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Abstract: The HPC-1/syntaxin 1A (Stx1a) gene, which is involved in synaptic transmission and
neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated
by the binding of Sp1 and acetylated histone H3 to the −204 to +2 core promoter region (CPR) in
neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases
(HDACs) to Stx1a–CPR in non-neuronal cell/tissue. To further clarify the factors characterizing
Stx1a gene silencing in non-neuronal cell/tissue not expressing Stx1a, we attempted to identify
the promoter region forming DNA–protein complex only in non-neuronal cells. Electrophoresis
mobility shift assays (EMSA) demonstrated that the −183 to −137 OL2 promoter region forms DNA–
protein complex only in non-neuronal fetal rat skin keratinocyte (FRSK) cells which do not express
Stx1a. Furthermore, the Yin-Yang 1 (YY1) transcription factor binds to the −183 to −137 promoter
region of Stx1a in FRSK cells, as shown by competitive EMSA and supershift assay. Chromatin
immunoprecipitation assay revealed that YY1 in vivo associates to Stx1a–CPR in cell/tissue not
expressing Stx1a and that trichostatin A treatment in FRSK cells decreases the high-level association
of YY1 to Stx1a-CPR in default. Reporter assay indicated that YY1 negatively regulates Stx1a
transcription. Finally, mass spectrometry analysis showed that gene silencing factors, including
HDAC1, associate onto the −183 to −137 promoter region together with YY1. The current study
is the first to report that Stx1a transcription is negatively regulated in a cell/tissue-specific manner
by YY1 transcription factor, which binds to the −183 to −137 promoter region together with gene
silencing factors, including HDAC.

Keywords: SNARE; non-neuronal; histone deacetylase; gene silencing; heterochromatin; neurodevel-
opmental disorder

1. Introduction

HPC-1/syntaxin 1A (Stx1a) was first discovered as a gene exhibiting neuron-specific
expression and is a key acceptor molecule of a complex called soluble N-ethylmaleimide-
sensitive fusion protein attachment protein receptor (SNARE), which is involved in presy-
naptic vesicle exocytosis in the central nervous system (CNS) [1–4]. The hemizygous dele-
tion of this gene causes an autosomal dominant neurodevelopmental disorder, Williams
syndrome, which is characterized by a unique behavioral and cognitive profile, mild-
to-moderate intellectual disability, multi linguistic ability, attention-deficit hyperactivity
and poor visuo-spatial recognition [5–7]. We previously reported that the Stx1a gene is a
TATA-less gene with multiple transcription start sites and is activated by the binding of
Sp1 and acetylated histone H3 (AcH3) to the −204 to +2 core promoter region (CPR) in
neuronal cell and tissue [8]. We also found that the neuron-specific expression of this gene
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is determined by gene silencing via the binding of class 1 histone deacetylases (HDACs),
such as HDAC1, HDAC2 and HDAC8, to Stx1a–CPR in non-neuronal cell and tissue [8,9].
However, the detailed transcription mechanism involved in Stx1a gene silencing is unclear.

