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Abstract: Single-molecule techniques such as electron tunneling and atomic force microscopy have
attracted growing interests in protein sequencing. For these methods, it is critical to refine and
stabilize the protein sample to a “suitable mode” before applying a high-fidelity measurement. Here,
we show that a planar heterostructure comprising boronic graphene (BC3) and nitrogenized graphene
(C3N) sandwiched stripe (BC3/C3N/BC3) is capable of the effective stretching and confinement of
three types of intrinsically disordered proteins (IDPs), including amyloid-β (1–42), polyglutamine
(Q42), and α-Synuclein (61–95). Our molecular dynamics simulations demonstrate that the protein
molecules interact more strongly with the C3N stripe than the BC3 one, which leads to their capture,
elongation, and confinement along the center C3N stripe of the heterostructure. The conformational
fluctuations of IDPs are substantially reduced after being stretched. This design may serve as a
platform for single-molecule protein analysis with reduced thermal noise.

Keywords: molecular dynamics simulation; boronic graphene; nitrogenized graphene; inplane
heterostructure; protein stretch and confinement

1. Introduction

Protein sequencing at the single-molecule level is crucial for personalized medicines
and the detection of post-translational modifications in proteins [1–4]. Recently, several
single-molecule techniques such as atomic force microscopy (AFM) [5,6], quantum tun-
neling [7–9], and nanopore [3,10,11] have been proposed for protein sequencing, which
allow the direct read-out of structural differences of individual amino acids. Although
promised to be with high accuracy and low cost, a large gap still resides between these
proof-of-principle methods and the ultimate sensitivity for the discrimination of 20 different
amino acids. One major challenge is the noisy signals caused by the thermal fluctuations
of amino acids [12,13]. Moreover, proteins usually possess coiled or folded conforma-
tions in a solution, which imposes difficulties in the analysis of the atomic structure of
protein [13,14]. Therefore, to put the single-molecule protein sequencers into potential
commercial use, the controllable manipulation (such as elongation) and confinement of the
protein conformation are prerequisites.

Current nanochannel and nanopore sequencing techniques naturally provide steric
confinement for analytes, and the single-molecular sensitivity can be realized with the cross-
section of confinement in the same order of magnitude as the size of the amino acids [15,16].
However, the narrow cross-section inevitably causes a large entropy barrier that hampers
protein capture into the nanoscale channel [15,16]. The non-specific interaction between
the protein and the nanostructure can also affect the precision of measurement and induce
clogging [4,12]. To address these issues, a planar two-dimensional (2D) heterostructure has
recently been proposed for biomolecular capture, stretching, and confinement [17–19]. The
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planar 2D heterostructure can be fabricated by the seamless stitching of two 2D materials
(for example, graphene and hexagonal boron nitride) with a similar lattice constant [20–23].
As the key mechanism for this heterostructure to manipulate protein conformation is the
adsorption energy contrast for a protein molecule on different 2D materials [18,24], the
performance should depend on the type of 2D material selected.

Boronic graphene (BC3) and nitrogenized graphene (C3N) are two new types of
graphene derivatives that have been successfully synthesized [25,26]. Both BC3 and C3N
exhibit excellent structural stability and share very similar honeycomb lattices [24,25],
making them suitable to form planar heterojunctions. On the other hand, with differently
doped heteroatoms (boron and nitrogen), BC3 and C3N have demonstrated a distinct
contrast of binding affinities for biomolecules [27], which can be harnessed for biomolecular
manipulation. Owing to these features, we are highly motivated to design a BC3/C3N/BC3
in-plane heterostructure (Figure 1) for protein stretching and confinement. To study
the interaction mechanism between the heterostructure and protein, three representative
intrinsically disordered proteins (IDPs), including amyloid-β (Aβ1–42), polyglutamine
(polyQ42), and α-synuclein (α-Syn61–95) are taken as examples. Utilizing all-atom molecular
dynamics (MD) simulations, we show that the disordered conformations of IDPs can
be stretched into a linear manner along the C3N stripe sandwiched between two BC3
domains. This highly regular and confined conformation might be suitable for analysis by
single-molecule methods such as AFM [5,6] and quantum tunneling [7–9]. Moreover, the
conformational fluctuations of proteins can be significantly reduced after being stretched
and energetically confined on the C3N stripe. The periodic atomic charge distributions on
BC3 also induce the formation of high-density water clusters on the BC3 surfaces, which
may further provide steric hindrances to restrict the conformational fluctuation of IDPs.
The insights from our study might benefit the improvement of the signal-to-noise ratio for
single-molecule protein analysis.
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ture. Carbon, boron, and nitrogen atoms in the 2D material are colored in silver, pink, and blue, 
respectively. Atoms in the peptide are shown as spheres (C: cyan; O: red; H: white; N: blue; and S: 
yellow). K+ and Cl− ions are colored in green and orange, while water molecules are shown as glass 
bubbles. 

