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Abstract: Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency
virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related
causes, and 1.5 million people were infected. Antiretrovirals are a way to control HIV infection but
not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a
drug is not an easy task, and there is an enormous amount of work and economic resources invested.
For this reason, it is highly convenient to employ computer-aided drug design methods, which
can help generate and identify novel molecules. Using the de novo design, novel molecules can be
developed using fragments as building blocks. In this work, we develop a virtual focused compound
library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are
characterized by a large diversity of functional groups, many sp3 atoms, and chiral centers. Pseudo-
natural products are a combination of natural products fragments that keep the desired structural
characteristics from different natural products. An interactive version of chemical space visualization
of virtual compounds focused on HIV-1 viral protease inhibitors from natural product fragments is
freely available in the supplementary material.

Keywords: artificial intelligence; de novo design; fragment-based drug discovery; HIV-1 inhibitors;
pseudo natural products

1. Introduction

The acquired immunodeficiency syndrome (AIDS) caused by the human immunod-
eficiency virus (HIV) is a major global public health concern. In 2020, the World Health
Organization (WHO) reported that approximately 37.7 million people live with HIV out of
24.5 million from the African region. In 2020, 680,000 people died from HIV-related causes
and 1.5 million people acquired it [1]. There is no definite treatment for AIDS. Therefore, it
is necessary to collaborate to develop a treatment since the antiretroviral drugs currently
approved by Food and Drug Administration (FDA) to clinical use only control AIDS and
prevent HIV-1 transmission between individuals (Figure 1 and Table 1) [2–4].

Drug design and development demand many years of hard work and economic
investment. Most drug candidates are prone to fail [5]. From 25,000 compounds that start
in the laboratory, only 25 make it through preclinical testing to human testing, and just
five of those reach the actual clinical use [6]. Computer-aided drug design (CADD) has
contributed to yielding several drugs into the clinic, yet it has several challenges ahead [7].
Among the CADD methods, de novo design has gained relevance due to the diversity of
structures generated by optimizing the algorithms used. From a methodological point
of view, artificial intelligence as boosted the development and application of de novo
design [5,8,9]. Notably, de novo design is a structure-based drug design method that
benefits from the experimental information available of the binding sites of molecular
targets.
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Figure 1. Chemical structures of ten FDA-approved HIV-1 protease inhibitors (Amprenavir, Atazanavir, Darunavir, 
Fosamprenavir, Indinavir, Lopinavir, Nelfinavir, Ritonavir, Saquinavir, Tipranavir). The EC50 is the concentration of drug 
required to produce 50% of the maximum possible effect. 

Figure 1. Chemical structures of ten FDA-approved HIV-1 protease inhibitors (Amprenavir, Atazanavir, Darunavir,
Fosamprenavir, Indinavir, Lopinavir, Nelfinavir, Ritonavir, Saquinavir, Tipranavir). The EC50 is the concentration of drug
required to produce 50% of the maximum possible effect.
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Table 1. FDA-approved HIV-1 protease inhibitors which will be used as a reference for the de
novo design of the new chemical compounds. a Fosamprenavir is the phosphate ester prodrug of
amprenavir.

Generic Name Brand Name EC50 [3] FDA Approval

Amprenavir Agenerase 12–80 nM 1999
Atazanavir Reyataz 2.6–5.3 nM 2003
Darunavir Prezista 1–2 nM 2006

Fosamprenavir a Lexiva 12–80 nM 2003
Indinavir Crixivan 5.5 nM 1996
Lopinavir Kaletra 17 nM 2000
Nelfinavir Viracept 30–60 nM 1997
Ritonavir Norvir 25 nM 1996

Saquinavir Invirase 37.7 nM 1995
Tipranavir Aptivus 30–70 nM 2005

The main goal of de novo design is to suggest novel molecular structures from scratch
with desired activity on a pharmacological target and desired properties [10]. The new
structures can be made using two general approaches: fragment-based and atom-based.
The advantage of the fragment-based approach is that it narrows down the search in
chemical space and maintains good chemical structure diversity [11–13]. Additionally,
fragments form fewer interactions that should be able to bind to a greater number of sites
on a greater number of proteins. Fragments are small (less than 20 heavy atoms) and
typically soluble; they are likely to have better pharmaceutical properties as well as the
new chemical compounds generated from them [14]. Over the last 20 years, four drugs
from fragment-based drug discovery (FBDD) have been approved, and 40 compounds are
currently in clinical trials [15].

Recently, de novo design and artificial intelligence have been combined to propose
novel molecules for the treatment of SARS-CoV-2 based on HIV-1 protease and the ap-
proved drugs that inhibit this viral protease [8]. Another successful example of de novo
design focusing on HIV research led to four molecules from a new compound library
generated from the ZINC database [16]. Other approaches de novo design was based on
enumerating libraries using chemical reactions [17,18] and are also promising to expand
the epigenetic relevant chemical space [19].

