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Abstract: The prediction of microsatellite instability (MSI) using deep learning (DL) techniques
could have significant benefits, including reducing cost and increasing MSI testing of colorectal
cancer (CRC) patients. Nonetheless, batch effects or systematic biases are not well characterized
in digital histology models and lead to overoptimistic estimates of model performance. Methods
to not only palliate but to directly abrogate biases are needed. We present a multiple bias rejecting
DL system based on adversarial networks for the prediction of MSI in CRC from tissue microarrays
(TMAs), trained and validated in 1788 patients from EPICOLON and HGUA. The system consists
of an end-to-end image preprocessing module that tile samples at multiple magnifications and a
tissue classification module linked to the bias-rejecting MSI predictor. We detected three biases
associated with the learned representations of a baseline model: the project of origin of samples, the
patient’s spot and the TMA glass where each spot was placed. The system was trained to directly
avoid learning the batch effects of those variables. The learned features from the bias-ablated model
achieved maximum discriminative power with respect to the task and minimal statistical mean
dependence with the biases. The impact of different magnifications, types of tissues and the model
performance at tile vs patient level is analyzed. The AUC at tile level, and including all three selected
tissues (tumor epithelium, mucin and lymphocytic regions) and 4 magnifications, was 0.87 + 0.03
and increased to 0.9 + 0.03 at patient level. To the best of our knowledge, this is the first work that
incorporates a multiple bias ablation technique at the DL architecture in digital pathology, and the
first using TMAs for the MSI prediction task.

Keywords: digital pathology; deep neural networks; bias ablation; adversarial networks; colorectal
carcinoma; microsatellite instability

1. Introduction

Approximately 3% of colorectal cancers (CRC) arise in the context of Lynch syndrome
(LS), where the patient has a germline mutation in a DNA mismatch repair (MMR) gene [1].
Historically, CRC patients were tested for LS if they were at high risk according to clinical
criteria, e.g., aged under 50 years or with a strong family history. Several clinicopatho-
logic criteria (e.g., Amsterdam criteria, revised Bethesda guidelines) were used to identify
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individuals at risk for Lynch syndrome or eligible for tumor-based MSI testing [2]. How-
ever, a large proportion of LS patients were missed by this strategy [3]. Currently, new
diagnostics guidance are recommending that all patients with newly diagnosed CRC be
screened for LS. Universal tumor-based genetic screening for Lynch syndrome, with MSI
screening by PCR or defective MMR(dMMR) detection by IHC testing of all CRCs regard-
less of age, has greater sensitivity for identification of Lynch syndrome as compared with
other strategies [1]. The pathway includes testing tumour tissue for defective MMR by
either microsatellite instability (MSI) testing or immunohistochemistry (IHC) for the MMR
proteins MLH1, PMS2, MSH2 and MSH6. Tumours showing MSI or MLH1 loss should
subsequently undergo BRAF mutation testing followed by MLH1 promoter methylation
analysis in the absence of a BRAF mutation. Patients with tumours showing MSH2, MSH6
or isolated PMS?2 loss, or MLH1 loss/MSI with no evidence of BRAF mutation/ MLH1
promoter hypermethylation, are referred for germline testing if clinically appropriate.

MSI is not specific for LS, and approximately 15 percent of all sporadic CRCs and 5 to
10 percent of metastatic CRCs demonstrate MSI due to hypermethylation of MLH1 [3-5].
Sporadic microsatellite instability-high (MSI-H) CRCs typically develop through a methy-
lation pathway called CpG island methylator phenotype (CIMP), which is characterized
by aberrant patterns of DNA methylation and frequently by mutations in the BRAF gene.
These cancers develop somatic promoter methylation of MLH1, leading to loss of MLH1
function and resultant MSI. The prevalence of loss of MLH1 expression in CRC increases
markedly with aging and this trend is particularly evident in women [6].

While guidelines set forth by multiple professional societies recommend universal
testing for AMMR/MSI [7], these methods require additional resources and are not available
at all medical facilities, so many CRC patients are not currently tested [8].

Since the last two decades, certain histology-based prediction models that rely on
hand-crafted clinico-pathologic feature extraction—such as age < 50, female sex, right
sided location, size >= 60 mm, BRAF mutation, tumor infiltrating lymphocytes (TILs), a
peritumoral lymphocytic reaction, mucinous morphology and increased stromal plasma
cells—have reported encouraging performance but has not been sufficient to supersede
universal testing for MSI/dMMR [9]. Measurement of the variables for MSI prediction,
requires significant effort and expertise by pathologists, and inter-rater differences may
affect the perceived reliability of histology-based scoring systems [9]. However, this work
is fundamental to the premise that MSI can be predicted from histology, which was recently
proposed as a task for deep learning from digital pathology [10,11].

Research on deep learning methods to predict MSI directly from hematoxylin and
eosin (H&E) stained slides of CRC have proliferated in the last years, refs. [10-17] with
reported accuracy rapidly improved on most recent works [14,15].

If successful, this approach could have significant benefits, including reducing cost
and resource-utilization and increasing the proportion of CRC patients that are tested
for MSI. Additional potential benefits are to increase the capability of detecting MSI over
current methods alone. Some tumors are either dAMMR or MSI-H but not the other. Testing
of tumors with only immunohistochemistry (IHC) or polymerase chain reaction (PCR)
will falsely exclude some patients from immunotherapy [18]. A system trained on both
techniques could overcome this limitation, obviating co-testing with both MMR IHC and
MSI PCR as an screening strategy for evaluating the eligibility status for immunotherapy:.