To further clarify the factors characterizing Stx1a gene silencing in non-neuronal
cell and tissue, in the present study, we first attempted to identify the promoter region
forming DNA–protein complex only in non-neuronal cells by electrophoresis mobility shift
assays (EMSA). EMSA demonstrated that DNA–protein complex is formed on the −183 to
−137 OL2 region of Stx1a–CPR only in non-neuronal cells such as fetal rat skin keratinocyte
(FRSK) and fibroblast 3Y1 not expressing Stx1a. Competitive EMSA and supershift assay
also revealed that the DNA–protein complex formed on the −183 to −137 region consists
of the Yin-Yang 1 (YY1) transcription factor in FRSK cells. Furthermore, the association of
YY1 to the Stx1a–CPR in vivo was examined by chromatin immunoprecipitation (ChIP)
assay. Results showed that YY1 associates to Stx1a–CPR in cell/tissue not expressing Stx1a
and that trichostatin A (TSA) treatment in FRSK cells decreases the high-level association
of YY1 to the Stx1a–CPR in default. YY1 belongs to the GLI-Kruppel class of zinc finger
transcription factors and is a ubiquitously distributed transcription factor that positively
or negatively regulates a diverse number of gene promoters. YY1 is implicated in histone
modification via interaction with various proteins, including histone acetyltransferases and
HDACs, to activate or repress gene promoters [10–13]. We then examined the effect of YY1
on Stx1a transcription activity by conducting a luciferase reporter assay. Results showed
that YY1 negatively regulates Stx1a transcription. Finally, we identified proteins that bind
to the −183 to −137 promoter region by mass spectrometry analysis. Results suggest that
gene silencing factors, including HDAC1, associate to the −183 to −137 promoter region
together with YY1. In the present study, we demonstrated that Stx1a gene transcription is
negatively regulated in a cell-/tissue-specific manner by the YY1 transcription factor and
that YY1 binds to the −183 to −137 promoter region together with factors participating in
gene silencing, such as HDACs.

2. Materials and Methods
2.1. Cell Culture

Cell lines of fetal rat skin keratinocyte (FRSK), rat fibroblast 3Y1, rat adrenal pheochro-
mocytoma PC12 and human neuroblast IMR32 were purchased from HSRRB (Osaka, Japan).
Drosophila melanogaster SL2 cell line was purchased from ATCC (Manassas, VA, USA). Cells
were maintained in RPMI medium or Schneider’s drosophila medium supplemented with
10% (v/v) fetal calf serum (FCS), streptomycin and penicillin.

2.2. Electrophoresis Mobility Shift Assays (EMSA) and Supershift Assay

Preparation of nuclear extracts, EMSA and supershift assays were performed as
previously described [8]. The sequence positions from the translation initiation site of used
OL1–8 are as follows. OL1 (−210 to −178), OL2 (−183 to −137), OL3 (−140 to −118), OL4
(−120 to −88), OL5 (−87 to −69), OL6 (−71 to −55), OL7 (−54 to −26) and OL8 (−25 to
+2). Each annealed ds-oligonucleotide fill-in labeled with [α-32P] dCTP and exo-Klenow
fragment was incubated with poly(dI-dC) and nuclear extract in EMSA buffer (20 mM
HEPES, pH 7.9, 25 mM KCl, 2 mM MgCl2, 0.1 mM EDTA, 0.5 mM DTT, 2 mM spermidine,
0.1 mg/mL bovine serum albumin and 10% glycerol). For competition assays, 0–125 pmol
of cold oligonucleotides was added to the reaction mixtures and incubated before probe
addition. For supershift assay, polyclonal antibodies to SP1 (Active Motif, Carlsbad, CA,
USA), SP3 and SP4 (Santa Cruz, CA, USA) and monoclonal antibodies to YY1 (H10) and
NFκB (F-6) (Santa Cruz) were used. Antibody (4 µg) was incubated with nuclear extract
in EMSA buffer at 4 ◦C for 16 h before the addition of the OL2 probe. EMSA reaction
mixtures were loaded and separated on a native 3–5% polyacrylamide gels containing
0.5× Tris borate–EDTA buffer. Dried gels were exposed to BASS-2000 imaging plate (IP)
film (FUJIFILM, Tokyo, Japan).