Figure 1. The initial simulation configuration of the Aβ1–42 peptide on the BC3/C3N/BC3 het-
erostructure. Carbon, boron, and nitrogen atoms in the 2D material are colored in silver, pink, and
blue, respectively. Atoms in the peptide are shown as spheres (C: cyan; O: red; H: white; N: blue; and
S: yellow). K+ and Cl− ions are colored in green and orange, while water molecules are shown as
glass bubbles.
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2. Method

We used molecular dynamics (MD) simulations to simulate a two-dimensional (2D)
sandwich BC3/C3N/BC3 planar heterostructure with a total size of 16.2 × 14.1 nm2 [2]
(Figure 1). Among them, the width of the C3N stripe seamlessly spliced between the two
BC3 sheets is 1.2 nm. The force fields of BC3 and C3N can be obtained by referring to the
previous research [28], in which the lattice constants of both are 2.5 Å, and the boron and
nitrogen atoms have partial charges of 0.378 e and −0.168 e, respectively. To maintain the
overall and local charge neutrality of the planar heterostructure, the carbon atoms in BC3
and C3N carry −0.126 e and 0.056 e, respectively [29].

Following the similar approach in our previous studies [17,24,30–32], we performed
a pre-equilibrium simulation of the conformation of each IDP fragment from solution to
adsorption on a BC3 nanosheet, and then extended the BC3 nanosheet (along with the
peptide) to construct the BC3/C3N/BC3 planar heterostructure. After that, the entire
system is placed in a box with a size of 16.2 × 14.1 × 5.0 nm3 [3] and solvated with 100 mM
KCl electrolyte, which contains approximately 66,000 atoms. In addition, to explore the
difference in hydrophilic or hydrophobic properties between BC3 and C3N, we constructed
two systems of BC3 or C3N in a water box with a size of 4.9 × 4.2 × 5.0 nm3 [3]. Later, to
characterize the interface behavior of water molecules on the planar heterostructure, we
additionally constructed a heterostructure-water system with a box size of 16.2 × 14.1 ×
5.0 nm3 [3].

The Gromacs software package [33] (version 5.1.4) was used for our MD simulations,
and VMD [34] was used for trajectory visualization. The TIP3P model [35] was used for
water molecules, the CHARMM36 force field [36] for proteins/peptides, and standard force
fields for ions. Following the scheme used in many previous, similar researches [30,37–41],
we used the LINCS algorithm to constrain the covalent bonds with hydrogen atoms, with
a time step of 2 fs. The particle mesh Ewald (PME) method [42] with a grid size of about
1 Å was used to calculate the long-range electrostatic interactions, while the smooth cut-off
method was used for the van der Waals (vdW) interactions, with a cut-off distance of
1.2 nm. Periodic boundary conditions were used in all three-dimensional directions. The
Parrinello-Rahman algorithm [43] was applied in the z-direction with a semi-isotropic
pressure coupling of 1 bar, and the V-rescale thermostat [44] was used to control the
simulation temperature at 300 K. Then, under the NPT ensemble, several independent
400 ns trajectories were generated for each system for data collection. In all simulations,
except that the atoms in the two-dimensional planar heterostructure are frozen, all other
atoms can move freely.

3. Result

Some representative snapshots (Figure 2) were shown for the trajectories of Aβ, polyQ,
and α-Syn on the BC3/C3N/BC3 planar heterojunction, respectively. Taking Aβ (Figure 2A)
as an example, starting from the curled and folded structure adsorbed on the BC3 domain,
Aβ first diffused to the C3N region quickly, arriving at t = ~22 ns, which is consistent
with our previous findings on the similar free and rapid diffusions of adsorbents on other
two-dimensional material plane [24]. Finally, at t = ~250 ns, Aβ was stretched on the
C3N stripe and maintains a straightened conformation. Following the same procedure,
we also checked the trajectories of polyQ (Figure 2B) and α-Syn (Figure 2C) and found
that although they had slightly different dynamic behaviors in the initial diffusion and
subsequent stretching phases, they all displayed the same straightened conformation
as Aβ on the C3N stripe at the end. In addition, we analyzed the average end-to-end
distance normalized by the residue number (L/N) for each protein (Figure 2D). During
the simulation, the L/N of Aβ, polyQ, and α-Syn increased from ~1.0 Å to 2.2 Å, 2.2 Å,
and 2.3 Å, respectively. It is worth noting that although the L/N values of these IDPs
fluctuate sharply due to their high flexibility before being fully stretched, they maintain
their respective highest values during the last 100 ns simulations, indicating that IDPs can
be spontaneously stretched on the C3N stripe. It is also worth noting that the fluctuations