The development of new chemical compounds using de novo design can begin from
natural product-derived fragments. Natural products have been attractive chemical com-
pounds because they are characterized by a larger number of sp3 carbon atoms, chiral
centers (associated with structural complexity), the larger scaffold diversity, and functional
groups, hence their relevance for use as building-blocks [20,21]. Indeed, larger structural
complexity of small organic molecules has been associated with increased selectivity and
drug-likeness. In previous studies, we showed that natural products cover regions of
chemical space that have not yet been explored by synthetically accessible compounds
and those with biological activity [22]. For this reason, natural products could be used as
building-blocks to develop novel synthetic molecules or pseudo-natural products which
combine the desired structural characteristics from different natural products [23].

The goal of this work was to develop a virtual focused compound library of HIV-
1 protease inhibitors from natural products fragments through de novo design. The
focused library was compared with two virtual libraries of HIV-1 protease inhibitors
developed from commercially available fragment libraries that were used as reference.
The commercial reference libraries were 4063 ChemDiv’s fragments (enriched with sp3

carbons) [24], and 4150 natural product fragments from Enamine [25]. The natural product
fragments were built from the COlleCtion of Open NatUral producTs (COCONUT), the
currently largest accessible database of natural products with more than 400,000 non-
redundant compounds [26]. Of note, the novel chemoinformatics protocol presented herein
is general and can be adapted to generate the compound libraries using de novo design,
different molecular templates and molecular targets. Herein we focus on HIV-1 protease
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because of its current relevance in public health. Thus, we aim that the present work will
contribute towards the research that leads to effective HIV treatments.

2. Materials and Methods

The virtual focused compound libraries of HIV-1 viral protease inhibitors from natural
product fragments and two commercially available fragments libraries were developed
using the protocol outlined in Figure 2.
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Figure 2. De novo design of the virtual focused compound libraries of HIV-1 viral protease inhibitors from natural product
fragments (COCONUT) and commercially available fragments (ChemDiv and Enamine).

2.1. Dataset Curation

The preparation of compounds, encoded in Simplified Molecular Input Line System
(SMILES) [27], was performed using the open-source cheminformatics toolkit RDKit ver-
sion 2021.03.3 [28], tool MolVS version 0.1.1 [29], and python programming language,
version 3.7.10. Compounds with valence errors or any chemical element other than H, B, C,
N, O, F, Si, P, S, Cl, Se, Br, and I were deleted. Stereochemistry information was removed
because not all compounds in datasets have it defined. Compounds with multiple com-
ponents were split, and the largest component was retained. The remaining compounds
were neutralized and reionized to subsequently generate a canonical tautomer. Repeated
compounds were deleted. To narrow down the search chemical space, physicochemi-
cal properties were computed: hydrogen bond donors (HBD), hydrogen bond acceptors
(HBA), topological polar surface area (TPSA), number of rotatable bonds (RB), molecu-
lar weight (MW), and partition coefficient octanol/water (SlogP). Molecular compounds
with the “rule of five” [30] and Veber [31] (MW ≤ 500, HBD ≤ 5, HBA ≤ 10, SlogP ≤ 5,
TPSA ≤ 140, RB ≤ 10) were retained. Of note, despite the fact some of the fragments used
in this work are generated from natural products (as illustrated in Figure 2), the type of
molecules designed are small organic drug-like molecules.
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2.2. Generation of Unique Fragments Using Retrosynthetic Rules

Fragment libraries were produced with the Retrosynthetic Combinatorial Analysis
Procedure (RECAP) as implemented in RDKit. The RECAP algorithm [32] cleaves a
molecule into fragments if this had any of the following bonds: amide, ester, amine, urea,
ether, olefin, quaternary nitrogen, aromatic nitrogen–aliphatic carbon, lactam nitrogen–
aliphatic carbon, aromatics carbon–aromatic carbon, and sulphonamide.

2.3. De Novo Design

The new chemical structures were built based on the template previously proposed
by Zhao et al. developed from the structure-activity relationship (SAR) analysis for the op-
timization of bevirimat (Figure 3), a compound derived from betulinic acid (Figure 4) [33].
Bevirimat [34,35] is a compound in clinical trials that targets the Gag polyprotein inhibiting
the action of HIV protease at its the last cleavage event of the capsid protein and spacer
peptide 1 (CA-SP1) [36,37]. The template proposed for building new chemical compounds
related to bevirimat is shown in Figure 5.
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Figure 5. Template for building new chemical compounds similar to bevirimat using the ester of betulinic acid to ChemDiv
fragments and Enamine fragments, and the ester of COCONUT’s fragment derived from 24-nor-3α,11α-dihydroxy-lup-
20(29)-en-23,28-dioic acid.