Biomolecules 2021, 11, 146 3 of 10

2.3. Chromatin Immunoprecipitation (ChIP) Assay

ChIP assay was adapted from reference [8] with modifications. In brief, cells treated
for 48 h with or without 1 µM TSA were fixed with 1% formaldehyde and resuspended
in swelling buffer (5 mM 1,4-Piperazinediethanesulfonic acid (PIPES), pH 8.0, 8.5 mM
KCl, 0.5% NP-40 and 0.1% protease inhibitors (PI) cocktail). For the preparation of fixed
tissue, rat brain and lung tissues profusely fixed with 1% paraformaldehyde in PBS were
post-fixed and resuspended in swelling buffer. Nuclei were collected from homogenized
cells or tissues and sonicated to an average length of 200–500 bp. The precleared chromatin
solution was incubated with control antibody (Jackson Laboratory, Sacramento, CA, USA),
AcH3 antibody (FUJIFILM Wako Pure Chemical, Osaka, Japan) or YY1 antibody and then
reacted with protein G-beads blocked with sheared herring sperm DNA and bovine serum
albumin (BSA). Following two washing steps, immune complexes were eluted with an
elution buffer (50 mM NaHCO3 and 1% sodium dodecyl sulfate (SDS)). The supernatant
from the reaction lacking a primary antibody was saved as total input chromatin and
processed alongside the eluted immunoprecipitates, beginning at the cross-link reversal
step. After the cross-links were reversed with NaCl and RNaseA and incubated with
proteinase K, the samples were precipitated and analyzed by PCR. PCR was carried out
with primers rStx1ag F−284 to −255 (5′-CTG GGG CAG AGG AGG CAG CAG GGT
CTC TGG-3′) and rStx1a R+30 to +11 (5′-CAT ACA AAA CTC CTA AAT TC-3′). Cycling
conditions were as follows: 95 ◦C for 3 min, followed by 35 cycles of 95.5 ◦C for 30 s, 50 ◦C
for 30 s and 72 ◦C for 40 s. PCR products were run on a 1.5% agarose gel and visualized by
SYBR Green staining.

2.4. Transient Cotransfection Assays and Luciferase Reporter Gene Assays

Luciferase reporter assay was carried out in accordance with our previous report [8].
For reporter assays in Drosophila melanogaster SL2 cells, pPac-mock, pPac-YY1, and/or
pPac-Sp1 vectors were co-transfected with phRG-TK and pGL3-CPR (−204 to +2) reporter
vectors into cells by using FuGENE 6 (Roche, Basel, Switzerland). For reporter assays in
PC12 cells, pcDNA3-mock or pcDNA3-YY1 vector was co-transfected with phRG-TK and
pGL3-CPR (−204 to +2) reporter vectors. At 48 h after transfection, cells were lysed in
reporter passive lysis buffer (Promega, WI, USA). Luciferase activity in cell lysates was
measured by a luminometer (Turner Designs, San Jose, CA, USA). Relative luciferase units
were evaluated after normalization against the phRG activity of each sample. Fold change
was expressed as relative luciferase unit with pPac or pcDNA expression plasmid/relative
luciferase unit with a mock vector.

2.5. DNA Affinity Purification of Transcription Factor

The isolation of DNA–protein complexes based on streptavidin and biotin interaction
was adapted from reference [14,15] with modifications. Magnosphere MS300 (TaKaRa,
Shiga, Japan) streptavidin magnetic beads (1 mg) were incubated for 30 min at 25 ◦C with
1 nmol biotinylated OL2 DNA in 0.4 ml of binding buffer (5 mM Tris-HCl, pH 7.5, 1 M
NaCl, 0.5 mM EDTA and 0.05% Tween20). Nuclear extracts (50–500 µg) were precleared
for 1 h at 4 ◦C with 1 mg of streptavidin magnetic beads and incubated for 16 h at 4 ◦C
with the biotinylated OL2 DNA–streptavidin magnetic beads in 0.2 mL of binding buffer
(10 mM HEPES-KOH, pH 7.6, 50 mM KCl, 5 mM MgCl2, 1 mM EDTA, 5 mM DTT, 1 mM
spermidine, 0.1 µg/µl poly(dI-dC), 0.01% BSA, 10% glycerol and 0.1% PI cocktail). The
reaction beads were washed with binding buffer and eluted by boiling in Laemmli sample
buffer. Eluted samples were subjected to 5% SDS–PAGE gel electrophoresis. Gels were
stained with Coomassie blue and then prepared for mass spectrometry analyses.