Biomolecules 2021, 11, 1756 4 of 10

of L/N are reduced after the peptides are stretched (Figure 2D). To characterize the change
of conformational fluctuations of peptides in the stretching process, we further conducted
MD simulations of peptides in free solution, on the BC3 surface, and the BC3/C3N/BC3
surface, respectively. Figure 3 illustrates the probability distributions of L/N of Aβ peptides
in different environments. The distribution of L/N of Aβ confined in the heterostructure
has a much narrower width than those in other environments. Moreover, distributions
of L/N of polyQ (Figure S1) and a-Syn (Figure S2) also demonstrate similar results. The
above analyses indicate that the conformational fluctuations of proteins can be significantly
reduced when they are confined on the C3N stripe BC3/C3N/BC3.
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To reveal the stretching mechanism of IDPs on the BC3/C3N/BC3 planar heterostruc-
ture, we adopted Aβ as an example to examine the details of the interaction between
peptides and BC3/C3N/BC3 (Figure 4). During the simulation, the average number of
contact atoms per Aβ residue with BC3 decreased from ~9 to ~4, while the average number
of contact atoms per Aβ residue with C3N increased from 0 to ~8 (Figure 4A). Here, we
defined a contact when any atom in BC3/C3N/BC3 was within 4.0 Å of any heavy atom of
the protein. As shown in the scatter plot of Figure 4B, in the stretching process, the peptide
contacted more with C3N while less with BC3, accompanied by a gradual increase in the
magnitude of interaction energy. According to the above results, the peptide interacted
more strongly with C3N than BC3, which drove its stretching on BC3/C3N/BC3. To further
understand the physical mechanism of the driven process, we scanned the interaction
energy ∆E between the peptide and BC3/C3N/BC3 by moving the stretched conformation
of Aβ horizontally and rigidly from the C3N stripe to the BC3 domain. As shown in
Figure 4C, when the peptide was on the C3N stripe, the van der Waals interaction (vdW)
energy presented a narrow energy well with a depth of −1.6 kcal per mol per residue
(black dotted line). It is also worth noting that the average value of Coulomb interaction
energy between Aβ and the BC3/C3N/BC3 was almost zero (red line) due to the local
charge neutrality of the planar heterostructure. Moreover, we repeated all of the above
analyses for the polyQ (Figure S3) and α-Syn (Figure S4) on BC3/C3N/BC3. Similarly,
the straightening and restriction of polyQ and α-Syn on the narrow C3N stripe were also
mainly due to the differences in the vdW interactions between the polypeptides and C3N
and BC3.

To further investigate the influence of the C3N stripe width on the efficiency of protein
stretching, we also constructed BC3/C3N/BC3 heterostructures with the stripe widths
ranging from 0.6 nm to 1.8 nm and scanned the vdW interaction energy between the
elongated Aβ peptide and each heterostructure, respectively (Figure S5). Figure S5B
shows the potential wells of C3N stripes with different widths, and Figure S5C shows the
“potential-depth” and the “potential-width” at a half-minimum of each well as a function
of the C3N stripe width. For both curves of the depths and widths of potential wells, the
inflection points occur when the C3N layer width is equal to 1.2 nm. After this deflection
point, the increasing stripe width would lead to a slower decrease of the depth of the
potential well, and a faster increase of the width of the potential well. It is noteworthy that
a potential well with a deeper depth and narrower width can lead to a better performance
of the protein stretching. Considering the optimization of both the depth and the width
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of the potential well, the C3N layer width of 1.2 nm is recommended for efficient protein
stretching.
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Moreover, in practice, the interface between BC3 and C3N may not be perfect, as
shown in Figure 1, and rough domains with mixed units of BC3 and C3N might exist at the
interface. One simple way to illustrate this effect is to use the 1.2-nm-width C3N stripe in
our current simulation as the base and use the width of the 1.0-nm- to 1.4-nm-C3N stripes
as the upper and lower bounds, as the adsorption potential well of the stripe with rough
interfaces should be in-between the wells of these two widths. As shown above in Figure
S5B, the potential wells of the 1.0-nm-width, 1.2-nm-width, and 1.4-nm-width C3N stripes
share similar shapes, with potential-well depths of −1.4 kcal/mol, −1.6 kcal/mol, and
−1.7 kcal/mol respectively. Thus, the roughness of the interface is not likely to affect much
on the potential well for protein stretching and confinement.