Among current limitations, the developed systems so far are not able to distinguish
between somatic and germline etiology of MSI, such that confirmatory testing is required.
Another important limitation is generalizability due to batch effects, while those systems
have proved excellent performance on well curated cohorts that are similar to training
data, the performance is not robust to differing patient and tissue characteristics. This
limitation is evident from the performance deterioration when systems trained on a single
datasource are tested on external datasets [14]. This limitation can be palliated by using
larger multi-institutional datasets from different institutions for training, as shown by [15]
that estimated 5000 to be the optimal number of patients needed for this specific task.
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Nonetheless, compiling such international large scale datasets is costly and unfeasible in
most cases and does not eliminate batch effects. Regardless of the dataset size and number
of contributing sites, the propensity for overfitting of digital histology models to site level
characteristics is incompletely characterized and is infrequently accounted for in internal
validation of deep learning models [19]. For example assessments of stain normalization
and augmentation techniques have focused on the performance of models in validation
sets, rather than true elimination of batch effect [15,20]. In addition to staining techniques,
batch effects originate from other multiple reasons, such as digitization of slides, variations
due to scanner calibration and choice of resolution and magnification. Batch effects in
training, validation and testing, must be accounted for to ensure equitable application of
DL. Batch effects leads to overoptimistic estimates of model performance and methods to
not only palliate but to directly abrogate this bias are needed [19].

Herein, we present a novel approach in digital pathology to eliminate the batch effects
at the deep learning architecture following the methodology described in [21], where by
means of an adversarial training and bias distillation regime, the model avoids learning
undesirable characteristics of datasets such as the hospital or other protected variables.
Adversarial training has been previously explored to improve the generalizability of
predictive model to predict MSI status on tumor types not observed in training [10],
nonetheless this technique has not yet been applied for removing multiple batch effects in
digital pathology. We extend the methodology described in [21] by systematically assessing
and quantifying the spurious associations of protected variables (biases) on the network
and then leveraging a multiple bias-ablation architecture in the model.

The remainder of the paper is as follows. Section 2 describes the methodology em-
ployed, including the study population, the image preprocessing module, partitioning
methods and deep learning architecture, the identification of biases, the bias-ablation sys-
tem and training regime. Section 3 first describes the results of the tissue classifier module,
the image dataset obtained after preprocessing, the results of the bias identification, the
results of the MSI-status classifier module at image level with the demonstration of batch
effect distillation, performance results at patient level, analysing the impact of types of
tissues included and image magnifications, and the explainability of predictions. Finally,
Section 4 addresses the discussion, conclusions and future work.

2. Material and Methods
2.1. Study Population, Data Collection and Ground Truth Ascertainment

The study population initially consisted of the H&E of 57 tissue-microarrays (TMAs)
that included cylindrical tissue samples of 1 mm diameter each (spots), in duplicate from
all patients prospectively collected in the EPICOLON project. TMAs were constructed from
tumor paraffin blocks from each hospital. For the present project, the paraffin blocks from
each hospital were sectioned and the same hematoxylin eosin staining was performed on
all the cases included. In this technique, each TMA glass consists of multiple spots placed
in one microscope glass slide. The same glass slide vendor was used for all the TMAs. The
EPICOLON project was a population-based, observational, cohort study which included
1705 patients with CRC from 2 Spanish nationwide multi-center studies: EPICOLON I and
EPICOLON II. EPICOLON I included consecutive patients with a new diagnosis of CRC
between November 2000 and October 2001 with the main goal of estimating the incidence
of LS in Spain [22]. EPICOLON II also included consecutive patients with newly diagnosed
CRC between March 2006 and December 2007 and from 2009 to 2013 with the aim of
investigating different aspects related to the diagnosis of hereditary CRC [23]. For both
cohorts, the inclusion criteria were all patients with a de-novo histologically confirmed
diagnosis of colorectal adenocarcinoma and who attended 25 teaching and community
hospitals across Spain during the different recruiting periods covered by EPICOLON I and
EPICOLON II as previously detailed. Exclusion criteria for both studies were patients in
whom CRC developed in the context of familial adenomatous polyposis or inflammatory
bowel disease, and patient or family refusal to participate in the study. It was assumed



Biomolecules 2021, 11, 1786

40f19

Screenad patients
EPICOLOMN I &I

(n=1705%)

that the EPICOLON population was representative of the Spanish population, due to
the large number of participating centres (most of them referral centres of each area),
their homogeneous distribution throughout the country, and the lack of ethnic differences
among regions [22]. Both studies were approved by the institutional review boards of the
participating hospitals. The overall MSI frequency in the EPICOLON project was 7.4%.

The population was further expanded with 283 additional patients retrospectively
obtained from the Hospital Universitario de Alicante, Spain (HGUA) from 2017 onwards,
which -once preprocessed- added 66 MSI-H and 177 microsatellite stable (MSS) cases to
the final study population as shown in Figure 1. The demographic and main clinical
characteristics of the final study sample after preprocessing are summarized in Table 1.
The corresponding H&E images were provided in 15 TMAs that included 1 mm spots in
duplicate for each patient.

Screenaed patients
HGUA

(n=233)

Excluded {n = 159) Excluded (n = 40)
- Mo tumor on spots (n = 156) - Mo tumor on spots (n=0)
- Poor image quality (n = 3) - Poor image quality (n = 40)
Undecided M3I status Undecided M3I status
(n=1) (n=0)
r r

MSI-H (n= 105 )

Patients in final

(n=1545)

Patients in final

analysis
MSI-H (n = 66)

(n=243)
MSS (n = 1440)
MSS (n=1617)

MSI-H (n = 171)

MSS (n=177)

Figure 1. Study sample flowchart: For image preprocessing, the tissue classifier module was used to exclude images based

on the criteria of no remaining tumor epithelium on spots.

For the task of MSI prediction each patient and corresponding spots were labeled as
MSI-H vs. MSS. MSI-H was defined as tumour-tissue testing defective MMR(dMMR) by
either microsatellite instability (MSI) testing or immunohistochemistry (IHC) for the MMR
proteins MLH1, PMS2, MSH2 or MSH6. Tumours showing MSI or MLH1 loss underwent
BRAF mutation testing followed by MLH1 promoter methylation analysis in the absence of
a BRAF mutation. Briefly, patients with tumours showing MSH2, MSH6 or isolated PMS2
loss, or MLH1 loss/MSI with no evidence of BRAF mutation (regardless of presence or not
of MLH1 promoter hypermethylation), were labeled as MSI-H and all others as MSS.

