapse. The exploitation of shape features was also not possible with the traditional
circular or square ROI extraction mode. Considering the aforementioned improvements,
the proposed model had the most stable and best overall performance in hepatic fibrosis
staging tasks, while being more automated.

Although the proposed dynamic radiomics model has achieved superior performance
on the current dataset, the generalization of the model is still a challenging task. MRI-based
radiomics features can be affected by many factors, for example, multiple MR scanners,
MR acquisition parameters, reconstruction algorithms, introduced noise and artefacts, and
pre-processing and post-processing of images or features [59–62]. We believe that the first
priority is to standardize the entire process, that is, for future data collection, the acquisition
parameters and processing algorithms should remain as consistent as possible with the
developed standards. In addition, the assessment of liver fibrosis was based on the whole
liver region in this study, so it can be inferred that the model was robust to local noise and
artifacts. The biggest concern is the inevitable data fluctuations that occur when models
are applied to multi-center data, due to differences in MR scanners and scanning protocols.
Fortunately, the acquisition process of Gd-EOB-DTPA-enhanced MRI is relatively fixed in
different centers, with similar timing of acquisition for each enhanced phase after contrast
injection (arterial phase, portal venous phase, delayed phase, and hepatobiliary phase).
For the differences in image intensity distribution in multi-center datasets, two strategies
can be explored, (1) for radiomics model, the reproducibility and stability of radiomics
features can be evaluated and the features that are more robust across multi-center data
can be selected to build classification models [63,64]. (2) Some intensity standardization
algorithms can be applied to the preprocessing of multi-center image data to adjust the
intensity distribution, for example, global histogram matching algorithm, joint histogram
registration algorithm, and generative adversarial network-based method [65].

This study had some limitations. The sample size needed to be enlarged, and the
generalizability of the hepatic fibrosis model needed further validation in a multi-center
large-scale study. In addition, this study was conducted for Gd-EOB-DTPA-enhanced
MRI, and the effect of dynamic information in conventional MRI contrast agents needed to
be further tested. Finally, the value of the model in grading non-diffuse hepatic fibrosis
remains unknown. In future work, a multi-center large-scale data set will be collected
prospectively, and the classification performance and generalization ability of the proposed
dynamic radiomics model are expected to be further improved.

5. Conclusions

This study proposed an automatic hepatic fibrosis grading model based on dynamic
radiomics analysis in multiple Gd-EOB-DTPA-enhanced DCE phases. The whole process
was highly automated, which could save time and energy for new case prediction or
additional dataset training. The prediction performance of the dynamic radiomics model
was more superior for the classification of all stages of hepatic fibrosis compared with
the conventional single-phase or multi-phase DCE-based radiomics models, NLE, and
some clinical serum parameters, indicating an association of fibrosis stage with dynamic
radiomics features.
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Appendix A

A total of 1379 radiomics features were included in the feature base. The enrolled
mask phase, arterial phase, portal venous phase, delayed phase and hepatobiliary phase
were denoted as DCE1, DCE2, DCE3, DCE4 and HBP, respectively. The feature set included
14 common shape features for all phases; 18 first-order statistical features, and 73 textural
features based on gray level co-occurrence matrix (GLCM) (22 features), gray level size
zone matrix (GLSZM) (16 features), gray level run length matrix (GLRLM) (16 features),
neighboring gray tone difference matrix (NGTDM) (5 features) and gray level dependence
matrix (GLDM) (14 features) for each phase, resulting in 455 features. In the time domain,
feature discrepancy between different phases consisted of 455 features from DCE2-DCE1,
DCE3-DCE2, DCE4-DCE3, HBP-DCE4, and HBP-DCE1 for first-order statistical features
and textural features. In addition, a time-varying curve was constructed for each feature
except for the common shape features, and the values of mean, variance, kurtosis, skew-
ness and entropy were determined as another part of time-dimension features, resulting
in 455 features.
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