New molecules were generated using the Python programming language and the
toolkit RDKit [28], following the protocol described for Saldívar-González et al. to enumer-
ate chemical libraries [18]. We used COCONUT fragments with a cyclic system skeleton
similar to betulinic acid, a hydroxyl group attached to carbon 3, and a carboxylic acid
group attached to carbon 17, as shown in Figure 4. The COCONUT’s fragment selected
was derived from 24-nor-3α,11α-dihydroxy-lup-20(29)-en-23,28-dioic acid (COCONUT
ID: CNP0243494 or Reaxys ID: 6547020). Betulinic acid was used to build new chemical
compounds from ChemDiv fragments and Enamine fragments because there were no
fragments of cyclic system skeleton derived from betulinic acid or analogous triterpenes.

Chemical reactions were represented in SMIRKS, a hybrid notation of SMILES and
SMARTS (SMILES Arbitrary Target Specification). Reaction 1, esterification, was made
between triterpene alcohol and 2,2-dimethyl succinic acid using SMIRKS 1, as shown in
Table 2. Reaction 2, amidation, was built from the carboxyl group attached to carbon
17 as shown in Figure 4 using fragments attached to piperazine, 1,3-diaminoethane, and
1,3-diaminopropane find in COCONUT fragments, ChemDiv fragments, and Enamine
fragments. The SMIRKS 2.1–2.3 were used in reaction 2 and shown in Table 2. The
compounds and fragments were selected using the functional groups in SMARTS notation
described in Table 3. Newly generated chemical structures with valence errors were
removed. Canonical SMILES were generated, and duplicate molecules were deleted.
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Table 2. SMIRKS used for building the new chemical compounds from natural products fragments.

Description Scheme

Reaction 1
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Table 3. Functional groups using SMARTS notation to filter fragments from natural products.

Functional Groups SMARTS

Aliphatic alcohol (cyclohexanol)
[#8;H1]-[#6]-1-[#6]-[#6]-[#6]-2-[#6](-[#6]-[#6]-[#6]-3-[#6]-
4-[#6]-[#6]C5([#6]-[#6]-[#6]-[#6]5-[#6]-4-[#6]-[#6]-[#6]-2-

3)[#6]([#8;H1])=O)-[#6]-1

2,2-dimethyl succinic acid [#6]C([#6])([#6]-[#6](-[#8])=O)[#6](-[#8])=O

piperazine [#6;H2;X4]1-[#6;H2;X4][#7;X3;!H1][#6;H2;X4]-
[#6;H2;X4][#7;H1;X3]1

1,2-diaminoethane [#7;H1;X3][#6;H2;X4][#6;H2;X4][#7;H2;X3]

1,3-diaminopropane [#7;H1;X3][#6;H2;X4][#6;H2;X4][#6;H2;X4][#7;H2;X3]

Cyclic system skeleton derived from
betulinic acid

[#6]1-[#6]-[#6]-[#6]2-[#6](-[#6]-1)-[#6]-[#6]-[#6]1-[#6]-2-
[#6]-[#6]-[#6]2-[#6]3-[#6]-[#6]-[#6]-[#6]-3-[#6]-[#6]-[#6]-1-2

2.4. Structural Diversity and Complexity

The structural diversity of the new chemical compounds generated was evaluated to
compute the median value of the distribution of the pairwise similarity values generated
with the Tanimoto coefficient for Morgan fingerprint with radius 2 (Morgan2, 1024-bits) [38]
and Molecular ACCes System (MACCS) Keys (166-bits) [39].

2.5. Chemical Space Visualization

The chemical space visualization was done using two methods, principal component
analysis (PCA) based on physicochemical properties and the Tree MAP (TMAP) algorithm
based on molecular fingerprints [40,41].

PCA is a linear dimensionality reduction technique to transform data with many
dimensions into a lower dimensional space and preserve the different relationships between
the data points as much as possible [42]. PCA was generated from six physicochemical
properties (MW, HB, HBA, SlogP, TPSA, and RB).

TMAP allows the visual representation of many chemical compounds through the
distance between the clusters and the cluster’s detailed structure through Local Sensitive
Hashing (LSH) forest data structure, enabling c-approximate k-nearest neighbors (k-NN).
Morgan fingerprints for chemical compounds were encoded using the MinHash algorithm.
The number of nearest-neighbors, k = 50, and the factor used by the augmented query algo-
rithm, kc = 10, were used to develop the TMAP graphs. Morgan fingerprints with radius 2
(Morgan2, 1024-bits) were generated to generate TMAP graphs [38]. Applications of TMAP
for chemical space visualization of other compound datasets have been reported [43,44].

