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Abstract: As the most recognizable natural secondary carotenoid astaxanthin producer, the green
microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is
dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second
stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review
discusses the further improvement made on astaxanthin production by providing an overview of
recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth,
and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient
constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized
during the green stage. On the other hand, the significance of the nitrogen depletion strategy and
other exogenous factors comprising salinity, illumination, and temperature are considered for the
astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular
processes that limit the growth or photosynthesis in the green stage could trigger the encystment
process and astaxanthin formation during the red stage. This review provides an insight regarding
the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from
H. pluvialis.

Keywords: natural secondary carotenoid; Haematococcus pluvialis; astaxanthin; microalgae; bioprocess
optimization

1. Introduction

Presently, the cellular structure of “green microalgae” bears diverse high-value metabo-
lites that can potentially attract numerous biomanufacturing businesses [1]. Haematococcus
pluvialis (Chlorophyceae) is a unicellular freshwater microalga with global distribution in
many watery habitats and currently recognized as the richest and most promising source
for the commercial production of natural astaxanthin [2,3]. Astaxanthin or (3,3′-dihydroxy-
β, β-1-carotene-4,4′-dione) is a secondary carotenoid with bright blood-red color, which can
be synthesized directly by exerting cellular stresses onto H. pluvialis [4,5]. Most astaxanthin
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applications are related to human nutrition and health in the form of food, pharmaceuticals,
nutraceuticals, and dietary supplements [6,7].

Astaxanthin is known as the “superstar of antioxidants” due to its antioxidant capac-
ity [8]. Additionally, it shows the importance of anti-inflammatory and antitumoral activity
applications such as nutraceutical and pharmaceutical industries [9,10]. Astaxanthin is
often used as an aquaculture and food colorant [2]. The supplementation of astaxanthin
in aquaculture nutrition improves the growth performance, growth hormone, and the
survival of Asian seabass [11]. Moreover, dietary astaxanthin provision at increasing doses
markedly reduced the circulating levels of serum cholesterol and triglycerides in fish [12].
Antioxidant capacity (or the ability to terminate free radical chain reaction) of astaxanthin is
38-fold higher than that of β-carotene and 500 times stronger than vitamin E [13]. Natural
astaxanthin from H. pluvialis as a supplement has no side effect for human consump-
tion [4]. Thus, it is not surprising that the retail prices of nutraceutical grade astaxanthin
are higher than (USD$100,000 per kg) [14], which is a value that remains valid nowadays.
To date, the global market forecast up to 2025 for natural astaxanthin is estimated to hit
USD 1 billion [15].

At present, the pigmentation of fish is the only practical function of synthetic astaxan-
thin through feed additive. Synthetic astaxanthin has not been approved as food additives
and supplements for direct consumption by humans due to the difference in the molecular
structure relative to the natural product [15,16]. However, synthetic astaxanthin can be
synthesized through a Wittig chemical reaction under a multistep process, which includes
a mixture of isomers (3S,3′S), (3S,3R), and (3R,3′R) at a ratio of 1:2:1 respectively [17,18].
During the steps before its final stage, the molecule assumes different forms when it attains
the same chemical formula as natural astaxanthin. Meanwhile, the natural astaxanthin
consists of (3S,3′S) [18].

Carotenoid accumulation may reach 5% of dried H. pluvialis biomass, of which
90% comprises of astaxanthin [19,20]. Astaxanthin is produced by H. pluvialis under
the imposition of various environmental stresses. These include intense illumination,
high/low temperature, salt stress, nutrient deprivation, and a combination of stressors to
accelerate the astaxanthin production [9,21]. Pereira and Otero [14] have reported that the
astaxanthin accumulation is correlated with homeostasis disruption, which induces the
cells to self-protect against stresses resulted from depletion of the cellular photosynthetic
capacity. The cultivation system of H. pluvialis mainly consists of two stages: green stage
or growth phase, where they reproduce under favorable conditions to gain biomass; and
the red stage resembling a non-motile red cell phase, in which the cells are placed under
various stress conditions to express astaxanthin [9,22]. For that reason, simultaneously
maintaining a good equilibrium between the green and red stages is vital to maximizing
the astaxanthin production.

This review summarizes the most recent works on the cultivation of H. pluvialis, which
includes strategies for the green and red stage for cultivation method. The strategies cover
different strains of H. pluvialis with different growth conditions and process improvement
subjected to stress conditions, intending to increase the astaxanthin production.