2.6. Mass Spectrometry Analyses

All protein bands were excised from a Coomassie blue-stained SDS-PAGE gel and
treated with trypsin for 16 h at 37 ◦C. Digested proteins were desalted and concentrated
with StageTips [16]. Tryptic peptides were run through a mass spectrometer system



Biomolecules 2021, 11, 146 4 of 10

(LTQ-Orbitrap, Velos mass spectrometer, Thermo scientific, MA, USA) coupled with a
direct nano-liquid chromatography system (DiNA; KYA Technologies, Tokyo, Japan).
MASCOT 2.4 (Matrix Science, Boston, MA, USA) search engine was used to access the
UniprotKB/Swiss-prot or NCBInr database. Proteins associated with the−183 to−137 OL2
promoter region were extracted by the following criteria: unique peptide number (≥2);
molecular function, such as DNA nucleotide binding; with cellular component localized to
the nucleus or chromosome; and molecular weight.

2.7. Statistical Analysis

Data were expressed as means ± SE and analyzed using t-test or one-way analysis of
variance. Differences at p values less than or equal to 0.05 were considered significant.

3. Results
3.1. YY1 Transcription Factor Associates with the −183 to −137 OL2 Region of the Stx1a Core
Promoter Region in Non-Neuronal Cells Which Do Not Express Stx1a

We previously reported that the association of Sp1 and AcH3 with Stx1a −204 to
+2 CPR (accession no. D10392) promotes Stx1a transcription in neuronal cell/tissue; fur-
thermore, we showed that the association of class 1 HDACs, such as HDAC1, HDAC2
and HDAC8, with Stx1a–CPR negatively regulates Stx1a transcription in non-neuronal
cell/tissue [8]. Stx1a–CPR includes two SP/GC sites (the −202 to −193 and −190 to
−181 regions, Figure 1A), to which Sp1 associates with in neuronal cells [8]. EMSA was
carried out using oligonucleotide probes (OL1–8) covering the−204 to +2 region of the CPR
in non-neuronal cells such as fetal rat skin keratinocyte FRSK and rat fibroblast 3Y1 and
neuronal cells such as rat adrenal pheochromocytoma PC12 and human neuroblast IMR32
to study the binding properties of Stx1a–CPR correlating to the Stx1a expression. Among
these oligonucleotide probes, we found that the OL2 probe, including the −183 to −137
region of the Stx1a-CPR, forms four complexes (C1, C2, C3 and C4 in Figure 1B,C, lane 2)
only in nuclear extract from non-neuronal 3Y1 and FRSK cells not expressing Stx1a. On the
other hand, the OL2 probe forms no complexes (Figure 1B, lane 4 and 6) in nuclear extract
from neuronal PC12 and IMR32 cells. The formation of all DNA–protein complexes (C1 to
C4) disappeared upon the addition of an OL2 cold oligonucleotide competitor (Figure 1C,
lane 3), indicating that these protein-forming complexes specifically bind to the −183 to
−137 OL2 region of Stx1a–CPR. Furthermore, competitive EMSA with a cold oligonu-
cleotide with a consensus sequence of SP, YY1 or NFκB demonstrated that the formation of
the C4 DNA–protein complex decreased upon the addition of a cold oligonucleotide com-
petitor with an SP consensus sequence (Figure 1C, lanes 4 to 6); furthermore, the formation
of the C3 DNA–protein complex decreased upon the addition of the cold oligonucleotide
competitor with a YY1 consensus sequence (Figure 1C, lanes 7 to 9). The formation of
the C1 DNA–protein complex decreased upon the addition of any cold oligonucleotide
competitor with a consensus sequence of SP, YY1 or NFκB (Figure 1C, lanes 4 to 12). The
cold oligonucleotide competitors with a consensus sequence of SP, YY1 or NFκB did not
affect the formation of the C2 DNA–protein complex (Figure 1C, lanes 4 to 12).
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shift-bands by DNA–protein complexes (C1, C2, C3 and C4). (D): Supershift assay of the OL2–protein complex in FRSK 
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Figure 1. Competitive electrophoresis mobility shift assays (EMSA) and supershift assays with OL2 (−183 to−137) region in
the core-promoter region (CPR) of Stx1a. (A): Scheme of OL2 probe and competitors (consensus OL) used with competitive
electrophoresis mobility shift assays (EMSA). The consensus sequences of SP, YY1 and NFκB are indicated in red. (B):
EMSA with OL2 for binding to nuclear extract of 3Y1 fibroblast cells, PC12 adrenal pheochromocytoma cells and IMR32
neuroblast cells. Arrowheads indicate shift-bands by DNA–protein complexes (C1, C2, C3 and C4). (C): Competitive EMSA
with OL2 for binding to nuclear extract of fetal rat skin keratinocyte (FRSK) cells. Arrowheads indicate shift-bands by
DNA–protein complexes (C1, C2, C3 and C4). (D): Supershift assay of the OL2–protein complex in FRSK cells. Nuclear
extract from FRSK cells was incubated with antibodies for Sp1, Sp3, Sp4, NFκB and YY1 before the addition of the OL2
probe. Arrowheads indicate the shift-band by DNA–protein and DNA–protein–antibody complex. The supershift bands
(SS1) by DNA–protein–antibody complex are indicated with asterisks.