TMAs were scanned with the VENTANA ROCHE iSCAN scanner at magnifica-
tion x 40 corresponding to a maximal resolution of 0.25 microns per pixel (MPP).
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Table 1. Patient Characteristics (n = 1788): Main demographic and clinical characteristics of patients
included in the final study sample after image preprocessing. * Dukes’ stage was not available for

the whole study sample.
Characteristic n
Age (years) 75.6 (27-101)
Gender
Male 1037 (58.1%)
Female 749 (41.9%)
Personal history of cancer 177 (9.8%)
Dukes’ Stage *
I 119 (6.6%)
II 370 (20.6%)
111 271 (15.1%)
v 131 (7.3%)

This project was approved by the institutional research committee CEIm P12019-029
from ISABIAL and both the images and associated clinical information was previously
anonymized. The data from EPICOLON project and HGUA are not publicly available,
in accordance with the research group and institutional requirements governing human
subject privacy protection.

The NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets, consisting of 100,000 non-
overlapping image patches from hematoxylin & eosin (H&E) stained histological images
of human colorectal cancer (CRC) and normal tissue labeled with 9 tissue classes—adipose
(ADI), background without tissue (BACK), debris (DEB), lymphocytes (LYM), mucus
(MUC), smooth muscle (MUS), normal colon epithelium (NORM), cancer-associated stroma
(STR) and colorectal adenocarcinoma epithelium (TUM)—were used to train a model in
the task of tissue class prediction. All images were 224 x 224 pixels (px) at 0.5 MPPs.
All images were color-normalized using Mazenko’s method [24]. All image tiles for the
NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets are available online at https://zenodo.
org/record /1214456# XcNpCpNKjyw (accessed on 25 October 2019).

2.2. Preprocessing Module

The image preprocessing module consisted of a TMA-customized dynamic extractor of
tiles of 400 x 400 pixels corresponding to adjacent regions without overlap parameterized at
different magnifications (x40, x20, x10, x5, x0) linked to a DL tissue classifier (described
in see Section 2.3) that filtered spots without viable colorectal adenocarcinoma epithelium
and at the same time selected the regions of interest based on type of tissues.

2.3. Deep Learning Architecture

The DL architecture (see Figure 2) consisted of an end-to-end deep learning system
linking three types of modules: (1) A classifier of 9 types of tissues at tile level: adipose
(ADI), background without tissue (BACK), debris (DEB), lymphocytes (LYM), mucus
(MUC), smooth muscle (MUS), normal colon epithelium (NORM), cancer-associated stroma
(STR) and colorectal adenocarcinoma epithelium (TUM) (2) the MSI status classifier MSI
and (3) the batch effect module learners BE, which has as many learners or heads as
required to account for multiple biases.

The classifier of tissues, had as a convolutional backbone a Resnet34 pre-trained on
Imagenet, and two hidden layer of dimension 512 with ReLU as the activation function,
and 9 out features. This module was trained with the NCT-CRC-HE-100K and CRC-VAL-
HE-7K datasets on the final task of learning the 9 types of tissue. Once trained, it was used
both to select the regions of interest (ROIs) based on type of tissues in the preprocessing
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module and as the feature extractor backbone FE in the end-to-end system (removing the
head) connected with the MSI and BE modules. The FE yielded 512 intermediate features.

Both the MSI and all BE modules have two hidden layers of dimension 512 with
ReLU as the activation function, and 2 out features.

The DL system without the BE modules is referred herein as the baseline model, and
when including the BE modules, is referred as the bias-ablated model.

All code was programmed using the Python programming language. Machine and
deep learning methods were implemented using FastAI [25] and PyTorch. QPath v0.2.3 [26]
was used for annotation purposes.

Bias Prediction (BE)

@ @

I Bias Prediction (BE)

MSI Status Classifier
(MSI)

®

@ (b)

Figure 2. Network architecture: (a) The deep neural network architecture is composed of three modules, FE learns features,

F, that successfully classify the input in the outcome y using MSI while being invariant (statistically independent and
conditioned by p) to the biases variables, by, using the adversarial components BE and the adversarial loss. (b) The
bias variables by, responsible for multiple batch effects, influence both the output y (i.e., @, MSI status classification)

and the input X, from which feature F is extracted (i.e., D). The MSI classifier deems to find the relation 3 to enable

prediction of the output labels while the adversarial components aim to remove the direct dependency between F and

by,. Figure adapted from [21] by renaming the modules and adding multiple adversarial components to the architecture.

http:/ /creativecommons.org/licenses /by /4.0/.

2.4. Bias Identification

To systematically identify and quantify the effect of potential biases interfering with
the MSI prediction task, the baseline model, which as described in Section 2.3 included
only the feature extractor backbone FE connected to the MSI status classifier MSI module,
was trained on the study sample using 5-fold cross-validation for 3 epochs. The squared
distance correlation dc [27] was computed on each batch-iteration between the extracted
features from the FE and three putative biases (study project, patient, and glass) followed
by backward selection to uncover hidden interactions between biases. The dc is a measure
of dependence between random vectors analogous to product-moment covariance and
correlation, but unlike the classical definition of correlation, distance correlation is zero
only if the random vectors are statistically independent [27].