2. Cell Morphology of Haematococcus pluvialis

H. pluvialis exposure to various stress conditions influences the cell’s ultrastructural
changes throughout their life cycle [6,9]. The cell is typically spherical to an ovoid shape
having a diameter of ≈30 µm. At first, H. pluvialis starts as a free-swimming, green
biflagellate microalga with a single pyrenoid-containing chloroplast, then losing its flagella
and rounding up to become a non-motile palmella, and finally transitioning to the thick-
walled aplanospore [8]. The vegetative cells of H. pluvialis (Figure 1a), which are connected
with the green stage (biomass accumulation), can asexually reproduce 2–32 daughter
cells [4]. Astaxanthin starts to accumulate in the intermediate stage, beginning with the
encystment process, where Haematococcus turns into greenish-orange cells (Figure 1b),
which the transition color can be observed at 7 to 10 days. The stress conditions cause
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the loss of both flagella and increment of cell size. Astaxanthin is continuously being
accumulated, and cells form cysts at the aplanospore stage (Figure 1c). The cells are
referred to as the “red-astaxanthin formation” (red stage), where the cells are formed at
11 to 14 days. A thick algeenan-containing cell wall is formed and protects aplanospore
cells from acetolysis by nutrient deprivation or high light exposure [23]. In the mature stage
of aplanospores, astaxanthin accumulates densely in droplets in the perinuclear cytoplasm,
resulting in the bright red color of the cells [13].
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Figure 1. H. pluvialis cells photographed under the light microscope with a digital camera (Olympus B071, Olympus Optical
Co., Tokyo, Japan) to observe the astaxanthin accumulation. (a) The vegetative stage at the beginning of the cultivation
period; (b) the intermediate stage, wherein cells turned into greenish-orange; and (c) cyst stage at the end of the cultivation
period; bar: 10 µm (own source).

Most studies have shown that under favourable conditions, cells cultivation can be
induced rapidly. Multiple researchers have optimized a two-stage approach to increase
the mass cultivation of H. pluvialis [24,25], which can be adopted in the industry. Most
of the studies have been focusing on achieving high biomass. The optimal condition for
vegetative growth also needs to be optimized. It is possible to cultivate the green stage
in the optimal temperature and illumination intensity to achieve maximum vegetative
growth rates and biomass in a shorter period before transferring this biomass into the red
stage [24,25]. Previously, strains under the vegetative stage with motile cells have had
significantly higher division rates than the non-motile cells [17].

3. Current Production Strategy to Induce Biomass at the Green Stage
3.1. Effect of Nitrogen Sources

Nitrogen is one of the essential nutrients that affect cell growth and enzymatic activity
of H. pluvialis, particularly for boosting astaxanthin production [26]. The cell growth is
related to an increase in cell size, which has been observed in H. pluvialis [26,27]. Thus, the
accumulation of biomass in the cells might also be inhibited when the cells lack nutrients
during cultivation [26]. Microalgae is well known for its uptake of nitrate, ammonia, and
urea as nitrogen sources [9]. The elemental composition of urea comprises approximately
46% nitrogen and complements by 20% carbon [28]. Thus, the combined availability of
nitrogen and carbon favorably contributes to the increment of microalgae cells [29]. To put it
into perspective, another inorganic nitrogen source frequently utilized in aquaculture media
preparation, i.e., nitrate (sodium or potassium salt) only provides 16.5% of nitrogen [30]. In
terms of the nitrogen uptake mechanism, the microalgae metabolism pathway could be
altered due to various types of nitrogen sources. Theoretically, the mechanisms of nitrogen
uptake from ammonium have the most straightforward metabolic pathway for direct
assimilation by the microalgae [18]. For instance, urea, which is supplied exogenously,
has a slight complex mechanism requiring an energy-driven co-transport process. Then, it
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needs to be reduced into ammonium ion beforehand by urease and nitrate reductase [31].
For H. pluvialis growth, most studies have employed the Bold Basal medium (BBM) [9]. The
formulation contains inorganic nitrogen, phosphorus, and essential trace minerals, and it
conforms to the need of general-purpose culture medium [20,32]. BBM ingredients initially
include ammonium ion, which is favorable for the autotrophic growth of H. pluvialis.
Nonetheless, previous work on H. pluvialis JNU35 cultivation found that using ammonium
hydrogen carbonate (NH4HCO3) as the nitrogen source could cause medium acidification
that ultimately led to cell death [9]. Yoshimura et al. [33] reported that by changing
the component to urea, it is readily assimilated by urease, converted, and degraded to
carbon dioxide and ammonia without producing a net acidic or basic exchange, and thus,
the alkalinity of the culture remains constant. In addition, based on Wijanarko [34], the
utilization of ammonia at 500 mg L−1 as the nitrogen source in the cultivation of Chlorella
vulgaris could effectively increase around 55–60% of lipid formation from total cell biomass.
The author proposed that it might be due to the conversion of trace ammonia into nitrate
and ammonium ion, which are finally reabsorbed into the cells. Saumya et al. [29] assumed
that both nitrate and ammonium ions are present in the urea-based medium under light
and dark conditions, as the nitrogen source could increase the biomass accumulation even
in the different trophic conditions of microalgae.