To confirm the association of these transcription factors with the −183 to −137 OL2
region of the Stx1a–CPR in non-neuronal cells, we next carried out a supershift assay by
using an antibody against the Sp family, NFκB and YY1. After the FRSK nuclear extract was
preincubated with YY1 antibody, a slow migrating supershift band was detected (SS1 in
Figure 1D, lane 7, marked with an asterisk). However, no supershift bands were observed
in supershift assays using Sp1, Sp3, Sp4 and NFκB antibodies (Figure 1D, lane 2 to 6),
which did not support the result of the decreased C1 and C4 complex formation by the
consensus oligonucleotide of SP, YY1 and NFκB (Figure 1C). This result suggested that the
decreased C1 and C4 complexes may have been due to the weak affinity of the protein to
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the OL2 probe or another protein recognizing the compatible consensus sequence of SP,
YY1 and NFκB.

These finding indicated that the YY1 transcription factor associates with the −183 to
−137 OL2 region of the Stx1a–CPR in non-neuronal FRSK cells which do not express Stx1a.

3.2. YY1 Associates with Stx1a–CPR in Cells and Tissues not Expressing Stx1a

We previously reported that Stx1a expression is induced via the association of AcH3
with Stx1a–CPR in non-neuronal FRSK cells by an HDAC inhibitor, TSA [8]. To further
verify the above in vitro binding data, we performed ChIP assay by using YY1 antibody
and chromatin extracted from FRSK cells treated with or without TSA. The ChIP assay
demonstrated that the TSA treatment of FRSK cells decreased the high-level association of
YY1 with the Stx1a–CPR in default (p < 0.01 to TSA untreated; t-test; Figure 2A). By contrast,
the TSA treatment of PC12 cells did not change the association of YY1 with Stx1a–CPR,
which remained at low level in default (Figure 2B).
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using YY1 antibody in FRSK (A) and PC12 (B) cells treated with TSA (+) or untreated (−). Chromatin DNA isolated by
immunoprecipitation was amplified using primers for the Stx1a-CPR. The data shown are representative images. Values
indicate means± SE (n = 3). ** p < 0.01 compared to the untreated control. (C) ChIP assays using AcH3 and YY1 antibodies in
tissues of brain or lung. Chromatin DNA isolated by immunoprecipitation was amplified using primers for the Stx1a–CPR.