2.6. Filtering of the New Chemical Compounds Generated

To narrow down the search in chemical space and set the conditions for the newly
generated compounds, physicochemical properties were computed for libraries generated
and FDA-approved HIV-1 protease inhibitors (Table 1 and Figure 1). The maximum
values of the physicochemical properties obtained from the HIV-1 protease inhibitors was
HBD ≤ 6, HBA ≤ 13, SlogP ≤ 6.7, MW ≤ 720.30, TPSA ≤ 174.60, and RB ≤ 17 (Table 4).
Molecules with at least four rules were retained. SlogP strictly must be complied. These
sets of properties and values were used as a heuristic rule that is slightly less stringent than
the Lipinski and Veber rules [30,31].



Biomolecules 2021, 11, 1805 9 of 22

Table 4. Properties of pharmaceutical relevance of FDA-approved HIV-1 protease inhibitors.

Parent Molecule SlogP MW HBD HBA TPSA RB

Amprenavir 2.40 505.22 4 9 131.19 11
Atazanavir 4.21 704.39 5 13 171.22 14
Darunavir 2.38 547.24 4 10 140.42 11

Fosamprenavir a 2.69 585.19 4 12 174.56 13
Indinavir 2.87 613.36 4 9 118.03 11
Lopinavir 4.33 628.36 4 9 120.00 15
Nelfinavir 4.75 567.31 4 7 101.90 9
Ritonavir 5.91 720.31 4 11 145.78 17

Saquinavir 3.09 670.38 6 11 166.75 12
Tipranavir 6.70 602.21 1 7 102.43 11
Minimum a 2.40 505.20 1 7 101.90 9
Maximum a 6.70 720.30 6 13 174.60 17

a Maximum and minimum values for each property.

2.7. Synthetic Feasibility

The complexity of the compounds generated was estimated using the synthetic acces-
sibility score (SAscore) previously reported [45]. The SAscore implemented in this work is
the difference between fragment score and complexity penalty. The fragment score captures
common structural features in a large number of already synthesized molecules (934,046
representative molecules from the PubChem). Molecules are fragmented using extended
connectivity fragments (ECFP_4# fragments), and the fragment score is calculated as a sum
of contributions of all fragments in the molecule divided by the number of fragments in
the molecule. The fragment frequency is related to their synthetic accessibility, and hence
easy-to-prepare substructures are present in molecules quite often. The complexity score is
calculated as the sum of ring complexity (ring bridge atoms and spiro atoms), the number
of stereocenters, large rings (ring size greater than eight, molecular complexity increases),
and molecule size. The SAscore was calculated for the virtual focused libraries of HIV-1
viral protease inhibitors generated, and two reference datasets of FDA-approved drugs,
and FDA-approved HIV-1 protease inhibitors [46]. The SAscore was calculated using the
Python script published by Ertl and Schuffenhauer [45].

2.8. ADME-Tox Profiling

Absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) properties
of virtual focused libraries of HIV-1 viral protease inhibitors generated were calculated
using the SwissADME server [47] and the pkCSM-pharmacokinetics server [48]. The
ADME-Tox properties of FDA-approved drugs were also computed as reference. The
SwissADME server was used to compute descriptors associated with absorption and
metabolism. The pkCSM-pharmacokinetics server was used to compute descriptors associ-
ated with absorption, distribution, excretion, and toxicity. The evaluation of descriptors
related to ADME-Tox properties was computed as previously described [49]. The descrip-
tors calculated were absorption broken down into solubility, Silico-IT LogSw; lipophilicity,
consensus LogPo/w, and human intestinal absorption (HIA). The blood-brain barrier (BBB)
permeability, P-glycoprotein substrate, P-glycoprotein I inhibitor, and P-glycoprotein II
(take binary values: yes/no) for distribution. Inhibition of five main cytochrome enzymes
(CYP-1A2, CYP-2C19, CYP-2C9, CYP-2D6, CYP-3A4) for metabolism (take binary values:
yes/no). Total clearance log (mL/min/kg) to excretion. The hERG I/II inhibition, AMES
toxicity, and hepatotoxicity to toxicity (take binary values: yes/no).

3. Results and Discussion

As mentioned in the Introduction and Methods sections, new chemical compounds
were built from two commercially available libraries: 4063 ChemDiv fragments enriched
with sp3 carbons, 4160 Enamine natural products fragments, and 184,769 COCONUT
fragments computationally generated in house. The total number of molecules generated
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were: 1534 from COCONUT’s fragments, 62 molecules from ChemDiv fragments, and
11 molecules from Enamine fragments. Fragments attached to 1,3-diaminopropane were
not found in ChemDiv and Enamine’s fragment collections. Similarly, fragments attached
to 1,2-diaminoethane were not found in Enamine fragments.