3.2. Effect of Carbon Sources

High H. pluvialis biomass can be obtained through the mixotrophic mode of cultivation
utilizing acetic acid or acetate [35]. In the cultivation of H. pluvialis, the astaxanthin
accumulation was induced by using an organic carbon source supplemented with 100 mM
potassium acetate [13]. Sodium acetate at 30 mM was reported to improve the H. pluvialis
cell productivity to 0.243 g L−1 day−1 [36]. Another study by Tolga et al. [37] on the
cultivation of H. pluvialis with sodium-acetate addition (1 g L−1) at the beginning or
the end of the log phase cultivation saw that the cell numbers in which sodium-acetate
was added at the end of log-phase cultivation had increased to almost two-fold from
21.7 to 42.9 × 104 cells mL−1. The finding showed that the biomass increased faster when
compared to the addition of sodium-acetate at the beginning of the cultivation (of which
the increase was only 1.2-fold). The use of sodium acetate as an organic carbon source is
possible and effectual to increase the growth rate.

The high productivity of biomass and astaxanthin could be achieved by altering the
C/N balance using carbon dioxide (CO2), which was able to stimulate cyst formation
and astaxanthin accumulation [38]. The biomass of H. pluvialis could be increased by
carbon dioxide (CO2) diffusion into the media to replace the nitrogen deficiency with a
specific concentration of gaseous carbon [39]. One method of achieving relative nitrogen
starvation is altering the carbon/nitrogen (C/N) ratio by increasing carbon in the system
as opposed to replacement with nitrogen-deficient media. Cheng et al. [40] observed the
highest biomass production and astaxanthin induction with 6% CO2. It was hypothesized
that additional carbon infusion into the culture system will shift the C/N balance and
create a relative nutrient deficiency that will enhance astaxanthin accumulation. However,
a further increase of CO2 to 20% would diminish cell growth [41]. The increase of CO2
level up to 20% would lead to chloroplast inhibition and decreasing cell growth, resulting
in high cell mortality [39,41]. Multiple studies have recently reported on a maximum cell
number of H. pluvialis in the region of 2.43 × 106 cells/mL after providing it with sodium
gluconate at 2 g L−1 and illumination intensity at 105 ± 3 µmol m−2 s−1 [42].

Additionally, Lu et al. [43] reported an experiment focusing on employing series
gradient fed-batch strategy (SGF) whereby gradient feeding that gradually controlled the
medium C/N ratio from 10 to 50 during the green stage would co-regulate the metabolism
involved in cell division as well as the up-regulation of carbon assimilation for the biomass
and carotenoids accumulation within H. pluvialis cells. Under this condition, the SGF
strategy contributed to a hyper-density production of immotile cyst cells (final cell yield
at 9.18 g L−1) at the end of the green stage that utilized CH3COONa and NaNO3 as the
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carbon and nitrogen sources, respectively. After that, subjecting the SGF grown H. pluvialis
cyst cells to high light intensity treatment in the second stage eventually affected high
astaxanthin productivity of 15.45 mg L−1 d−1.

3.3. Effect of Illumination Intensity

Illumination is also a significant factor for improving the biomass productivity for
H. pluvialis in mixotrophic culture [42]. Radiation energy in the life cycle of H. pluvialis
contributes to the conversion of antenna pigments to chemical energy in the form of ATP
and NADPH via a photosynthetic electron transport chain. The microalgae will store the
chemical energy in starch by fixing CO2 through the Calvin cycle [44]. In assessing the
effect of illumination and culture media toward the regulation of the H. pluvialis growth
rate, Imamoglu et al. [45] had compared five culture media with three different light
levels intensities (40, 50, 60 µmol photons m−2 s−1). Upon 12 days cultivation under
low-level light intensity, H. pluvialis MACC-35 cells in Rudic’s Medium (RM) accumulated
up to 9.50 × 105 cells mL−1. Basal medium followed the cell growth trend to achieve
8.85 × 105 cells mL−1, whereas the rest of the media managed to propagate the cells in
the vicinity of 7.0 × 105 cells mL−1. By merely increasing the light intensity to mid-level
(50 µmol photons m−2 s−1), this then affected a 14.7% reduction in the cell concentration in
RM culture to 8.10× 105 cells mL−1, while the observed deficit in the cell concentration was
only 11% in basal medium. As expected, further reduction in the growth rate of H. pluvialis
persisted at 60 µmol photons m−2 s−1, whereby none of the cultivation in the five media
surpassed 7.0 × 105 cells mL−1.

