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Abstract: Malaria remains by far one of the most threatening and dangerous illnesses caused by the
plasmodium falciparum parasite. Chloroquine (CQ) and first-line artemisinin-based combination
treatment (ACT) have long been the drug of choice for the treatment and controlling of malaria;
however, the emergence of CQ-resistant and artemisinin resistance parasites is now present in most
areas where malaria is endemic. In this work, we developed five machine learning models to predict
antimalarial bioactivities of a drug against plasmodium falciparum from the features (i.e., molecular
descriptors values) obtained from PaDEL software from SMILES of compounds and compare the
machine learning models by experiments with our collected data of 4794 instances. As a consequence,
we found that three models amongst the five, namely artificial neural network (ANN), extreme
gradient boost (XGB), and random forest (RF), outperform the others in terms of accuracy while
observing that, using roughly a quarter of the promising descriptors picked by the feature selection
algorithm, the five models achieved equivalent and comparable performance. Nevertheless, the
contribution of all molecular descriptors in the models was investigated through the comparison
of their rank values by the feature selection algorithm and found that the most potent and relevant
descriptors which come from the ‘Autocorrelation’ module contributed more while the ‘Atom type
electrotopological state’ contributed the least to the model.

Keywords: antimalarial drug; machine learning; plasmodium falciparum; molecular descriptor;
drug discovery; feature selection; PaDEL

1. Introduction

Regardless of the fact that COVID-19 is by far the most serious current threat tragedy
known as a global pandemic with hundreds of millions confirmed cases of COVID-19,
including millions deaths, reported to the World Health Organization (WHO) in 2021, still
approximately millions of people, especially Africans, died of malaria, tuberculosis, and
HIV-related illnesses. These three diseases can be prevented or treated with timely access
to appropriate and affordable medicines, vaccines, and other health services. However, less
than 2% of drugs consumed in Africa are produced on the continent, meaning that a huge
number of sick patients do not have access to locally produced drugs and may not afford
to buy the imported ones. Without reliable access to medicines, more people, especially
in Africa and a few parts of Asia, are susceptible to the three big killer diseases on their
respective continents. Globally, 50% of children under five who die of pneumonia, diarrhea,
measles, HIV, tuberculosis, and malaria are in Africa, according to the WHO. Although
the organization continues to struggle with making medicine more conveniently, in order
to be accessible, such as having medicines be continuously available and inexpensive at
designated and authorized health facilities located within a reasonable distance of the
people, malaria remains by far the most threatening and dangerous illness due to its
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profoundly negative impact and detrimental influence on global communities in terms of
social, political, and economical growth particularly in developing countries [1,2].

Malaria is a life-threatening disease caused by plasmodium parasites that are trans-
mitted to people through the bites of infected female anopheles mosquitoes, called malaria
vectors. There are five well known existing parasite species that cause malaria in humans
according to [3], and plasmodium falciparum among them is known to cause the most
severe form of the disease whereby those who contract this form of malaria have a higher
risk of death, so the majority of deaths due to malaria are caused by the plasmodium
falciparum [4–7], and it is susceptible to naturally acquired host immunity. Notably the
main burden of Malaria disease falls on young children [7]. Despite the organization’s
current elimination struggle, which includes taking into account all possible controllable
measures, the effectiveness of malaria prevention, control, and treatment is dependent
on the sustained clinical efficacy of first-line artemisinin-based combination treatment
(ACT), which is constantly threatened by the establishment of emergence and spread of
drug resistance [8,9].