3.1. Structural Diversity

The median of similarity generated using Morgan2 and MACCS keys fingerprints
are shown in brackets, respectively, and described in Table S1 in the supplementary ma-
terial. FDA-approved drugs (0.096, 0293) and FDA-approved HIV-1 protease inhibitors
(0.253, 0.558) were the most diverse datasets, following by compounds derived from
COCONUT fragments (0.605, 0.817), ChemDiv fragments (0.676, 0.821), and Enamine
fragments (0.682, 0.823). Compounds computationally generated from fragment datasets
were less diverse because these datasets are focused on bevirimat-like compounds.

3.2. Chemical Space Visualization

A visual representation of the chemical space based on physicochemical properties
(MW, HB, HBA, SlogP, TPSA, and RB, as stated in the Methods Section 2.5) using PCA is
shown in Figure 6. Principal component 1 recovered 73.6% of the variance, and principal
component 2 recovered 21.2% of the variance. The accumulated variance recovered by the
first two principal components represented in Figure 6 was 94.8%. In this chemical space
visualization, the compounds generated from the three fragment libraries are within the
space of physicochemical properties of FDA-approved drugs. Likewise, some compounds
generated from COCONUT fragments had physicochemical properties similar to FDA-
approved HIV-1 protease.
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To quantitatively define which dataset is the most diverse, coverage space obtained
by convex hull analysis derived from PCA was computed for each dataset (Figure S1).
The convex hull is defined as the minimum convex polygon so that the point set is either
inside this polygon or at its border [50,51]. The convex hull area computed were for FDA-
approved drugs (737.59), HIV-1 protease inhibitors (1.11), compounds from COCONUT’s
fragments (3.18), compounds from ChemDiv’s fragments (0.79), and compounds from
Enamine fragments (0.18). The outcome of this analysis was similar to the results of the
structural diversity analysis based on fingerprints (Section 3.1): reference datasets were
more diverse than the new chemical compounds generated from fragments datasets. The
new chemical compounds derived from COCONUT fragments were the most diverse,
followed by new chemical compounds derived from ChemDiv and Enamine fragments.

The visual representation of the chemical space based on molecular fingerprint using
the TMAP algorithm is shown in Figure 7. An interactive version of the TMAP is avail-
able at https://figshare.com/s/ceb58d58e8f5585ce67e (accessed on 5 November 2021).
The chemical structures of new chemical compounds generated were very different in
comparison with FDA-approved drugs and FDA-HIV-1 protease inhibitors. The chemical
structures of the new compounds generated from ChemDiv and Enamine fragments were
very similar compared to compounds derived from COCONUT fragments. In some cases,
the chemical structures of compounds generated from COCONUT’s fragments were very
similar to some FDA-approved drugs, for instance, palbociclib and pipecuronium. In these
cases where there are not commercially available fragments like COCONUT’s fragments
could be used palbociclib and pipecuronium.
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approved drugs (blue), and FDA-approved HIV-1 protease inhibitors (purple). Likewise, for new
chemical compounds generated from COCONUT (orange), ChemDiv (red), and Enamine (green)
fragment libraries. The interactive version is available at https://figshare.com/s/ceb58d58e8f558
5ce67e (accessed on 5 November 2021).
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3.3. Compound Filtering Based on Physicochemical Properties

Figure 8 shows box-whisker plots of physicochemical properties after applying the
empirical rules proposed (Section 2.6). The summary of descriptive statistics is shown in
Tables S2–S7 in the supplementary material. 352 compounds generated from COCONUT
fragments (20%) and 1 compound generated from ChemDiv fragments were retained (2%),
and compounds generated from Enamine fragments were not retained (0%). Based on the
properties’ distribution shown in the box-whisker plots, the physicochemical properties
of compounds generated from COCONUT fragments, ChemDiv fragments, and Enamine
fragments were different regarding FDA-approved HIV-1 protease inhibitors and FDA-
approved drugs.
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Figure 8. Box-whisker plots of physicochemical properties of FDA-approved drugs (blue), FDA-approved HIV-1 protease
inhibitors (purple), and new chemical compounds generated from COCONUT (orange) and ChemDiv (red) fragment
libraries after applying physicochemical properties filtering. Black diamonds represent outliers.