On the contrary, Zhang et al. [26] reported that the dry cells weight of H. pluvi-
alis FACHB-712 was dramatically increased as the light intensity increased from 50 to
400 µmol m−2 s−1, which was coupled by the nitrogen depletion. The dry weight in-
creased to 2.19 ± 0.08 g L−1 at the light intensity of 400 µmol photons m−2 s−1, which was
1.39 times higher than that at 50 µmol photons m−2 s−1. This event concluded that the
net photosynthetic production highly depended on different light intensities. Kiperstok
et al. [46] demonstrated that the production of biomass H. pluvialis CCAC0125 using a
vertical Twin-Layer photobioreactor in cultivation at high light intensity up to 1015 µmol
photons m−2 s−1 with CO2 supplementation in the range of 1% to 10% yielded biomass
productivities of up to 19.4 g m−2 d −1 and a final biomass of 213 g dry weight m−2 growth
area after 16 days of cultivation.

3.4. Effect of Different Trophic Conditions

The cultivation of Haematococcus to gain biomass or astaxanthin extract is possible
under photoautotrophic, heterotrophic, and mixotrophic growth mode [8,47,48]. The recipe
for the photoautotrophic mode of culture typically requires light, CO2, water, and nutri-
ents [49]. Light is a source of energy, whereas inorganic compound mostly serves as a
carbon/nitrogen source to produce algal biomass rich in lipids, protein, and sugars [50].
Hong et al. [48] reported that a high H. pluvialis biomass was produced under the photoau-
totrophic induction process using NIES-C and NIES-N medium. In addition, the biomass
concentration in cells cultured at 30 ◦C with ferrous sulfate was increased by 37% compared
to that of cells cultured without ferrous sulfate with a value of 0.92 g L−1 of biomass [48].

Under the heterotrophic mode of cultivation, feeding Haematococcus with organic com-
pounds in the absence of light was geared more toward increasing the cell productivity [6].
However, this technique is not really suitable for producing astaxanthin in H. pluvialis, since
astaxanthin is a light-dependent carotenoid [47]. On the other hand, under the mixotrophic
mode, the use of organic and inorganic sources for carbon and energy such as acetate-
supplemented medium is successful in enhancing H. pluvialis growth and astaxanthin
production [6,36]. However, bear in mind that the mixotrophic technique could increase
cross-contamination risk by other microorganisms or grazers [8]. Wen et al. [47] reported
that the mixotrophic cultivation of H. pluvialis in an open raceway pond is still limited due
to bacterial contamination. The raceway ponds giving an effective culture area of 5 m2
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were 2.6 m long and 2.1 m wide. However, nitrogen-depleted conditions, coupled with
acetic acid addition to the cultures, would limit the reproduction of bacteria and result in
more than 20% of astaxanthin productivity [47].

3.5. Effect of Culturing System

Recently, for the mass production of H. pluvialis, a few producers employed a two-
step cultivation approach, either utilizing systems of bioreactors, outdoor production
ponds, or the combination of both [6,15]. Firstly, small-scale green phase cells cultivated in
photobioreactors are devoted to cell proliferation under normal growth conditions. Later,
under stress and nutrient-deficient conditions, the cells are transferred into larger-scale
raceway ponds toward astaxanthin accumulation [15]. To date, a number of works have
been published pertaining to the actual and computational fluid simulation of H. pluvialis
cultivated in different designs of photobioreactors [9,51,52]. In these reports, the outdoor
cultivation of H. pluvialis under an enclosed photobioreactors environment was chosen
as the first step. Later on, the microalgae would be exposed to the stressed condition in
raceway ponds for astaxanthin production [52].

The cultivation of H. pluvialis by using industrial waste as a substrate can reduce
industrial cultivation costs [53]. However, it is vital to control the quality of waste, since
H. pluvialis has the ability to absorb metal ions [54]. Han et al. [55] claimed that there
were some advantages over conventional cultivation methods when the green cells were
inoculated and grown as biofilms. The advantages were water saving, energy saving
for mixing, preventing protozoans contamination, and that they have a relatively easy
harvesting technique. However, this method has only been tested indoors and might
pose a significant challenge for outdoor production. Furthermore, the operational cost
of biofilm photobioreactors would be severely high [46]. Thus, selecting the cultivation
methodologies with current production processes and facilities are essential in reducing
the operational costs and risk of contamination. In addition, it is suitable to match with the
cultivation area in climatic conditions (light, temperature, rain) and an efficient system for
process improvement [6].