Chloroquine (CQ) has long been the drug of choice for the treatment of malaria; how-
ever, CQ-resistant parasites are now present in most areas where malaria is endemic [10,11].
Moreover, recent alarming reports observed the emergence of artemisinin-resistant par-
asites in Southeast Asia [12,13], which could derail the current elimination/eradication
efforts, and again foster an increase in malaria cases and deaths [14–16]. Observation of
this study indicated the emergence of artemisinin resistance of Plasmodium falciparum not
only in Southeast Asia but also in Sub-Saharan Africa, Tanzania being the case of study [17].
Resistance has emerged to all classes of antimalarial drugs which have lost their clinical
effectiveness [11,18–21]. Resistance to these gold standard drugs represents a serious threat
for malaria eradication, which causes a tremendous increase in the number of deaths annu-
ally, with excess medical costs and productivity losses of about 146 and 385 million US$
per year, respectively [15,22]. In addition, drug discovery and development are extremely
long (time-consuming), costly (expensive), complex due to the challenges and obstacles
that emerge during the drug development process, an outrageous failure that led to enor-
mous financial damage, and an inefficient process that typically costs about 2.6 billion US
dollars and takes an average of 10 to 15 years from essential pre-clinical testing to market
approval, remarkably clinical trials being by far the most expensive factor during the
development process [23].

To tackle the task of drug discovery, various approaches have been proposed. Quanti-
tative structure–activity relationship (QSAR) is a computational or mathematical modeling
method to reveal relationships between physicochemical properties of chemical substances
and their biological activities to obtain a reliable statistical model for the prediction of the
activities of new chemical entities. The underlying principle is that variations in struc-
tural properties cause different biological activities [24], where structural properties refer
to physico-chemical properties, and biological activities correspond to pharmacokinetic
properties such as absorption, distribution, metabolism, excretion, and toxicity. High-
throughput screening (HTS) is another scientific experimentation approach especially used
in drug discovery that involves the use of automated equipment to rapidly test thousands
to millions of samples for biological activity at the model organism, cellular, pathway, or
molecular level for identifying potential drug candidates [25–27]. QSAR modeling is an
essential, paramount tool, and an alternative method that can assist in the selection of
lead molecules by using the information from reference active and inactive compounds
during the model implementation and development for drug discovery process, since the
screening of chemical libraries with traditional methods, such as HTS, is expensive and
time consuming [28].

Machine learning (ML) models have emerged in recent years as a promising and
potentially appropriate tool for data-driven predictions in pharmaceutical science research,
such as quantitative structure–activity/property relationships (QSAR/QSPR), drug–drug
interactions, drug repurposing, and pharmacogenomics [29]; hence, certainly, the drug
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discovery area is undoubtedly one of the sectors that will profit greatly and tremendously
gain benefits from the success of ML [30]. For example, Ref. [31] addressed the major crucial
and critical fundamental problems (i.e., poor solubility, bioavailability, and efficacy of drugs)
that hinder the drug development process through improving specific physicochemical
and biopharmaceutical properties of active pharmaceutical ingredients (APIs), by applying
ML models to predict which pair of API and coformer will successfully result in the new
cocrystal formation that eventually becomes new drug and medicine after the Food and
Drug Administration (FDA) approval, from a set of chemical experiments between API
and the coformer since the essential and difficult phase in cocrystal production as an
auxiliary state-of-the-art form to boost and enhance drug development is the screening
of suitable coformers for an API. Danishuddin et al. [9] established the development and
rigorous validation of antimalarial predictive models using machine learning approaches
and ultimately achieved an accuracy of ∼85.00%. Egieyeh et al. [6] achieved an accuracy
of 85.94% with the support vector machine (SVM), where the dataset was a combination of
molecular descriptors and fingerprints of natural products with antiplasmodial activity
(NAA). Liu et al. [32] used general regression neural networks (GRNN) for predicting the
antimalarial activity against plasmodium falciparum, and achieved the accuracy of 88.90%.
They inherited the work of [9] notably, the only difference being the number of features
(i.e., molecular descriptors). The aforementioned studies have shown successful findings,
but they all have a common flaw: they only compared model performance such as accuracy
without meticulously looking at feature relevance.

This study focused on the development of machine learning models for predict-
ing anti-malaria drugs. The problem is basically a binary classification on two labels
(e.g., ‘active’, ‘inactive’), and we use the dataset of anti-malaria activity against plasmod-
ium falciparum. To generate feature vectors, we use PaDEL-Descriptor software [33], one
of the widely-used descriptor calculators that calculates molecular descriptors (MD) and
fingerprints; it extracts descriptor values from simplified molecular-input line-entry system
(SMILES) strings of the verified experimental anti-malaria drug compounds that were
converted from two databases: ChEMBL database [34] and PubChem database [35].