The physicochemical properties calculated for datasets were: SlogP ≤ 12.94,
MW ≤ 1201.84, RB ≤ 20, TPSA ≤ 286.50, HBA ≤ 23, HBD ≤ 15 for FDA-approved
drugs; SlogP ≤ 6.70, MW ≤ 720.31, RB ≤ 17, TPSA ≤ 174.56, HBA ≤ 13, HBD ≤ 6
for FDA-approved HIV-1 protease inhibitors; SlogP ≤ 6.69, MW ≤ 998.63, RB ≤ 15,
TPSA ≤ 198.54, HBA ≤ 13, HBD ≤ 7 for compounds generated from COCONUT frag-
ments, and SlogP = 6.4, MW = 737.47, RB = 10, TPSA = 187.47, HBA = 12, HBD = 5 for
the compound generated from ChemDiv’s fragments. The SlogP, RB, and HBA values
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of compounds generated from COCONUT fragments and ChemDiv fragments were less
than FDA-approved HIV-1 protease inhibitors. HBA values were equal or less than FDA-
approved HIV-1 protease inhibitors. The SlogP values of compounds derived from Enamine
fragments were larger than FDA-approved HIV-1 protease inhibitors as shown in Figure S2;
accordingly, no compound was retained. The MW, TPSA, and HBD values of compounds
generated from COCONUT fragments were larger than for FDA-approved HIV-1 protease
inhibitors and less than for FDA-approved drugs. As mentioned above Ganesan [52],
natural products that violate the Lipinsky rules remain largely compliant in terms of log
P and HBD. He considers that “nature has learned to maintain low hydrophobicity and
intermolecular H-bond donating potential when it needs to make biologically active com-
pounds with high molecular weight and a large number of rotatable bonds”. In drugs, the
molecules that exceed HBD 5 or HBA 10 the majority are natural product-related [53].

3.4. Filtering Based on Synthetic Feasibility

The synthetic feasibility was computed for FDA-approved drugs, FDA-approved
HIV-1 protease inhibitors, and compounds generated from COCONUT and ChemDiv
fragments with physicochemical properties like FDA-approved HIV-1 protease inhibitors.
Figure 9 summarizes the results of synthetic feasibility. Molecules with a low SAscore
value < 6 are easily synthetically accessible [45]. A total of 97% FDA-approved drugs had
SAscore < 6, and FDA-approved HIV-1 protease inhibitors had SAscore ≤ 4.24. Similarly,
75% of compounds generated from COCONUT fragments had SAscore ≤ 6.03 and the
compound generated from ChemDiv had SAscore = 5.54. Although, compounds generated
from COCONUT fragments had 5.50 ≤ SAscore ≤ 6.03, still in recommended range so
that can be synthetically accessible; moreover, the high SAscore, in compounds generated
regarding FDA-approved HIV-1 protease inhibitors, was influenced by the ten stereocenters
of betulinic acid and 24-nor-3α,11α-dihydroxy-lup-20(29)-en-23,28-dioic acid. Considering
that these stereocenters do not have to be generated within the organic synthesis, the
SAscore value would be lower.
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Figure 9. Box-whisker plot of synthetic feasibility calculated for FDA-approved drugs (blue), FDA-
approved HIV-1 protease inhibitors (purple), and new chemical compounds generated from CO-
CONUT fragments (orange) and ChemDiv (red) fragments with physicochemical properties like
FDA-approved HIV-1 protease inhibitors. Black diamonds represent outliers.

3.5. ADME-Tox Profiling

The ADME-Tox profiling was computed for 251 compounds generated from CO-
CONUT fragments and 1 compound generated from ChemDiv fragments with physico-
chemical properties like FDA-approved HIV-1 protease inhibitors and estimated as easy
synthesizable (i.e., SAscore ≤ 6). Similarly, ADME-Tox profiling was computed for FDA-
approved drugs and FDA-approved HIV-1 protease inhibitors.
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3.5.1. Absorption

Solubility, lipophilicity, and HIA are summarized in Figure 10 and Tables S9–S11 in
the supplementary material. Solubility was expressed by Silicos-IT LogSw and lipophilic-
ity was expressed by consensus LogP. Silicos-IT LogSw and consensus LogP were com-
puted with the SwissADME server. Percentage of HIA was computed with the pkCSM-
pharmacokinetics server.
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Figure 10. Distribution curve of solubility, lipophilicity, and HIA. Colors represent compounds: new chemical compounds
generated from COCONUT fragments and ChemDiv fragments with physicochemical properties like FDA-approved HIV-1
protease inhibitors and easily synthetically accessible (orange), FDA-approved drugs (blue), FDA-approved HIV-1 protease
inhibitors (purple). Solubility is expressed in the percentage of Silicos-IT LogSw, and lipophilicity is expressed in the
percentage of consensus LogP.

Median values for solubility, lipophilicity, and HIA are described below. FDA-
approved drugs had consensus LogP = 2.36, Silicos-IT LogSw = −4.34, HIA = 90.6%. FDA-
approved HIV-1 protease inhibitors had consensus LogP = 3.50, Silicos-IT LogSw = −8.49,
HIA = 64.4%. Compounds derived from COCONUT and ChemDiv had consensus
LogP = 4.70 and Silicos-IT LogSw = −6.45, HIA = 67.9%.
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New drug candidates have poor water solubility, and it is often the result of highly
lipophilic compounds. Log P < 2, the crystal lattice becomes the main determining factor
for solubility. LogP values above 2, the lipophilicity is the main factor [54]. FDA-approved
HIV-1 protease inhibitors were highly soluble, followed by compounds derived from
COCONUT and ChemDiv fragments, both had Log P > 2; in this case, solubility is strongly
influenced by lipophilicity. Contrary to FDA-approved drugs that had Log P close to 2 and
were less soluble, solubility mainly depends on the crystal lattice. Compounds derived from
COCONUT and ChemDiv fragments had higher HIA in comparison to FDA-approved
HIV-1 protease inhibitors.