In addition, it is known that the behavior of water on the surface of 2D materials also
has an important influence on the interaction between protein and 2D materials in the
aqueous environment. Therefore, we further analyzed the behaviors of interfacial water on
BC3 and C3N respectively, and the influence of these interfacial waters on the confinement
of IDPs on the planar heterostructure (Figure 5). From the water density maps (Figure 5A,B)
along the normal (Z) directions of 2D materials, the first water solvation shells of BC3
and C3N were both located on Z = ±0.35 nm. More interestingly, we found a periodic
enhancement of water density clusters between the BC3 layer and its first solvation shell,
which were not observed clearly on the C3N layer. The presence of these water clusters on
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BC3 might be attributed to the strong but nonuniform partial charge distributions (+0.378 e
for a boron atom and −0.126 e for a carbon atom). While on C3N, the partial charges
(−0.168 e for a carbon atom and +0.056 e for a nitrogen atom) were much smaller, and
not strong enough to induce noticeable water clusters between the 2D layer and the first
solvation shell. Meanwhile, we further calculated the two-dimensional water density
map along the surface (XY direction) of BC3/C3N/BC3 (only water molecules within
0.25 nm in the Z direction of the 2D plane were counted). As shown in Figure 5C,D, these
water clusters were periodically distributed on the BC3 domain, which could form a steric
hindrance (Figure 5E) that hindered the diffusion of IDPs’ residues to the BC3 domain.
These interfacial water molecules might further strengthen the restriction on the linear
conformation of IDPs.
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Figure 5. The density maps of water along the normal directions of the (A) BC3 and (B) C3N planes,
where the 2D materials are located at Z = 0. As shown in the structure below, the calculation
was performed along the zigzag direction, while only water molecules inside the red square were
calculated. (C) Two-dimensional water density map on the BC3/C3N/BC3 surface; water molecules
within ±0.25 nm in the Z direction were counted. (D) Magnified map of water density at the
boundary of BC3 and C3N. (E) Straightened Aβ peptide on BC3/C3N/BC3 with interfacial water
surrounded; only water molecules within 0.5 nm of both the heterostructure and protein are shown.
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4. Conclusions

In this work, we applied molecular dynamics (MD) simulation to study the stretching
process of several representative IDPs on the 2D sandwiched BC3/C3N/BC3 planar het-
erostructure. The IDPs could be spontaneously straightened and then restricted along the
C3N stripes. Moreover, we have shown that the conformational fluctuations of IDPs were
significantly reduced when IDPs were confined on the C3N stripe. The protein stretching
and confinement were mainly driven by the stronger adsorption potential of C3N than
that of BC3. Additionally, we found that the interfacial water molecules on the BC3 surface
might further act as steric hindrances to enhance the restriction of protein. This linearly
confined structure on the 2D surface may be feasible for scanning tunneling microscope
(STM) [45,46] and atomic force microscope (AFM) [5,6] to identify the amino acids in the
protein. Furthermore, compared with other “hard” nano-confinements such as nanochan-
nels and nanopores, this heterostructure provides “soft” confinement that is based on
the adsorption potential difference between the two 2D nanomaterials. Considering the
large entropy barrier for stretching a coiled or folded protein to a linear conformation, this
soft, energetic confinement allows some protein residues to temporarily move outside the
center C3N stripe while “regulating” the protein conformation, thus smoothly overcoming
the entropy barrier in the stretching process. Therefore, this heterostructure holds the
potential to be coupled with nanopore- and nanochannel-sensing methods to ease the
clogging problem. The delivery of the stretched protein samples from this heterostructure
to a nanochannel can be driven by a pressure-driven flow, for example. Last but not least,
C3N and BC3 have been reported to possess higher biocompatibility than graphene [28].
Our work may also offer insight into the design of biocompatible nanodevices.
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heterostructure, Figure S5: Influence of the C3N stripe width on the potential well for the straightened
Aβ peptide.
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