The contributions of this paper can be summarized as follows. To begin, we not only
extract descriptor values for compounds, but also analyze and investigate which descriptors
are more significant, demonstrating that we can achieve decent results even if only a tiny
subset of the descriptors are used. Following that, we conduct experiments to compare
ML models and discover that three amongst the implemented models achieved equivalent
results (i.e., comparable performance). The last but not least, we make our dataset available
online via the website (https://sites.google.com/view/medardemswahili/ (accessed on
8 August 2021)) in the hopes of assisting many other researchers, as a benchmark to easily
develop improved models.

2. Materials and Methods

We effectively tackle a binary classification problem by building ML models to predict
a label (e.g., “active” or “inactive”) for a given experimentally verified antimalarial drug
candidate from public chemical databases. The class label ‘active’ implies that the drug
candidate compounds would successfully react against plasmodium falciparum parasite
species, while the label ‘inactive’, there would be no reaction against plasmodium falci-
parum parasite species. Firstly, we obtain attributes (i.e., features) of the experimental
antimalarial drug candidates compounds as depicted in Figure 1, from SMILES that were
derived from their respective synonyms and Substance IDs (SID). Then, using feature
selection algorithms, we choose some promising features, which are fed into the models
that discover patterns behind the drug candidates’ compounds.

https://sites.google.com/view/medardemswahili/
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Figure 1. The development process for antimalarial drug prediction, from data gathering through ML models deployment.

2.1. Materials
2.1.1. Data

The verified antimalarial drug candidate compounds were downloaded from pub-
lic chemical databases ChEMBL [34] and PubChem [35] in synonyms and SID format.
We converted them into their respective and appropriate SMILES using the PubChem
Identifier Exchange Service [36] as depicted in Figure 1.

The classification of active and inactive was done according to the antiplasmodial
activities of the compounds with IC50 of 10 µM as a threshold. In general, compounds hav-
ing an (IC50 ≤ 10 µM) will likely be ’active,’ implying that there will be a high number of
active molecules. However, no experimental platform could possibly produce such a high
percentage of active molecules [9]. As a result, the best model should discover molecules
with an affinity > 10 µM in order to make the most of expensive experimental valida-
tion. The decision boundary for active compounds was determined at IC50 ≤ 1 µM [9].
The compound with (IC50 ≤ 1 µM) were set as ‘active’ and ‘inactive’ (IC50: > 1 µM). The
active instances are experimentally verified as active antimalarial drug candidates, whereas
the inactive instances are experimentally verified as unsuccessful candidates. After filter-
ing out some duplicated records out, we got a total of 4794 antimalarial drug candidate
compounds, where it consists of 2070 and 2724 instances for active and inactive classes,
respectively. The dataset is an |D| × 4 matrix, where |D| is the number of total instances.
We converted the labels into a numerical form (i.e., ‘active’ = 1, and ‘inactive’ = 0) shown in
Table 1 as a few samples. As the SMILES (e.g., ‘Canonical_Isomeric_SMILES’ in Table 1)
is just a text, it is converted into real-numbered feature vectors using a certain calculator
before it is fed into the models.
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Table 1. The glimpse sample of unprocessed data.

Service ChEMBL_synonyms_PubChem_SID Canonical_Isomeric_SMILES (Sources: PubChem_ChEMBL_and_EMBL-EBI) Label