The three biases considered for testing were the study project, the patient and the
TMA glass based on the following reasoning: First, since MSI-H patients were significantly
over-represented in the subset of cases obtained from a single hospital (34% in HGUA vs
7.4% in EPICOLON), and also samples were obtained in different years on each project
(2017 onwards in HGUA vs prior to 2013 in EPICOLON) in this study the contributing
project becomes a potential task bias; i.e., prediction of MSI status may be dependent
on project instead of on the image bio-markers of MSI status. Second, tiles from the
same patient commonly share observable visual patterns originated from both tissue
characteristics, slicing direction and staining differences in laboratory procedures. As the
model is designed to be trained at tile level, even if no patient is at the same time in the
training and validation set, the model would learn those patterns as shortcuts for the MSI
task, hence being a potential reason for model overfitting. overfitting was indeed verified
when the baseline model was trained more than 3 epochs observing an ever decreasing
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training loss near zero with no improvements in the validation loss. Third, each TMA
agglutinates sample spots from tens of patients which are placed between an underlying
and a cover glass. The unique characteristics associated with the digitization of each
TMA-glass may be statistically associated with MSI status if the distribution of classes
across TMAs is not uniform.

2.5. Bias Ablation

Once biases were identified and quantitatively characterized, the ablation of each bias
b, was implemented through an adversary training and distillation bias regime following
the approach described in [21] (see Figure 2), but differently from this work, the ablation
was not limited to only one but to all the biases identified.

Namely, given the input image X, the FE module extracts a feature vector F, on top of
which the MSI module predicts the class label y. To guarantee that F is not biased to the
multiple by, each corresponding BE, module back-propagate, in a consecutive way, the
loss to FE adversarially, i.e., as —ALy,, . It results in features that minimize the classification
loss of the MSI module while maintaining the least statistical dependence on each of the
bias b,,.

Each of the BE modules is trained on a y-conditioned cohort, i.e., samples of the
training data whose y values (MSI labels) are confined to a specific group (referred as p
in Figure 2). Consequently, the features learned by the system are predictive of y while
being conditionally independent of the batch effect originated by each of the biases. On
the implemented architecture, the system would learn to separate MSI-H vs MSS samples
by training each BE; only on the MSS group to correctly model the batch effects on the
samples. We perform the adversarial training of each of the BE,, only on the MSS group.

During the end-to-end system training a min-max game, is defined between two
networks. The classification loss L,,; is defined by a cross-entropy:

N
Lmsi(X/]/; Qfer emsi) = - Z Z yszOg yzm 1)
i=1

where X and y are the input images and corresponding msi target labels, respectively, N is
the number of training pairs (X,y), M is the number of classes to predict (two, MSI-H vs.
MSS) and 7 is the predicted MSI label.

Each batch effect or bias loss Ly, is based on the squared Pearson correlation corr?:

Lben (X v, Gfe/ Gben - Z COTT’ bkr bk) (2)

where by defines the vector of the bias across all N training inputs. The statistical depen-
dence is removed by pursuing a zero correlation between by and by through adversar-
ial training.

The overall objective of the end-to-end network is defined as:

B
Gmln ”gamesl(X Y Gfer mst —-A 2 Lben (X, by; efer gbe,l) 3)
fe/ msi Ybe b=1

where B is the number of protected variables or biases b.

Specifically, in each iteration, first we back-propagate loss L;,s; to update 6, and 0,;s;.
Second, for each b,;, we fix 6 fe and then minimize the L bey loss to update their corresponding
Ope, - Finally, we fix 0y, and then maximize the Ly,, loss to update 6., hence distilling all
the biases from 6,. In this study, each Ly, depends on the correlation operation, which
is a population-based operation, as opposed to individual level error metrics such as
cross-entropy or MSE losses. Therefore, we calculate the correlations over each training
batch as a batch-level operation. In conclusion, FE extracts features that minimize the
classification criterion, while ‘fooling’” all BE modules (i.e., making each BE incapable of
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predicting their corresponding bias ). Hence, the saddle point for this objective is obtained
when the parameters 6rr minimize the classification loss L,,s;; while maximizing the Ly,
loss of all the BE,, modules.

2.6. Partitions, Model Training and Metrics

For model training, the dataset was split 80/20 for training and validation applying
5-fold cross-validation and guaranteeing on each fold that the images of each patient only
belonged to one set (either training or validation but not both). To address imbalance
in MSI status as well as in the number of tiles for each patient, we applied a composite
weighted random sampling for both criteria, resulting in a balanced training set for both
patient and MSI label simultaneously. Tiles were resized to 224 x 224 pixels and color was
normalized following Mazenko method [24]. In addition to Mazenko, experiments were
done with and without an additional color normalization with statistics computed from
the EPICOLON image dataset which included 25 different hospitals. Data augmentation
at training time consisted in random rotations up to 90°, dihedral flips with probability
of 0.5, a perspective warping of maximum 0.2, and hue variations of maximum 0.15.
Of note, training sets included all magnifications so that the network could be trained
simultaneously on higher tissue architecture patterns as well as on cellular-level features
including nuclear characteristics. The batch size was 512 images.

The statistical dependency between learned features and each of the selected biases
was monitored during model training with the squared distance correlation dc. Principal
component analysis (PCA) was used to assess how the spatial representations of the learned
features were affected by the protected (bias) variables before and after bias ablation. One-
way ANOVA was used to compare the false positive rates and false negative rates of the
different tissue types and magnifications on the MSI classification task. Metrics used to
assess the performance of the MSI classifier include AUC, balanced accuracy, sensitivity,
specificity, positive predictive value, negative predictive value, false positive rate and false
negative rates. Metrics dependent on MSI-H prevalence are calculated assuming 15% in
the real population.

2.7. Explainable Methods

SHAP (SHapley Additive exPlanations) [28] values were used to provide a means of
visually interpreting the topology and morphology of features that influence predictions.
The goal of SHAP is to explain the prediction of an instance by computing the contribution
of each feature to the prediction. The SHAP explanation method computes Shapley values
from coalitional game theory.

3. Results
3.1. Experiment 1: Tissue Classifier

The tissue classifier module reached an AUC of 0.98 in the validation set. This module
was capable of classifying the different regions of the image (tumor epithelium, stroma,
normal epithelium, mucin, muscular fibers, lymphocytic infiltrates, debris, adipose tissue
and background) as shown in Figure 3.