4. Current Strategies Inducing Astaxanthin in the Red Stage

Generally, astaxanthin in H. pluvialis starts to accumulate after introducing stress
intervention in the second stage of culture in the forms of salt concentration, nitrogen
depletion, varying the illumination intensity, iron concentration or increasing the tem-
perature [22]. β-carotenoid is formed by the cyclization of red lycopene after a series of
isopentenyl pyrophosphate (IPP) conversion and condensation into colorless phytoene and
dehydrogenation [56]. Figure 2 summarizes the conditions responsible for inducing stress
leading to the biosynthesis of astaxanthin in H. pluvialis. At the green stage, β-carotene, an
end product for photosynthesis in plants and algae (H. pluvialis included) is the precursor
for keto-carotenoids in the chloroplast and cytosol [57]. The oxygenation of β-carotene
by β-carotene ketolase (BKT) gives rise to echinenone and canthaxanthin [58]. Under the
stress condition, the multiple BKT genes are up-regulated to a certain threshold in the red
stage. Then, H. pluvialis begin to synthesize astaxanthin [59]. Astaxanthin is synthesized
from the hydroxylation of canthaxanthin catalyzed by CrtR-b in H. pluvialis [58].

4.1. Effect of Salinity

Salinity has a complex stress effect on microalgal net lipid productivity [60]. NaCl salt
destroys the oxygen-evolving complex (OEC) and photosystem II (PS II) reaction centre
and restrains the electron transport at its both donor and receptor sides, affecting the
light energy absorption, transfer, and application, which possibly leads to algal growth
inhibition and cell death [61]. Excessive extracellular inorganic ions affect the extracellular
and intracellular osmotic balance, inducing exosmosis or cellular water efflux [62]. Cell
death can also be related to the disruption of reactive oxygen species consumption and
production equilibrium by excessive NaCl [63]. However, Gao et al. [64] concluded that
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distinctive salinity adaptabilities are present in different H. pluvialis strains, as evidently
shown by the cultivation of three Australian H. pluvialis isolates indicating some growth
even under salinity of 0.17 M (≈1%) NaCl [65]. Then, astaxanthin production cost could be
reduced by applying a suitable concentration of the comparatively cheap and always in
ready-stock NaCl into the microalgal variety to improve biomass, lipid, and carotenoid [61].
The formation of astaxanthin can also be induced by adding NaCl (0.25–0.5% w/v) to the
media. In addition, when NaCl is added together with 2.2 mM sodium acetate, astaxanthin
accumulation can be increased [32]. It has also been reported that salinity stress induces
reactive oxygen species (ROS) accumulation; therefore, NaCl additions are frequently
used to inhibit cell growth and stimulate the astaxanthin synthesis [66]. Tam et al. [67]
tested different NaCl concentrations on both the growth and astaxanthin accumulation on
H. pluvialis. Reduced cell growth and increased carotenoid contents per cell were observed
under salinity stress.
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H. pluvialis.

4.2. Nitrogen Depletion Strategy

The hyper intracellular carotenoid or astaxanthin accumulation can be improved by
subjecting culture to nutrient deficiency via nitrogen stress. There is a review stating that the
effect of nitrogen deficiency in economic astaxanthin production is greater than that of light
intensity [4]. However, Scibilia et al. [27] reported an experiment whereby culture grown in
BG-11 medium under nitrogen starvation coupled with high light illumination at 400 µmol
photons m−2 s−1 had in effect strongly induced an astaxanthin yield of 306 mg mL−1. The
source for high light during cultivation was flourescent-based, which contributed to a
215% increment compared to a culture that was also under nitrogen starvation but with
control lighting (40 µmol photons m−2 s−1). Imamoglu et al. [68] reported when nitrogen
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became the limiting agent, astaxanthin production was increased such as in distilled water
sparged with CO2 and with N-free RM, which were 29.62 and 30.07 mg g−1, respectively.
However, if too few or no nitrogen is provided, cell damage can also result from significant
chlorophyll degradation. Nahidian et al. [69] in Table 1 reported that 3-fold phosphate
produces the highest cell density, and the growth rate increases up to 86%. This result
proves that phosphate is the most influential component for astaxanthin accumulation in
H. pluvialis.