ChEMBL_&_PubChem

CHEMBL219517 C1CSCN(C1=O)CCCNC2=C3C=CC(=CC3=NC=C2)Cl 0

380797 CC(C1=CC=CC=C1)NC(=O)C2=CC=CC=C2N=CC3=C(C=CC4=CC=CC=C43)O 0

591362 C1=CC=C(C(=C1)C(=O)NC2=NC(=CS2)C3=CC=CC=N3)Br 0

465546 C[C@@]1(CC[C@@H]2[C@]3(CC[C@@H](C([C@@H]3CC[C@]2(C1)O)(C)C)O)C)C=C 0

341638 CCN(CC)CCCCSC1=C2C=CC(=CC2=NC=C1)Cl 0

SID_381881704 CC1CN(CC(O1)C)C(=O)C2=C(C3=CC=CC=C3S2)OCC4=CC(=C(C=C4)F)F 1

381885288 CC1CN(CC(O1)C)C(=O)C2=C(C3=CC=CC=C3S2)Cl 1

381885327 CC1CN(CC(O1)C)C(=O)C2=C(C3=C(S2)C=C(C=C3)F)Cl 1

381886215 CC1CN(CC(O1)C)C(=O)C2=NC3=CC=CC=C3S2 0

381886674 CC1CN(CC(O1)C)C(=O)C2=C(C3=CC=CC=C3S2)OCC4=CC=CC=C4 1

381886749 CC1CN(CC(O1)C)C(=O)C2=C(C3=C(S2)C=C(C=C3)C)Cl 1
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2.1.2. Molecular Descriptors

Quantitative structure–property relationships (QSPR) models are frequently devel-
oped using molecular descriptors, and PaDEL is amongst the attractive and well-known
tools to extract descriptors [33]. There are various tools used in cheminformatics [31] such
as Mordred [37], PyDPI [38], Rcpi [39], Dragon [40], and cinfony [41], which is a collection
or a wrapper of other libraries such as Open Babel [42], RDKit [31] (http://www.rdkit.org
(accesssed on 22 June 2021)), and Chemistry Development Kit (CDK) [43]. We decided
to utilize PaDEL because of its advantages: it provides approximately 1875 molecular
descriptors within a brief execution time, and it is simple to install and utilize. The process
of generating molecular descriptors is as follows: first, we prepare canonical and isomeric
SMILES strings for each compound of antimalarial drug that are downloadable from Pub-
Chem Identifier Exchange Service. Second, we use the selected tool to obtain the features, as
shown in the middle in Figure 1. Thereafter, obtaining a FALL dimensional real-numbered
feature vector from each antimalarial compound, we add a label column that resulted in a
D feature vectors of FALL + 1 dimension. Notably, the only molecular descriptors obtained
and used in this study were 1D and 2D descriptors, and the FALL = 1444.

2.2. Methods

As the dataset shown in Table 2 is balanced, we performed 10-fold cross validation
while maintaining the balanced ratio; for each cross validation, we had around 4314 and
480 instances for training and testing, respectively. We denote the size of training dataset
as |Dtrain|, and the size of test dataset as |Dtest|, where |D|=|Dtrain|+|Dtest|. We employ
averaged accuracy, precision, recall, and F1 scores throughout all experimental findings.

Before passing the |Dtrain| × FALL + 1 real-numbered matrix to machine learning mod-
els, we scale or standardize the feature values in our data using both scaling methods
(i.e., standardization and normalization) and then compared the results of both standard-
ized and normalized data using ANN. Ultimately, the performance obtained when utilizing
standardized data was superior to that obtained when using normalized data. Only train-
ing data are used in this process; the mean µ and standard deviation σ are derived using just
the training data. We used scikit-learn [44,45] to implement the standardization because
we discovered that it is superior to normalization (i.e., 0–1 values scaling) for our dataset.
ML models are designed to give labels y ∈ {0, 1}|Dtrain | where ‘active’ = 1 and ‘inactive’ = 0,
based on the standardized matrix X ∈ R|Dtrain |×FALL .

We have implemented various ML models such as artificial neural network (ANN),
support vector machine (SVM) [46], random forest (RF) [47], extreme gradient boost
(XGB) [48], and Logistic Regression (LR) [49]. The ANN is recognized to be useful in
a variety of research fields, including image analysis, natural language processing, and
speech recognition; if it has a deep structure, it is a deep learning model (i.e., multiple
hidden layers) [31]. The SVM is known to be successful in many classification applications
and tasks [50], and it identifies a decision boundary based on boundary examples or
instances (i.e., support vectors). The RF and XGB are both standard and common ensemble
techniques, although the RF employs a bagging strategy while the XGB uses a boosting
strategy [31]. The LR, a model with the sigmoid function often utilized by statisticians to
describe properties of population growth in ecology, is rising quickly and maxing out at
the carrying capacity of the environment.