After the automatic filtering done by the preprocessing module, the final study sample
totaled 1788 patients (171 MSI-High). The image dataset consisted of 1,065,479 tiles or
adjacent regions without overlap including all magnifications and all types of tissues. The
tissue classifier module was then used in inference for the pre-selection of the regions
of interest restricted to tumor epithelium, lymphocytic infiltrates and mucin totaling
523,624 tiles, linked to the entrance to the MSI module classifier. On this filtered dataset,
the distribution of tiles by each magnification is shown in Table 2.
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(a) (b)

(©) (d)
Figure 3. Examples of spots with each tissue region coded with different colors: tumor epithelium (red), stroma (orange),
normal epithelium (green), mucin (blue), muscular fibers (pink), lymphocytic infiltrates (purple), debris (grey), adipose
tissue (yellow) and background (black). Each sub-figure (a-d), corresponds to one example of spot where the original
sample is placed on the right and the corresponding color mask is placed on the left. The tissue class for each pixel is
computed as the majority tissue class of partial overlapping tiles applying a sliding window to raster each spot. Tiles were
input to the tissue classifier module at x20 magnification.

Table 2. Distribution of tiles by magnification. Tiles were filtered by regions of interest restricted to
tumor epithelium, lymphocytic infiltrates and mucin.

Magnification Number of Tiles
x40 386,524
%20 100,569
x10 23,630
x5 9954
x0 2947
All (total) 523,624

3.2. Experiment 2: Bias Identification, Interaction between Variables and Bias Ablation Implementation

First a baseline model was trained for 10 epochs and overfitting was observed with an
ever decreasing training loss approaching zero with no improvements in the validation
loss. The lack of generalizability in validation was suspected to the presence of biases
described in Section 2.

Second, a baseline model was trained for 3 epochs, with early stopping, and the
statistical dependence between the representations learned by the feature extractor back-
bone with regard to the target task (MSI classification) and each of the suspected bias was
measured in the entire training cohort with the squared distance correlation dc. As shown
in Table 3, the learned features by the baseline network had surprisingly a higher dc with
the project variable (0.17) when compared with the MSI label (0.08). Subsequently, as a
subgroup analysis, dc was computed for each project cohort separately. At this step a hid-
den interaction emerged between the HGUA project cohort and the TMA glass and patient
variables respectively, where the dc increased up to 0.29 in both cases. The unexpectedly
strong association between the TMA glass and the learned representations only occurring
in the HGUA project was further investigated and it obeyed to the MSI label distribution
of the spots among TMAs. Specifically, we found that many TMAs in the HGUA project
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had spots from only one class (either MSS or MSI-H, but not both). Moreover, as the glass
covered the spots it meant that not only the background but also the tissue regions carried
the glass characteristic patterns. This observation was relevant implying that removing
background regions -even if necessary- is not enough to remove this bias. In contrast, all of
the EPICOLON TMAs had a varying representation of spots of both classes, though always
strongly unbalanced towards the MSS class.

Third, once confirmed the presence of multiple bias variables (i.e., project, patient,
and TMA glass variables), three corresponding bias-rejecting learners were attached to the
end-to-end network applying an adversarial consecutive training regime for each head as
explained in Section 2.3. After implementing the bias-ablation technique and retraining,
we recomputed the statistical dependence between the representations learned by the bias-
ablated model with respect to the target and each bias. As shown in Table 3, associations of
the learned features with the MSI status were strengthened, increasing from 0.08 to 0.21
in the overall study set. Conversely, the dependence with three biases was weakened,
decreasing from 0.17 to 0.02 with respect to the project bias and from 0.08 to 0.02 in the
case of the patient and glass bias. When narrowing down to the HGUA project, the bias
ablation resulted in a higher association of the learned features with the MSI status, but
failed to disentangle their association with the glass and patient bias which still remained
high. As explained above, in the HGUA project some TMAs were composed only of one
single target class of spots, hence, the observed persistent statistical dependence supports
that the attempt to decoupling those TMA glasses from the MSI status is unfeasible and
that the glass may provide the network with an unfair shortcut for MSI status prediction.

Table 3. Statistical dependence between the learned features with regard to the target task (MSI)
and each bias quantitatively measured by the squared distance correlation (dc). Hidden interactions
between the different biases are explored by subgroups by re-calculating the dc for each project.
The learned features from a baseline model are compared against a bias-ablated model with regard
to their statistical dependency to the target task and each bias. In bold are highlighted the lowest
distance correlations achieved for each bias. The bias-ablated model maximizes the association of the
learned features with respect to the MSI task and minimizes the statistical mean dependence with
the biases.

MSI Project Bias Patient Bias Glass Bias

Model Subgroup de de de de
Baseline All 0.08 0.17 0.08 0.07
Baseline EPICOLON Project  0.04 - 0.02 0.07
Baseline HGUA Project 0.46 - 0.29 0.29

Bias-ablated All 0.21 0.02 0.02 0.02
Bias-ablated EPICOLON Project 0.15 - 0.01 0.07
Bias-ablated HGUA Project 0.62 - 0.35 0.33

3.3. Experiment 3: Bias Ablation Analysis

Statistical dependence, conditioned in the MSS cohort as explained in Section 2,
between the learned features and each bias measured with the squared distance correlation
was consistently reduced by more than half in the bias-ablated models as compared to
the baseline models, as shown in Table 4. The dc with the project bias was the most
reduced one. During model training, as shown in Figure 4, the squared distance correlation
between the learned features and the target MSI status (blue) increased as expected as a
function of the number of training iterations. When comparing the two training regimes,
we observed that in the baseline model (Figure 4a) the correlation with the MSI target
increased together with all other identified biases and especially with the sample project
(orange) which overlapped with the MSI target (blue). In contrast, in the model that applied
the bias-ablation adversarial training (Figure 4b), the dc between the learned features and
the project and patient biases did not increase, maintaining them at minimum values, while
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simultaneously allowing the increase of statistical dependence with the MSI target. Notably,
the efficacy of the bias ablation was more marked with regard to the project bias (orange).