To study the relationship between the association of YY1 with the Stx1a–CPR and the
tissue specificity of Stx1a expression, we then carried out a ChIP assay of two tissue types:
rat brain tissue expressing Stx1a and rat lung tissue not expressing Stx1a [8]. The ChIP assay
demonstrated that AcH3 but not YY1 binds to Stx1a–CPR in brain tissue, whereas YY1 but
not AcH3 binds to Stx1a–CPR in lung tissue (Figure 2C). These results indicated that YY1
associates with Stx1a–CPR in non-neuronal cell/tissue not expressing the Stx1a gene.

3.3. YY1 Negatively Regulates the Stx1a Transcription

To study the effect of YY1 on the Stx1a transcription, the luciferase reporter assay
was carried out in PC12 cells co-transfected with pcDNA-YY1 vector. Figure 3A shows
that the overexpression of YY1 in PC12 cells suppresses Stx1a transcription. To further
examine the effect of YY1 and also in combination with Sp1, on Stx1a transcription, we
next co-transfected plasmids encoding each of these transcription factors together with
Stx1a promoter-luciferase reporter plasmids into SL2 Drosophila melanogaster cells, which
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lack endogenous expression of the Drosophila homolog of Sp1 [16]. The reporter assay
demonstrated that the Stx1a promoter activity in SL2 cells was not changed when co-
transfected with pPac-YY1 (Figure 3B). On the other hand, co-transfection assay revealed
that the Stx1a promoter activity increased 2-fold by pPac-Sp1 (p < 0.01 compared with pPac-
vector control) is suppressed by co-transfection of pPac-YY1 (p < 0.01 compared with pPac-
Sp1) (Figure 3B). These results suggest that YY1 negatively regulates the Stx1a transcription.
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band of affinity-purified proteins (Figure 4, APP2, marked with an arrowhead) by mass 
spectrometry, we confirmed that YY1 associates with the −183 to −137 OL2 promoter re-
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Figure 3. Effect of YY1 on the Stx1a transcription activity. (A): Reporter assay in PC12 cells overexpressing YY1. Reporter
activity was measured in PC12 cells co-transfected with pGL3–CPR (−204 to +2) reporter vector and pcDNA–YY1 expression
vector. Values represent means ± SE (n = 9) from three independent experiments. ** p < 0.01 compared to the pcDNA-vector
mock control. (B): Reporter assay in drosophila SL2 cells overexpressing YY1 and Sp1. Reporter activity was measured in
SL2 cells transfected with reporter vector pGL3–CPR (−204 to +2) and expression vectors of pPac-Sp1 and -YY1. Values
represent means ± SE (n = 9) from three independent experiments. ** p < 0.01 compared to the pPac-vector mock control.

3.4. Gene Silencing Factors, Including Histone Deacetylase, Associates with the −183 to −137
OL2 Promoter Region

To further identify OL2 DNA–protein complexes, we carried out mass spectrometry
analysis by using proteins that were affinity purified from FRSK nuclear extracts by bi-
otinylated OL2 DNA (see Figure 4 for a denatured gel separation image). One band of the
affinity-purified proteins (Figure 4, APP1, marked with an arrowhead) extracted from the
gel was measured by mass spectrometry. The mass spectrometry analysis demonstrated
that APP1 may include proteins, such as non-POU domain-containing octamer-binding
protein, heterogeneous nuclear ribonucleoprotein K, HDAC1, lamina-associated polypep-
tide 2 beta, nuclear factor 1 and heterochromatin protein 1-binding protein 3 (Table 1).
In general, most of these proteins represented by HDAC1 appear to be involved in gene
silencing and heterochromatin formation [17–20]. This result supports a previous study
showing that class 1 HDAC, including HDAC1, only associates with Stx1a–CPR in non-
neuronal cell/tissue not expressing Stx1a [8]. Furthermore, by measuring another band
of affinity-purified proteins (Figure 4, APP2, marked with an arrowhead) by mass spec-
trometry, we confirmed that YY1 associates with the −183 to −137 OL2 promoter region
(Table 2). These data suggest that gene silencing factors, including HDAC, associate with
the −183 to −137 promoter region together with YY1.
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Figure 4. DNA affinity purification for mass spectrometry analyses. Proteins associating to the
biotinylated OL2 DNA were affinity purified from FRSK nuclear extracts by avidin beads and
separated with 5% sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). OL2
DNA affinity-purified protein bands (APP1 and APP2) are indicated with arrowheads.