Although there have been research studies that used molecular descriptors as features
to train ML models [6,9], most of these studies simply provided the descriptors to the
models without doing a critical and essential analysis of the descriptors. It is obvious
that the performance of ML models strongly depends on the feature definition; wisely
chosen molecular descriptors as features may give good performance even if we utilize a
much smaller number of features. In this study, feature selection methods are employed
to determine the importance of descriptors and then we use a group of promising and
potential ones that we discovered.

http://www.rdkit.org
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We denote the number of selected features as FS as illustrated in the middle of Figure 1. Two
feature selection algorithms are employed: Recursive Feature Elimination (RFE) and K-best
algorithm. The K-best is a filter-based algorithm that selects potential features according to
a particular function σ( f , c), where f and c are a feature and a label, respectively, while the
RFE is a wrapper-based algorithm that treats the feature selection as a search problem [31],
and eliminates unpromising features on a regular basis until only the desired number of
features remains. The ANN model was used as an estimator of the RFE algorithm and took
the ANOVA F-value as the function σ.

Table 2. Data statistics.

All Labels Label ‘Active’ Label ‘Inactive’

# of data 4794 2070 2724

3. Results

Before we compare several well-known ML models by experimental results, we firstly
compare and find the promising feature selection algorithm. The comparison will be fair
only if we use the same features for all models; the models are compared with the same
features chosen by the best feature selection algorithm.

3.1. Feature Selection Algorithms

Through averaged test set accuracy with the number of features FS varying, the two
feature selection algorithms (i.e., RFE and K-best) were examined and compared. The
results are shown in Figure 2 with FS ranging from 50 to 1200, and the classifier employed
here is ANN. With greater FS, the K-best algorithm seems generally to have slightly greater
accuracy than the RFE approach; otherwise, RFE performs better. As a result, we may say
that the RFE algorithm is preferable if we seek efficiency (e.g., fewer parameters). In terms
of feature dimension, because its dimension is merely a fifth of the total and its precision is
equivalent in terms of accuracy, FS = 300∼400 may be a viable choice.

Figure 2. Averaged test set accuracy comparison using feature selection algorithms, against the
number of FS.

3.2. Model Comparison

We merged the datasets after downloading them from the aforementioned public
databases, resulting in a single dataset D where |D| = 4794. Some machine-learning models
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(e.g., artificial neural networks with random initialization) are known to behave differently
even if they are trained using the same dataset, so we randomly shuffled all instances of D
and obtained five different datasets having the same size of |D|. Specifically, during shuffling,
all criteria were taken into account to avoid data linking by ensuring that the total number of
instances and features remained the same by keeping track of all the steps performed. All
experimental results are averaged across the five datasets. Following that, we performed
10-fold cross validation for each dataset, and computed averaged test set accuracy, preci-
sion, recall, and F1 scores. A grid search employing a wee portion (e.g., 10%) of the training
set as a validation set is used to find the optimal parameter settings for ML models.

The summarization of the parameter settings is as shown in Table 3. The ANN has two
hidden layers of 100 nodes since we observed that it performs better than other complex
structures with numerous layers and nodes, all of which were tested using the same
standardized data; the reason for this could be the little and limited quantity of the dataset,
which could lead to an over-fitting problem due to the high complexity of the model.

Table 3. Parameter settings of ML models.