Table 4. Statistical dependence between the learned features and each bias for the MSS group.
Quantitatively measured by the squared distance correlation (dc). The mean and standard deviation
of the dc obtained from the 5 fold baseline models is compared against the 5 fold bias-ablated models.
In bold are highlighted the lowest distance correlations achieved for each bias.

Model Project Bias Patient Bias Glass Bias
Baseline model 0.25 +0.05 0.12 +0.02 0.07 £ 0.008
Bias-ablated model 0.10 £0.04 0.04 +0.018 0.03 +0.013

b) Bias-ablated Model
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Figure 4. Statistical dependency, measured with the squared distance correlation (dc), between the learned features, MSI

learning task and each bias (project, patient and glass bias) during the training process. After bias-ablation, the statistical

dependency of the learned features with regard to MSI-classification is increased (blue), while reduced in particular with

regard to the project bias (orange). Fe-Bias1 dc = Squared distance correlation between learned features and project bias

(orange). Fe-MSI dc = Squared distance correlation between learned features and MSI status (blue). Fe-Biasl dc = Squared

distance correlation between learned features and patient bias (green). Fe-Biasl dc = Squared distance correlation between
learned features and TMA glass bias (red).

The PCA projection of the learned representations comparing the baseline model
vs the bias-ablated model is shown in Figure 5. The bias ablation technique results in a
better representation space which is more invariant to the bias variables (project and TMA
glass) while the baseline shows patterns more influenced by the bias. For example, and
as illustrated in Figure 5c, most of the TMA glasses are organized as spatial clusters in
the baseline model which means that the representation space of the learned features is
not invariant with regard to the TMA glass. Conversely, after applying the bias-ablation
technique colors of TMA glasses are less organized and follows a more homogeneous
distribution Figure 5d.

To assess the impact of the bias-ablation technique on the MSI classification perfor-
mance, we compared the validation results of 5-folds models trained for up to 3 epochs
with and without the adversary ablation of the three known biases. As shown in Figure 6,
when models were evaluated on the validation set without differentiating between the
projects of samples (i.e., both EPICOLON and HGUA samples included), there was not
appreciable impact on performance between the bias-ablated vs baseline models at image
level (both achieved an AUC of 0.87 +0.03). Nonetheless, when the baseline models
were evaluated separately for each of the different projects (EPICOLON vs HGUA), the
performance in HGUA samples (AUC = 0.97 £0.01, balanced accuracy = 0.91 £0.03)
was significantly higher than in EPICOLON samples (AUC = 0.82 4 0.03, balanced accu-
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racy = 0.75 £0.03) with a gap of up to 0.15 and 0.16 in the AUC and balanced accuracy
respectively. This project gap was attenuated to 0.13 (in both the AUC and balanced accu-
racy) after applying the bias-ablation technique, by decreasing the performance in HGUA
(AUC =0.96 £0.02, balanced accuracy = 0.89 £ 0.02) while increasing the performance in
EPICOLON (AUC = 0.83 £ 0.03, balanced accuracy = 0.76 £ 0.01).
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Figure 5. PCA projection of the learned features for baseline vs bias-ablated models. Color encodes the category for project bias (a,b)
and TMA glass bias (c,d). (a) Baseline model features and project bias. (b) Bias-ablated model features and project bias. (c) Baseline
model features and TMA glass bias. (d) Bias-ablated model features and TMA glass bias.

3.4. Experiment 4: Results at Tile vs. Patient Level and Effect of Tissue Types and Magnifications

For each of the 5 folds, tile predictions of the bias-controlled model were aggregated
by majority voting for the decision of the MSI status at the patient level. 5-folds validation
sets consisted of approximately 300 patients each and the mean prevalence of MSI-H was
9%. In order to simulate performance on real population prevalence, metrics dependent on
disease prevalence (see Table 5) were calculated assuming a MSI-H prevalence of 15%.

The AUC at tile level, and including all three selected tissues (tumor epithelium,
mucin and lymphocytic regions) and all 4 magnifications, was 0.87 & 0.03 and increased to
0.9 +0.03 at patient level.
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Figure 6. MSI classification results at tile level comparing the 5-fold bias-ablated models (orange) vs. 5-fold baseline models
(blue) across the different projects (EPICOLON and HGUA).

The AUC at tile level for a bias-controlled model trained only on tumor epithelium
was 0.87, but differently from the model that included all three selected tissues the AUC at
patient level did not increase and remained 0.87. In the models trained with all three tissue
types, tiles tagged as lymphocytic infiltrates (LYM) and mucin (MUC) had an average of
false positive rate (ratio of false positive over true negatives) of 0.32 and 0.22 respectively,
compared to 0.12 in tumoral epithelium (TUM) tiles (see Figure 7). This finding supports
that nuclear and cellular characteristics of tumor epithelium are more specifics of MSI-H
status, while mucin and lymphocytic infiltrates are nonspecific, which would explain the
higher rates of false positives at tile level. Nonetheless, as inferred from the performance
gain in AUC at patient level, regions with mucin and lymphocyte’s infiltrates were probed
to be relevant for MSI classification at case level by contributing to a lower rate of false
negatives as shown in Figure 7. Because MSI-H tumors typically exhibit larger amounts
of mucin and lymphocytic infiltrates, even if not specific, it would explain the increase in
model performance at patient level after applying the majority of votes. We compared the
effect of the different types of tissues (TUM, LYM, MUC) on the false positive rates and false
negative rates. A one-way ANOVA found a statistically significant difference in the false
positive rates between at least two groups (F(2, 12) = 165.2, p < 0.001). Tukey’s HSD Test for
multiple comparisons found that the mean value of the false positive rate was significantly
different between all combinations of groups (p < 0.01). Similarly a one-way ANOVA found
a statistically significant difference in the false negative rates between at least two groups
(F(2,12) =58.9, p < 0.001). Tukey’s HSD Test for multiple comparisons found that the mean
value of the false negative rate was significantly different only between TUM and LYM
(p < 0.01) and between LYM and MUC (p < 0.01).