4.3. Effect of Illumination Intensity

Light stress exerted on microalgae triggers the burst of reactive oxygen species
(ROS) [70]. They disrupt the cellular homeostasis and induce astaxanthin accumulation in
H. pluvialis [14]. High light intensity is one of the most significant factors in the induction of
astaxanthin accumulation, which is under moderate light conditions; for a long time, they
have been associated with the induced astaxanthin production because of the depletion
of nutrition in the culture medium. Lv et al. [71] had demonstrated that when light inten-
sity increased, the Calvin cycle and TCA cycle (tricarboxylic acid cycle) provided more
precursors for other pathways. The contents of various metabolites increased significantly,
and astaxanthin biosynthesis also increased. According to Hu et al. [72], under light stress,
the application of the nucleotides, carbohydrates, and amino acids in algal medium is
associated with the astaxanthin biosynthesis. Moreover, Azizi et al. [20] reported that in a
5 L stirred-tank photobioreactor coupled with constant light intensity in the phototrophic
stage, the increment of biomass and astaxanthin concentration was 50% and 60% over the
BG-11 media under the constant light intensity (100 µmol m−2 s−1). In addition, Imamoglu
et al. [68] also reported the influences of different light intensities on the accumulation
of astaxanthin and suspension color during the induction period. In their report, the
final astaxanthin concentration of 29.62 and 30.07 mg g−1 was obtained under high light
intensity of 445 and 546 µmol photons m−2 s−1, respectively by using standard day light
fluorescents lamps (18 W) positioned 2 × 2 or 3 × 3 from each side of the flasks. As the
light intensity increased from 445 1 to 546 µmol photons m−2 s−1, proportionately, the
astaxanthin concentration in N-free medium, NP-free medium, and distilled water with
sparged CO2 were recorded to increase by 25.5%, 15.3%, and 7.6%, respectively [68].

4.4. Effect of Temperature

Haematococcus cultures were shown to be quite sensitive to temperature changes [73].
The accumulation of astaxanthin can be generated at maximum intracellular levels of
oxidative stress when optimum temperatures are exposed to H. pluvialis. Multiple studies
reported that the maximum viable temperature for such carotenogenesis is 30 ◦C, and
any higher temperatures than 35–40 ◦C will induce cell lysis in H. pluvialis [4,14,48]. Ac-
cording to Giannelli et al. [73], when H. pluvialis was exposed to two culture conditions
at 27 and 20 ◦C, the high-temperature culture ultimately accumulated approximately 37%
more astaxanthin than the control (156 against 115 mg L−1) under nitrogen starvation,
with the final total cell concentration of 9.8 × 106 cells mL−1 and 9.1 × 106 cells mL−1 for
27 and 20 ◦C, respectively. The increased temperature had a positive effect when combined
with the nitrogen starvation stress and allowed for increased final astaxanthin produc-
tion. Furthermore, Hong et al. [48] reported that the moderate temperature (25–28 ◦C)
improved an astaxanthin production in H. pluvialis compared to cells cultured in normal
temperature (23 ◦C). The biomass concentrations in cells cultured were reduced by 20%
and 48% at 30 and 36 ◦C under photoautotrophic induction compared to those of cells
cultured at 23 ◦C (1.21 g L−1) after 18 days. The astaxanthin content in the cells cultured
also decreased significantly by 31% and 62% at 30 and 36 ◦C, respectively compared to that
of cells cultured at 23 ◦C (31.8 mg g−1) of dry weight. It was shown that heat stress from
30 to 36 ◦C inhibits photosynthesis in H. pluvialis, in which the intracellular astaxanthin is
inversely related to cellular photosynthetic activity [48].
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4.5. Effect of Metal Concentration

Recently, the potential application of metal-based nanoparticles (NPs) has been at-
tracting applications in the cultivation of plant and algae. Multiple studies revealed the
positive effects of metal-based NPs on certain algae when appropriate concentrations were
applied to the cultures [74,75]. He et al. [76] showed that the cell density and chloro-
phyll content were enhanced at 20 mg L−1 supplementation of Fe2O3 NPs in the growth
medium of Scenedesmus obliquus. Kadar et al. [77] revealed that by adding Zn NPs at
1.17 × 10−5 M concentration in the growth medium of microalgae, the growth rate was
stimulated. Rastar et al. [75] indicated that a positive influence of biomass, astaxanthin, and
chlorophyll contents of H. pluvialis was obtained in the presence of 2.49 and 4.41 mg L−1