Table 1. Mass spectrometry analyses data of protein (APP1) purified through Biotin-OL2 DNA beads.
Histone deacetylase 1(HDAC1) highlighted with white text on black background.

Accession Description Score Unique Peptides PSMs

Q5FVM4
Non-POU

domain-containing
octamer-binding protein

7062.10 20 245

P61980 Heterogeneous nuclear
ribonucleoprotein K 6418.99 18 252

Q4QQW4 Histone deacetylase 1 152.09 3 5

Q62733 Lamina-associated
polypeptide 2, isoform beta 144.17 4 5

P09414 Nuclear factor 1A 76.54 2 2

Q6P747 Heterochromatin protein 1
binding protein 3 38.16 2 2

Table 2. Mass spectrometry analyses data of protein (APP2) purified through Biotin-OL2 DNA beads.
Transcriptional repressor protein YY1 highlighted with white text on black background.

Accession Description Score Unique Peptides PSMs

27545350 Transcriptional
repressor protein YY1 57.23 2 2

149065165 Nuclear respiratory
factor 1 (predicted) 51.96 2 2
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4. Discussion

In the present study, we found that the −183 to −137 OL2 region of Stx1a–CPR
forms DNA–protein complex only in the non-neuronal FRSK cells which do not express
Stx1a. Furthermore, Stx1a transcription is negatively regulated via the binding of YY1
transcription factor to the−183 to−137 region of Stx1a–CPR in non-neuronal cell/tissue not
expressing Stx1a. Moreover, the high level association of YY1 to the Stx1a–CPR in default
in non-neuronal FRSK cells is decreased by the treatment of the HDAC inhibitor TSA. Mass
spectrometry analysis also showed that YY1 binds to the −183 to −137 promoter region
together with factors involved in gene silencing, such as non-POU domain-containing
octamer-binding protein [18], heterogeneous nuclear ribonucleoprotein K [19], HDAC1 [20]
and heterochromatin protein 1-binding protein 3 [21]. Interestingly, among these factors,
class 1 HDACs, including HDAC1, are reported to associate to Stx1a–CPR only in non-
neuronal cell/tissue not expressing Stx1a [8]. Furthermore, in the current study, we
demonstrated that the OL2 −183 to −137 promoter region forms DNA–protein complexes
only in non-neuronal FRSK cells not expressing Stx1a. Given that the YY1 transcription
factor is well known to interact with proteins, including HDACs [11–13,22], the gene
silencing factors, including HDACs, may associate onto the OL2 −183 to −137 promoter
region of Stx1a via complex formation with the YY1 transcription factor.

Taken together, these findings suggest that Stx1a gene transcription is negatively
regulated in a cell-/tissue-specific manner by the YY1 transcription factor, which may form
the complex with gene silencing factors, including HDACs, on the −183 to −137 promoter
region of Stx1a. In addition, a genetic deficiency of YY1 involved in Stx1a transcrip-
tion has been reported to cause an autosomal dominant neurodevelopmental disorder,
Gabriele–DeVries syndrome; this disorder is characterized by neuronal symptoms, such as
intellectual disability, variable cognitive impairment and behavioral problems [23]. Given
that the Stx1a gene regulated by YY1 is known to be implicated in neuronal transmis-
sion [3,4], further elucidation of the regulatory mechanism of Stx1a expression will aid
in understanding how YY1-regulated genes are controlled in the CNS and the role of the
Stx1a promoter region in pathogenesis.
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