The AUC at tile level for bias-controlled models trained respectively at x5, x10,
%20 and x40 magnifications in all three selected tissue types were 0.81, 0.85, 0.87, 0.86.
According to the AUC results and as shown in Figure 7, the specificity was higher for
%20 magnification where the lowest rates of false positives were observed. Nonetheless
false negative rates decreased (lower cases missed) with decreasing magnification from
x40, x20 up to x10 magnification, which argues in favor that including high level tissue
architectural patterns (up to x10) contribute to increased sensitivity. The AUC at tile level
for bias-controlled models and including all available magnifications was 0.87, hence the
inclusion of all magnifications was non-inferior to including only one single magnification
for training, and was also considered as a valuable data augmentation technique.
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Figure 7. Average of false positive rates (gray) and false negative rates (orange) at tile level for the 5 fold bias-controlled
models by tissue type (figures above): tumor epithelium (TUM), lymphocytic infiltrates (LYM) and mucin (MUC) and
different magnifications (figures below): x40, x20, x10, x5, x0.

Table 5. Patient level performance of the bias-ablated models cross-validated in 5 folds. Metrics
that are dependent on MSI-H prevalence, are calculated assuming a MSI-H prevalence in the real
population of 15%. Confidence intervals for sensitivity, specificity and accuracy are “exact” Clopper-
Pearson confidence intervals. Confidence intervals for the predictive values are the standard logit
confidence intervals given by [29]. P = Prevalence, S = Sensitivity, E = Specificity. * Metrics that are
dependent on MSI-H prevalence.

Metric Value 95% CI Definition
AUC 0.90 0.87-0.93
Accuracy * 88% 83.8-91.4% SxP+Ex(1—P)
Sensitivity (S) 87% 79.5-91.3% TP
Specificity (E) 88.3% 86.5-89.9% e
Positive Predictive Value * 56.5% 52.6-60.4% S+b

SxP+(1—E)*(1—P)
Ex(1-P)

Negative Predictive Value * 97.3% 96-98.2% Er(I=P)+(1-8)+P

We compared the effect of the different magnifications (x40, x20, x10, x5, x0) on
the false positive rates and false negative rates. A one-way ANOVA found a statistically
significant difference in the false positive rates between at least two groups (F(4, 20) = 53.6,
p <0.001). Tukey’s HSD Test for multiple comparisons found that the mean value of the
false positive rate was significantly different between all combinations of groups (p < 0.01)
except between the pairs of magnification x40-x10, x20-x10 and x5-x0. Similarly a one-
way ANOVA found a statistically significant difference in the false negative rates between
at least two groups (F(4, 20) = 8.2, p < 0.001).Tukey’s HSD Test for multiple comparisons
found that the mean value of the false negative rate was significantly different (p < 0.01)
only between the pairs of magnification x40-x10, x40-x0 and x20-x10.

3.5. Experiment 5: Visual Explainability

For visually interpreting the topology and morphology of features that influenced the
predictions, Figure 8 shows that the most relevant features for classifying the samples as
MSI-high vs MSS were located at conglomerates of tumoral cells with activations mainly
gathered at the nucleus of the cells. Note that as a binary classification task, for the MSI-H
projection images the red pixels are the most important regions influencing the prediction



Biomolecules 2021, 11, 1786

15 0f 19

towards the MSI-H class, while for the MSS image projection the same pixels are shown as
blue, being symmetrical.

When comparing the projections of SHAP values between the baseline and the bias-
ablated models for the same inputs, there were no perceptible differences by visual obser-
vation, nonetheless the discriminative power measured by the softmax values distance
between classes is increased, in particular for MSS samples.

014603841 0.85306156 Target: MSI-H 0.0062367837 099376327
021412471 0.78587526 0.24886653 0751133
0.5995398 0.4004601 0.6924347 0.30756524
0.531051 0.46894905 0.9071611 0.09283887
Predicted MSS Predicted MSI-H Predicted MSS Predicted MSI-H
| | | |
BASELINE MIODEL BIAS-ABLATED MODEL
R . U
—-2000 -1000 0 1000 2000

SHAP value

Figure 8. SHAP (SHapley Additive exPlanations) values projected on the tiles to visually interpreting the topology and
morphology of features that influence predictions of the baseline and bias-ablated model (left and right respectively). The
input samples are placed in the center of the graph with their respective target labels (2 MSI-H samples at the top and 2 MSS
samples below). For each of the input tiles, the resulting SHAP values obtained for both models are projected for each class
on top of a grayscale copy of the input tile (left and right for MSS and MSI-H respectively). Red pixels increase the model’s
output while blue pixels decrease the output. The sum of the SHAP values equals the difference between the expected
model output (averaged over the background dataset) and the current model output. The softmax values (prediction) for
each class (MSS vs. MSI-H) are shown on top of each projection.

4. Discussion

We present a system for the prediction of MSI from H&E images using artificial
vision techniques that incorporates and end-to-end TMA-customized image preprocessing
module to tile samples at multiple magnifications in the regions of interests guided by the
automatically detected type of tissues and a multiple bias distiller system integrated with
the MSI predictor.

In the present work we find that TMAs have special characteristics, not reported for
WE6Is, which make them especially challenging for the application of DL methods in digital
pathology, emphasizing the relevance of addressing biases.