Zn NPs as per their standard concentration in BBM medium. However, higher concentra-
tions of the metals NPs may lead to toxic effects, resulting in the cell density of H. pluvialis
significantly decreasing, due to its restriction on the microalgae for the light accessibility
and finally disturbing the photosynthesis process. Similarly, Djaeramane et al. [74] reported
that the treatment of ZnO NPs on H. pluvialis at the concentration of 10–200 µg mL−1 re-
sulted in the reduction on the cell viability, biomass, and photosynthetic pigments together
with surface and intracellular damages. In other microalga systems, Sibi et al. [78] showed
that by increasing the CuNPs, Pb-NPs, Zn NPs, and Mg-NPs concentrations in the growth
media, the specific growth rate and biomass density of Chlorella vulgaris were significantly
decreased. Hence, some metal-based NPs, such as Fe NPs, have the potent toxicity by
generating a reactive form of oxygen species (ROS), which induces the oxidative stress.
Excess ROS production is believed to induce oxidative damage to the microorganism cell
walls and DNA [75]. Table 1 tabulates some of the current strategies in inducing astax-
anthin production during the red stage, encompassing nitrogen depletion, salinity effect,
illumination intensity, temperature effect, and application of metal concentrations.
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Table 1. Current strategies in inducing astaxanthin production in different strain of Haematococcus pluvialis.

Optimal Haematococcus pluvialis Growth Conditions(Green Stage)
Optimal Stress Condition for Inducing Astaxanthin Production by

Haematococcus pluvialis
(Red Stage)

References

Basal Medium Inoculum (Days) Temp (◦C) pH Light
Intensity

Time Course
(Days) Stress Condition Effect

Strain JNU35
Modified BBM

(mBBM)
Modified BG-11

(mBG-11)

7 days
Initial biomass
0.4–0.5 g L−1

25 ± 1 6–7
150

µmol photons
m−2s−1

15

Different Initial Nitrogen:
Sodium nitrate (NaNO3)
Ammonium bicarbonate

(NH4HCO3)
Or urea ((NH2)2CO)

Best N source: Urea
Max biomass (10.2 g L−1)

Max Astaxanthin (5.4 mg L−1)
[9]

Strain
ZY-18

NIES-C
Initial biomass

0.4 g L−1 25 7.5–8

250
µmol photons

m−2s−1

12 h:12 h
Light: Dark cycle

until achieved
10 g L−1 of

biomass

Temperature:
Daytime temperature range

(8 ◦C to 33 ◦C)
Night temperature

(maintained at 28 ◦C)
Night temperature range

(8 ◦C to 33 ◦C)
Daytime temperature
(maintained at 28 ◦C)

Daytime temperature (23 to 28 ◦C) is best for
photoinduction, and the night temperature

should be kept below 28 ◦C.
The net biomass and astaxanthin

productivities under the controlled
temperature (2.34 g m−2 d−1)

(60 mg m−2 d−1) were 5-fold and 2.9-fold,
while of those under the natural temperature

(biomass: 0.47 g m−2 d−1; astaxanthin:
21 mg m−2 d−1), respectively.

[79]

Strain Flotow
RM

Initial cell
6 × 104cell mL−1 25 NR

1.5 klux density
12 h:12 h

Light: Dark cycle
15 Different salinity

0.8%, 1.5% and 2.5% NaCl

Astaxanthin increased 4.8 folds from
10 pg·cell−1 to 48 pg·cell−1

at 2.5% NaCl under high temperature.
[67]

Strain K-0084
BG-11

5 × 105

cell mL−1 22 ± 1 NR 16 h:8 h
Light: Dark cycle 10 Nitrogen starvation and

high light intensity

High light
(400 µmol photons m−2s−1) combined with

nitrogen starvation is the most effective
condition to induce astaxanthin production

[27]

Strain
com-mercial

MLA medium

5% (v/v) inoculum
with

4.07 × 104 cell mL−1
20 ± 1.5 NR

Photon flux density
65–75 µE m−2 s −1

14 h:10 h
Light: Dark cycle

17

Nitrogen depletion
Culture were grown

autotrophically and undergo
natural exhaustion of nitrate.

The cell size increased within the cell
population, which the cell diameter average
≈30% and the cell density decreased during

senescence.

[80]

Strain NIES-144;
UTEX-2505

BG-11

Initial density1 × 104

cell mL−1 NR 7–7.5

50 µmol photons
m−2s−1(White LED)

12 h:12 h
Light: Dark cycle

9

Different nutrient and
light-feeding strategy

Nutrients:
MgSO4·7H2O,

H3BO3
Na2CO3

Biomass 0.15 g L−1d−1

Astaxanthin 13.33 mg L−1d−1

Utilizing RSM technique of under constant
light intensity.