Model Setting

Random Forest Number of estimators = 100
(RF) No limitation of depth

Minimum samples for splitting = 2

Support Vector Machine Kernel = Linear
(SVM) C = 1.0

Extreme Gradient Boosting Number of estimators = 100
(XGB) Learning rate = 0.3

Logistic Regression Penalty = l2
(LR) C = 1e5

Class weight = None
Multi_class = auto

# of hidden layers = 2
Artificial Neural Network # of nodes of each hidden layer = 100

(ANN) Activation function = Relu [51]
Optimizer = Adam [52]
learning_rate = 0.0001
# of epochs = 50 with early stopping

Table 4 below summarizes the test set accuracy of ML models. It is worth noting that
the comparison of experimental outcomes of the models is the main focus of this section,
not the feature selection techniques. The accuracy values are calculated by averaging
the aforementioned independent datasets’ results. The XGB delivers the finest accuracy
(e.g., 0.8303) amongst the implemented models, but the RF performed better with the
number of features ≤ 160. The ANN and RF are comparable to the XGB, and it is the best
when FS = 361 and FS = 1000. Because models function faster when feature dimensions are
tiny, the XGB and RF may be preferable if we desire more efficiency without sacrificing or
losing much accuracy.

One could argue that, if the model’s sensitivity is not great enough, it is useless. Tables 5 and 6
are per-label test set precision and recall, respectively. The XGB gives the finest test set recall
of ‘success’ label (e.g., 0.8068) without precision being greatly lost (e.g., 0.8477) followed
by ANN when considering FS = 361 since all models in one way or the other performed
remarkably better with this set of features. In terms of the precision, the RF appears the
best, with a successful precision (i.e., ‘active’ label) of 0.8583, while the ANN and XGB
may be preferred if we want to find as many potential chemical compound candidates
as possible.
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Table 4. Averaged test set accuracy of ML models, where FALL is the number of all features, and FS

means the number of features selected using the RFE algorithm.

Model FALL = 1444 FS = 1000 FS = 722 FS = 361 FS = 160 FS = 100

RF 0.8294 0.8280 0.8256 0.8250 0.8284 0.8258
SVM 0.7850 0.7920 0.7964 0.8126 0.7931 0.7695
XGB 0.8318 0.8283 0.8342 0.8287 0.8230 0.8177
LR 0.7795 0.7828 0.7952 0.8111 0.7910 0.7682

ANN 0.8223 0.8269 0.8210 0.8283 0.8185 0.8100

Table 5. Per-label averaged test set precision of ML models, where FALL is the number of all features, FS means the number
of features selected using the RFE algorithm, and ‘Active’ and ‘Inactive’ mean label 1 and 0, respectively.

Model
FALL = 1444 FS = 1000 FS = 722 FS = 361 FS = 160

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

RF 0.8053 0.8462 0.8400 0.8712 0.7703 0.8467 0.8015 0.8583 0.8456 0.8457
SVM 0.7651 0.7121 0.7925 0.7102 0.7986 0.7801 0.8090 0.7958 0.8063 0.7795
XGB 0.8262 0.8020 0.8403 0.8429 0.8259 0.8387 0.8582 0.8477 0.8223 0.8125
LR 0.7973 0.8033 0.8148 0.7512 0.7958 0.7641 0.7643 0.7085 0.7819 0.7845

ANN 0.8381 0.8019 0.8405 0.8090 0.8316 0.8071 0.8433 0.8094 0.8345 0.7970

Table 6. Per-label averaged test set recall of ML models, where FALL is the number of all features, FS means the number of
features selected using the RFE algorithm, and ‘Active’ and ‘Inactive’ mean label 1 and 0, respectively.

Model
FALL = 1444 FS = 1000 FS = 722 FS = 361 FS = 160

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

RF 0.9066 0.7008 0.9131 0.7713 0.9114 0.6427 0.9115 0.7032 0.8908 0.7862
SVM 0.7904 0.6812 0.7721 0.7343 0.8456 0.7198 0.8566 0.7343 0.8419 0.7343
XGB 0.8566 0.7633 0.8897 0.7778 0.8897 0.7536 0.8897 0.8068 0.8676 0.7536
LR 0.8676 0.7101 0.8088 0.7585 0.8309 0.7198 0.7868 0.6812 0.8566 0.6860

ANN 0.8521 0.7837 0.8589 0.7841 0.8598 0.7696 0.8578 0.7891 0.8494 0.7775

Table 7 shows the test set F1 scores for each label, and the ANN, RFE, and XGB were
shown to be the best of the implemented models. This is a realistic outcome because
the best models (e.g., ANN) is known to be successful at detecting underlying patterns
and significantly improves classification performance in a variety of classification tasks
(e.g., malware detection [53], chatbot intent prediction [54]). We believe that collecting
more qualified data will boost performance even further.