3.5.2. Distribution

The relative frequency of BBB permeability is described in Figure 11. The median
value of BBB permeability was −0.38 for FDA-approved drugs; −1.21 for compounds
generated from COCONUT and ChemDiv fragments, and −1.25 for FDA-approved HIV-1
protease inhibitors. Compounds generated from COCONUT and ChemDiv fragments had
similar BBB permeability.

The percentage of compounds that are P-glycoprotein substrate, P-glycoprotein I
inhibitor, and P-glycoprotein II inhibitor were summarized in Figure 12 and Table S13
in the supplementary material. All FDA-approved HIV-1 protease inhibitors and 96% of
compounds generated from COCONUT and ChemDiv fragments were P-glycoprotein sub-
strates. Similarly, 66.67% of HIV-1 Approved protease inhibitors and 82.9% of compounds
generated from COCONUT and ChemDiv fragments were P-glycoprotein II inhibitors.
Whereas no compounds generated from COCONUT and ChemDiv fragments were P-
glycoprotein I inhibitors, against 100% FDA-approved HIV-1 proteases inhibitors were
P-glycoprotein I inhibitors.
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Figure 11. Distribution curve of BBB permeability. Colors represent compounds: new chemical compounds generated
from COCONUT fragments and ChemDiv fragments with physicochemical properties like FDA-approved HIV-1 protease
inhibitors and easily synthetically accessible (orange), FDA-approved drugs (blue), FDA-approved HIV-1 protease inhibitors
(purple). The BBB permeability of FDA-approved drugs was between −34 and 2.
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Figure 12. Percentage of compounds that are P-glycoprotein substrate, P-glycoprotein I inhibitor, and
P-glycoprotein II inhibitor. Colors represent compounds: new chemical compounds generated from
COCONUT fragments and ChemDiv fragments with physicochemical properties like FDA-approved
HIV-1 protease inhibitors and easily synthetically accessible (orange), FDA-approved drugs (blue),
FDA-approved HIV-1 protease inhibitors (purple).

3.5.3. Metabolism

The percentage of compounds CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4
inhibitors is described in Figure 13 and Table S14 in the supplementary material. No
compounds generated from COCONUT and ChemDiv fragments were CYP1A2, CYP2C19,
CYP2C9, CYP2D6 and CYP3A4 inhibitors. FDA-approved HIV-1 inhibitors were not
CYP1A2 and CYP2D6 inhibitors similar to compounds generated from COCONUT and
ChemDiv fragments. Whereas for FDA-approved HIV-1protease inhibitors, 89% were
CYP3A4 inhibitors, and 33% were CYP2C19 and CYP2C9 inhibitors.
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Figure 13. Percentage of compounds that inhibit the main cytochromes, CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4.
Colors represent compounds: new chemical compounds generated from COCONUT fragments and ChemDiv fragments
with physicochemical properties like FDA-approved HIV-1 protease inhibitors and easily synthetically accessible, FDA-
approved drugs (blue), FDA-approved HIV-1 protease inhibitors (purple).

3.5.4. Excretion

Clearance quantitates the irreversible removal of a drug from the measured matrix, gener-
ally, blood or plasma [55]. The total clearance logarithm expressed in units of (mL/min/Kg)
is shown in Figure 14. The summary of descriptive statistics is shown in Table S15 in
the Supplementary Materials. The median values of the total clearance logarithm were
0.591 for FDA-approved drugs; 0.494 for FDA-approved HIV-1 protease inhibitors, and
−0.618 for compounds derived from COCONUT and ChemDiv fragments. The total clearance
of FDA-approved HIV-1 protease inhibitors (0.20 ≤ total clearance ≤ 0.94) was similar to 75%
FDA-approved drugs (0.27 ≤ total clearance ≤ 0.85). Whereas the total clearance of compounds
generated from COCONUT and ChemDiv fragments (−1.34 ≤ total clearance ≤ 0.13) was
similar to 25% FDA-approved drugs (-13.94 ≤ total clearance ≤ 0.27). The total clearance of
compounds derived from COCONUT and ChemDiv fragments and FDA-approved HIV-1
inhibitors were different.
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3.5.5. Toxicity