[20]

Strain NIES-144
Kobayashi basal

medium

The initial cell
biomass ~1.0 g L−1 25 ± 1 7.5

4 ± 1 µmol photons
m−2s−1, provided by
cool white fluorescent

tubes

12 Different ratio of carbon to
nitrogen (C/N)

Biomass 9.18 g L−1

(100% immotile cyst cells)
Astaxanthin productivity

15.45 mg L−1d−1

[43]

Strain (Isolate,
Iran)
BBM

Initial cell number
2 × 105

cell mL−1
25 ± 1 NR

20
µmol photons

m−2s−1

16 h:8 h
Light: Dark cycle

15

Different macro/micronutrients
Nitrate and phosphate

(macronutrients)
Iron and boron(trace elements)

The modified BBM with 3-fold higher
phosphate led to the highest cell density and

up to 86% increase in the growth rate.
[69]



Biomolecules 2021, 11, 256 11 of 15

Table 1. Cont.

Optimal Haematococcus pluvialis Growth Conditions(Green Stage)
Optimal Stress Condition for Inducing Astaxanthin Production by

Haematococcus pluvialis
(Red Stage)

References

Basal Medium Inoculum (Days) Temp (◦C) pH Light
Intensity

Time Course
(Days) Stress Condition Effect

Strain Flotow
EGE MACC-35

BG-11

Seven-day-old culture
of green cells about

0.26 mg mL−1
25 ± 1 <8.0

100
µmol photons

m−2s−1
14

Different stress media with
different light intensity
Rudic’s medium (RM)

Nitrogen-free RM medium (N-free)
Phosphate-free RM medium

(P-free)
Nitrogen and phosphate-free

RM medium (NP- free)
and

Distilled water with the sparging
of CO2

Light Intensity
445 and 546

µmol photons m−2s−1

Astaxanthin concentrations:
Distilled water with CO2

(29.62 mg g−1)
N-free RM medium

(30.07 mg g−1)
at 546 µmol photons m−2s−1

[68]

Strain SAG 19-a
BBM

Initial cell
4 × 105cell mL−1 25 ± 1 NR Under fluorescent

light 15

Effect of the four variables
Carbon dioxide 1.54% Sodium

nitrate 1.06 g L−1 Inoculum
volume 24.97%

Light intensity 2.42 klux

Positive effect on cell growth leading to
maximum yield of dried biomass at 0.51 g L−1 [81]

Strain SAG 19-a
Basal medium

4-day old culture
Inoculum 4.95 × 105

cell mL−1
25 ± 1 7

Under a continuous
light intensity of 1.5

klux
12–16

Effect of salinity with added
sodium acetate (2.2 mM)

Range 0.25, 0.5, 1.0, and 2.0% w/v
Effect of nitrogen source with

0.25%NaCl and sodium acetate
(4.4 mM)

Calcium nitrate; potassium nitrate;
ammonium nitrate; sodium nitrate
Effect of pH with added sodium

acetate (4.4 mM)
pH 5–9

Astaxanthin content was higher in acetate
supplemented medium, in which an

increment was obtained at
0.25 and 0.5% salinity.

The maximum cell concentration was
obtained in potassium nitrate

(6.2 × 105 cell mL−1) and the lowest was
obtained in ammonium nitrate

(1.65 × 105 cell mL−1) grown cultures.
There was a significant increase in astaxanthin

productivity in media at pH 6–8.Older cells
accumulated 8.3–10.69 mg L−1 astaxanthin

compared to 0.95–8.1 mg L−1 in 4–8-day-old
cultures, respectively.

[32]

NR = Not reported; LED = Light-emitting diode; RSM = Response Surface Methodology.
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5. Conclusions

In conclusion, astaxanthin produced by H. pluvialis has created a high value-added
metabolite with some unique benefits in various industrial sectors. In this review, the
laboratory-scale microalgae cultivation elaborated the processes under environmental
stresses to induce astaxanthin in the red stage and favorable conditions for biomass pro-
duction in the green stage. H. pluvialis cultivation could be sustained in biomass and
astaxanthin production with current cultivation strategies. Most studies have shown that
BBM medium is suitable for cultivating green microalgae started with an initial biomass of
0.4 to 0.5 g L−1. The optimum ranges of temperature and pH for H. pluvialis at the green
stage are 20 to 25 ◦C and pH 6 to 8, respectively. In addition, cultivation conditions under
low light intensity, with white plasma light source under photoperiod 12:12 h light/dark
cycle coupled with urea as the nitrogen source are the best combination for the growth
of the cells. In comparison to the red stage, the optimal condition to induce astaxanthin
production is by applying stresses such as nitrogen depletion, salinity effect, illumination
intensity, temperature effect, and application of metal ion concentration. However, this
summary leads to a great deal of confusion when attempting to compare results for dif-
ferent strains or isolate between laboratories where different species may have different
optimal green and red stage parameters. Perhaps, selective combinations of techniques for
two-stage microalgae cultivation will affect a much higher yield of astaxanthin to be used
in various industrial applications.
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