Table 7. Per-label averaged test set F1 score of ML models, where FALL is the number of all features, FS means the number
of features selected using the RFE algorithm, and ‘Active’ and ‘Inactive’ mean label 1 and 0, respectively.

Model
FALL = 1444 FS = 1000 FS = 722 FS = 361 FS = 160

Inactive Active Inactive Active Inactive Active Inactive Active Inactive Active

RF 0.8529 0.7666 0.8750 0.8182 0.8349 0.7306 0.8529 0.7730 0.8676 0.8148
SVM 0.7776 0.6963 0.7821 0.7221 0.8214 0.7487 0.8321 0.7638 0.8237 0.7562
XGB 0.8412 0.7822 0.8643 0.8090 0.8566 0.7938 0.8736 0.8267 0.8444 0.7820
LR 0.8310 0.7538 0.8118 0.7548 0.8129 0.7413 0.7754 0.6946 0.8175 0.7320

ANN 0.8445 0.7918 0.8493 0.7959 0.8452 0.7874 0.8501 0.7984 0.8417 0.7868

4. Discussion

Other than the performance of the ML models, we also investigated the best and worst
features (i.e., molecular descriptors) selected by the RFE algorithm, as shown in Table 8. The
estimated best pertinent and promising features from a ranking of features are assigned
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rank 1 [55,56] as shown in the table, so greater values of the rank imply worse features.
All molecular descriptors in the PaDEL are grouped into some modules; for example, the
molecular descriptor ‘nAcid’ belongs to the ‘acidic group count’ module as shown in the
upper left corner of the table.

Table 8. Top best and worst features selected by the RFE algorithm when FS = 361.

Top50 Best Features Top50 Worst Features

Module Name Rank Module Name Rank

Acidic group count nAcid 1 nHmisc 1030

Atom count
nN 1 nsLi 1032
nO 1 nssBe 1034
nP 1 nssssBem 1036

Autocorrelation

ATS2m 1 nsBH2 1038
ATS4m 1

Atom type
electrotopological
state

nssBH 1040
ATS3v 1 nsssB 1042
ATS4v 1 nssssBm 1044
ATS3e 1 nssNH2p 1076
ATS4e 1 nssAsH 1065
ATS7e 1 nsssAs 1066
ATS8e 1 SssBH 1047
ATS3p 1 SddsN 1074
ATS4p 1 SssAsH 1070
ATS3i 1 SsssAs 1057
ATS7i 1 SdsssAs 1058
ATS8i 1 SsssssAs 1068
ATS3s 1 SdSe 1043
ATS5s 1 SssSe 1060