A systematic study of biases at tile level demonstrated three hidden variables interfer-
ing with the model’s learned representations: the project of origin of samples, the patient’s
spot and the TMA glass where each spot was placed. Even if it is preferred to control
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for any of those types of biases at the dataset level, it entails either obtaining more tissue
and/or re-allocating them in new TMA glasses which was unfeasible in general. Instead,
we reused the TMAs as they were provided for research purposes given that first, the most
optimal management of tissue samples avoiding sample waste is always desirable and
second, the presence of associations spurious or otherwise undesirable that are exploited
by DL models, rather than being an odd problem affecting only our work, is a general,
common and not yet resolved challenge in medical datasets used to train Al systems.
Consequently, we decided to dedicate the efforts to systematically study and address the
biases at the learning stage. For this purpose, a novel multiple bias rejecting technique has
been implemented at the deep learning architecture to directly avoid learning the batch
effects introduced by protected variables.

The implemented method achieved a significant reduction in the dependence of
the learned features with regard to the project bias and patient bias in the general study
populations but did not reduced the glass bias dependence in the HGUA project where we
found that for most of the TMAs there were only samples with one single type of target
class included. We observed that the ablation method is highly effective for mitigating
bias in datasets where for all possible ordered pairs of protected variable classes and
target classes there are representative samples even if heavily in-balanced. In addition, the
performance in the MSI classification improved in terms of AUC and balanced accuracy
for the population meeting this condition (EPICOLON cohorts). Conversely, when this
condition was not meet (as in the case of the HGUA for the glass bias, where the target
and protected variable had an unequivocal association in the samples), the statistical
dependence was not eliminated and the classification performance in the target task still
seemed to exploit the bias maintaining a highly marked predictive advantage in comparison
with the classification results in the EPICOLON cohorts. We observed that the performance
of the models were tightly associated to the presence of batch effects and their presence had
a larger impact on performance than the number of patients available for training on each
cohort. In essence, as illustrated in Figure 6, even if the number of patients was smaller in
the HGUA cohort, the model performance on this cohort was higher than that achieved in
the EPICOLON project, which was explained by the model’s exploitation of the TMA-glass
bias in the HGUA cohort. When analyzed considering all study population, the learned
features from the bias-ablated model had maximum discriminative power with respect to
the task and minimal statistical mean dependence with the biases.

In contrast to other population-based cohorts where MSI prevalence is around 15%, in
the EPICOLON project, the cohorts had a mismatch repair deficiency in only 7.4% patients.
In EPICOLON I only 91 patients (7.4%) had a mismatch repair deficiency with tumors
exhibiting either genetic microsatellite instability (n = 83) or loss of protein expression
(n = 81) [2]. This difference is attributed to the fact that the EPICOLON project was a
population-based study; while CRC cohorts with a 14-15% dMMR prevalence usually
correspond to registries with a higher percentage of patients with family history, as it is for
example, the Cancer Family Registry [1].

Regarding the classification MSI status at case level, we observed that the performance
consistently increased in all experiments when not only tumor epithelium but also the
mucinous and lymphocytic infiltrate regions were included. Those regions were probed
to be nonspecific at image level, but increased the sensibility at patient level, which is a
desirable characteristic for screening purposes.

Also, a x20 magnification achieved the higher specificity, but at the same time, re-
ducing magnifications up to x10 contributed to higher sensitivity of the models. This
observation supports that the best approach would be to include different magnifications,
helping the model to learn both low and high level tissue architectural patterns at the same
time. Moreover, including all magnifications during training was considered in this project
as a data augmentation technique.

The tissue classifier module reached an AUC of 0.98 in the validation set. This module
was capable of classifying the different regions of the image: tumor epithelium, stroma,
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normal epithelium, mucin, muscular fibers, lymphocytic infiltrates, debris, adipose tissue
and background. Regarding the final task of MSI status prediction, the AUC at tile level,
including all three selected tissues (tumor epithelium, mucin and lymphocytic regions) and
all magnifications, was 0.87 = 0.03 and increased to 0.9 + 0.03 at patient level.

Limitations of the study are as follow: We observed, after applying the image pre-
processing pipeline, a reduction in the final available MSI population, altering its original
frequency in the EPICOLON project. Specifically, due to lack of epithelial tumor regions in
the spots, up to 9% (n = 159 patients) in the EPICOLON population were excluded from
the final analysis, where the largest proportion of excluded patients corresponded to the
MSI-H arm, hence reducing its frequency from the expected 7.4% in EPICOLON to 5.8%
(n = 105). This was explained by a more intensive molecular tissue testing performed in
MSI-H cases in the context of the EPICOLON research project that exhausted a subset of
spots with no viable regions of epithelial tumor left. The reduction in the final available
MSI population, altering its original frequency, was consequently not longer considered
a representative sample of the original EPICOLON MSI-H population. To overcome this
limitation, the dataset was further enriched with cases from a single hospital as shown
in Figure 1. On the one hand, this enrichment would increase the exposure of the MSI
classifier to additional unselected MSI-H cases and, on the other hand, the bias rejecting
technique implemented successfully addressed the batch effect introduced by the project
of origin. Finally, result metrics which are impacted by disease prevalence, are calculated
considering the MSI-H prevalence in the real population (15%), so as to approximate its
performance in the clinical setting.

As future work, only after addressing the remaining TMA-glass bias at the data level,
testing the generalizability of the system in an independent and prospective test would be
necessary. Also multimodal variables including age, stage, location, Bethesda criteria could
be included in the model to explore their potential to improve the predictive capacity.

5. Conclusions

In this study, we present an Al system for the prediction of MSI in colorectal cancer
from H&E images in TMAs. The AUC at tile level, and including all three selected tissues
(tumor epithelium, mucin and lymphocytic regions) and 4 magnifications, was 0.87 + 0.03
and increased to 0.9 + 0.03 at patient level. The system incorporates a tissue type classifier
module to select the regions of interest and a multiple bias rejecting technique based on
adversarial training. The learned features from the bias-ablated model have maximum
discriminative power with respect to the task of MSI prediction and minimal statistical
mean dependence with the biases. We emphasize the need of analyzing biases exploited
by DL system in digital pathology and propose a method to address multiple biases at the
DL architecture.
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