Percentage of compounds from datasets that are hERG I inhibitor, hERG II inhibitor,
hepatotoxicants (hepatotoxicity), and carcinogens (positive in AMES test) were described
in Figure 15 and Table S16 in the supplementary material. FDA-approved HIV-1 protease
inhibitors and compounds generated from COCONUT and ChemDiv fragments were not
carcinogens. However, 77.22% of compounds derived from COCONUT and ChemDiv
fragments were hepatotoxicants, lower than FDA-approved HIV-1 protease inhibitors
(100%), and higher than FDA-approved drugs (47.42%). A total of 100% and 98.81% of
compounds generated from COCONUT and ChemDiv fragments were not hERG I/II
inhibitors, respectively.
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in silico. Colors represent compounds: new chemical compounds generated from COCONUT fragments and ChemDiv
fragments with physicochemical properties like FDA-approved HIV-1 protease inhibitors and easily synthetically accessible
(orange), FDA-approved drugs (blue), FDA-approved HIV-1 protease inhibitors (purple).
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4. Conclusions

We developed an HIV-1 virtual focused library using de novo design based on enu-
merated libraries of compounds from fragment libraries. The fragments library in-house
was built from the COCONUT database, the currently largest accessible database of nat-
ural products. Using bevirimat as template, 251 out of 1534 compounds generated from
COCONUT fragments, had physicochemical properties like FDA-approved HIV-1 protease
inhibitors and were estimated as easy synthesizable.

Compounds generated from COCONUT fragments were more diverse than com-
pounds generated from ChemDiv and Enamine fragments, based on chemical structure
and physicochemical properties. Visual representation of the chemical space based on
TMAP showed that some compounds generated from COCONUT fragments had chemical
structures similar to FDA-approved drugs, such as palbociclib and pipecuronium.

ADME/Tox profiling showed that compounds generated from COCONUT frag-
ments had adsorption (solubility and lipophilicity) and distribution (BBB permeability,
P-glycoprotein substrate, and P-glycoprotein II inhibitor) similar to FDA-approved HIV-1
protease inhibitors. Concerning estimations of metabolism, no compounds generated from
COCONUT fragments were CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 inhibitors.
As per excretion, the total clearance of compounds derived from COCONUT fragments and
FDA-approved HIV-1 inhibitors were different, but similar to FDA-approved drugs. Com-
pounds derived from COCONUT fragments were predicted to be no inhibitors of hERG
I/II, like 97.7% and 66.4% of FDA-approved drugs, respectively. Compounds derived from
COCONUT fragments were predicted to be no carcinogens.

The 251 compounds derived from COCONUT fragments with physicochemical prop-
erties like FDA-approved HIV-1 protease inhibitors, estimated as easy synthesizable, and
good ADME/Tox profiling can be used in future analysis such as virtual screening to select
candidates to test in biological assays. The next logical perspective of this project that this is
beyond the scope of this manuscript is to conduct the chemical synthesis and experimental
screening of selected compounds.

The protocol presented in this work is general and can be used to build other chemical
compounds like bevirimat or other maturation inhibitors of HIV-protease. Notably, the
code used for generated new chemical compounds from chemical fragments is freely
available (see Data Availability statement). This can be achieved from the SMARTS and
SMIRKS proposed to filter functional groups and build new chemical compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11121805/s1, Figure S1: Convex hull area from PCA based on physicochemical properties
of new chemical compounds generated and two compound reference libraries. Table S1: Summary
of fingerprint-based structural diversity of new chemical compounds generated from COCONUT,
ChemDiv, and Enamine fragments, and two compound reference libraries. Figure S2: Box-whisker
plots of physicochemical properties of FDA-approved drugs (blue), FDA-approved HIV-1 protease
inhibitors (purple), and new chemical compounds generated from COCONUT (orange), ChemDiv
(red), and Enamine (green) fragment libraries, before applying physicochemical properties filtering.
Table S2: Summary of the descriptive statistics of SlogP. Table S3: Summary of the descriptive
statistics of MW. Table S4: Summary of the descriptive statistics of RB. Table S5: Summary of the
descriptive statistics of TPSA. Table S6: Summary of the descriptive statistics of HBA. Table S7:
Summary of the descriptive statistics of HBD. Table S8: Summary of the descriptive statistics of
SAscore. Table S9: Summary of the descriptive statistics of solubility (Silicos-IT LowSw). Table S10:
Summary of the descriptive statistics of lipophilicity (Consensus Log P). Table S11: Summary of the
descriptive statistics of HIA. Table S12: Summary of the descriptive statistics of BBB permeability.
Table S13: Percentage of compounds that are P-glycoprotein substrate, P-glycoprotein I inhibitor, and
P-glycoprotein II inhibitor. Table S14: Percentage of compounds that inhibit the main cytochromes,
CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4. Table S15: Summary of the descriptive statistics of
total clearance. Table S16: Summary of the descriptive statistics of toxicity descriptors.
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