AATS6v 1 SaaSe 1059
AATS8e 1 SssSnH2 1035
AATS6p 1 SsssSnH 1053
AATS4i 1 SssPbH2 1083
AATS6i 1 SsssPbH 1084
AATS1s 1 minsBH2 1073
AATS2s 1 minssBH 1069
AATS5s 1 minssSiH2 1077
AATS7s 1 minsssSiH 1075
AATS8s 1 minssssSi 1080
ATSC7c 1 minsPH2 1082
ATSC8c 1 minssPH 1081
ATSC3v 1 minddsP 1072
ATSC4v 1 minsssssP 1071
ATSC6v 1 minsGeH3 1051
ATSC7v 1 minssGeH2 1052
ATSC1e 1 minsssAs 1050
ATSC2e 1 mindsssAs 1049
ATSC3e 1 minddsAs 1048
ATSC4e 1 minssSe 1046
ATSC5e 1 minaaSe 1056
ATSC6e 1 mindssSe 1055
ATSC0p 1 minssssssSe 1054
ATSC5p 1 minddssSe 1045
ATSC6p 1 minsSnH3 1041
ATSC8p 1 minssSnH2 1033
ATSC1i 1 minsssSnH 1031
ATSC4i 1 minsPbH3 1067
ATSC7i 1 maxsBH2 1078
ATSC8i 1 maxddsN 1037
ATSC6s 1 maxaaS 1079
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As we observed, when the number of descriptor values (i.e., selected molecular de-
scriptor values) was 361 molecular descriptors, as shown in Figure 3, all models that were
implemented in this research achieved a comparable performance of an accuracy above
81%, with the majority of the selected molecular descriptors coming from the ‘Autocorrela-
tion module’. The ‘Autocorrelation’ module generates atom type autocorrelation descriptor
values, and the autocorrelation descriptors are the molecular descriptors encoding both
molecular structure and physico-chemical properties of a molecule [57–60] and also numer-
ical properties assigned and attributed to atoms [59,61]. These descriptors are calculated
by Moreau–Broto (ATS), Moran (MATS), and Geary (GATS) algorithms from lag 1 to lag
8 for four different weighting schemes [60–62]. The descriptors from the aforementioned
module describe how a considered property is distributed in the topological molecular
structure, and have a crucial influence on the antimalarial activity prediction [9]. This
investigation is consistent with the previous studies of [59,63–67] which discussed the
influence of such descriptors on antimalarial activity prediction towards the formation of
drugs. It should be noted that the least relevant and worst descriptors come from ‘Atom
type electrotopological state’ module, and it does not mean that these descriptors are
detrimental to the performance or outcome. This precisely implies that the descriptors
from the ‘Atom type electrotopological state’ contributed the least to the model compared
to the others, so, due to this, it is reasonable to conclude that they have less influence on
the discovery and development on antimalarial drugs.

Figure 3. All ML models’ test set accuracies.

We observed that, when the number of descriptor values (i.e., selected molecular
descriptor values) was 361 molecular descriptors, as shown in Figure 3, all models that
were implemented in this research achieved a comparable performance of an accuracy
above 81%, with the majority of the selected molecular descriptors coming from the
‘Autocorrelation module’. In accordance with this, such small number of features may
be prioritized for more expensive in-vitro antimalarial bioactivity screening and testing.
This would result in a contribution of assisting the pharmaceutical chemists during the
screening and formulation of a novel anti-malaria drug against Plasmodium falciparum by
selecting and taking into account only the few and most promising and potential chemical
features (i.e., molecular descriptors) from a pool of a majority of features.

It is worth noting that, in Table 9, the work of Egieyeh et al. reported the slightly
higher accuracy compared to ours. This is due to the fact that the amount of data with
regard to the number features was genuinely modest. Furthermore, we employed the same
test dataset for all Implemented ML models, including the SVM used by Samuel Egieyeh,
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Although its performance was not superior as compared to the other deployed models in
this research.

Table 9. Summary of comparison with previous studies.

Samuel Egieyeh et al. [6] Danishuddin, G et al. [9] Our Work

Total # of data 1155 4750 4794
Total # of features 76 98 1444

Feature generation tool RDKit PaDEL PaDEL
Feature selection Feature Elimination RFE RFE, Kbest

Best model SVM SVM & XGBoost ANN & XGB
Best accuracy (%) 85.93 ∼85.00 ∼83.00

5. Conclusions

In this study, we used machine learning techniques to build various antimalarial pre-
dictive models that predict the bioactivity class of a drug against Plasmodium falciparum
parasite. To address this antimalaria drug prediction problem, we employed the PaDEL,
a well-known cheminformatics tool to extract the descriptor values following by the pre-
processing. Experiments on molecular descriptor values of antimalaria drug chemical
compounds retrieved from our collected data compounds revealed that the ANN and XGB
models outperformed the other deployed ML models. In particular, XGB had the best recall
0.81 of the ‘active’ label and F1 score of 0.83 followed by ANN with recall of the ‘active’
and F1-score of 0.79 and 0.80, respectively. This implies that the XGB and ANN find about
81% and 79%, respectively, of new anti-malaria drug formation, both without losing too
much precision. We believe that this research will assist in the discovery and development
of anti-malaria drugs. We will look into gathering and collecting additional data in the
near future, as having adequate data is essential for developing better ML models.
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