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Abstract: Single nucleotide polymorphisms (SNPs) help to understand the phenotypic variations in 

humans. Genome-wide association studies (GWAS) have identified SNPs located in the tumor pro-

tein 63 (TP63) locus to be associated with the genetic susceptibility of cancers. However, there is a 

lack of in-depth characterization of the structural and functional impacts of the SNPs located at the 

TP63 gene. The current study was designed for the comprehensive characterization of the coding 

and non-coding SNPs in the human TP63 gene for their functional and structural significance. The 

functional and structural effects of the SNPs were investigated using a wide variety of computa-

tional tools and approaches, including molecular dynamics (MD) simulation. The deleterious im-

pact of eight nonsynonymous SNPs (nsSNPs) affecting protein stability, structure, and functions 

was measured by using 13 bioinformatics tools. These eight nsSNPs are in highly conserved posi-

tions in protein and were predicted to decrease protein stability and have a deleterious impact on 

the TP63 protein function. Molecular docking analysis showed five nsSNPs to reduce the binding 

affinity of TP63 protein to DNA with significant results for three SNPs (R319H, G349E, and C347F). 

Further, MD simulations revealed the possible disruption of TP63 and DNA binding, hampering 

the essential protein function. PolymiRTS study found five non-coding SNPs in miRNA binding 

sites, and the GTEx portal recognized five eQTLs SNPs in single tissue of the lung, heart (LV), and 

cerebral hemisphere (brain). Characterized nsSNPs and non-coding SNPs will help researchers to 

focus on TP63 gene loci and ascertain their association with certain diseases. 

Keywords: TP63; nsSNPs; non-coding SNPs; Delta Delta G; dbSNP; MD simulations; molecular 

docking; I-Mutant 2.0; pathogenic prediction; computational biology; bioinformatics 

 

1. Introduction 

Human tumor protein 63 is encoded by the TP63 gene, which is 4944 bp (4.94 kb) 

long and located in chromosome 3 at the 3q28 locus. It has 12 isoforms listed in the Uni-

Prot database. TP63 isoform 1 is 680 amino acids long and acts as a transcription factor 

(TF) that regulates gene expressions in multiple pathways, notably in tumorigenesis and 

development [1]. TP63 plays an essential role in the development of the body’s organs 

and tissues. Aside from its developmental roles, the p63 protein appears to be required 

for the preservation of various cells and tissues in late age. The TP63 protein can function 

as a transcriptional activator or repressor and binds to DNA in a sequence-specific man-

ner [2]. TP63 shares sequence similarity with the tumor suppressor p53 family, with 
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cellular homeostasis, development, differentiation, and growth control as the crucial func-

tions [3,4]. 

Several genome-wide association studies (GWAS) and case-control studies have 

shown the association of single nucleotide polymorphisms (SNPs) in the human TP63 lo-

cus with various cancers, i.e., lung cancer, head and neck cancer, colon cancer, urinary 

bladder cancer, and other diseases [5–10]. The difference of a single nucleotide, i.e., A, T, 

C, or G at a specific position in the genome is defined as an SNP. Human genes contain 

about 93% SNPs [11]. Coding, non-coding, or intergenic regions of genes have SNPs [12]. 

In the human genome, SNPs are the most common type of genetic variation occurring 

both in the coding and non-coding regions of a gene. Nonsynonymous SNPs (nsSNPs) 

occur within a coding region and have pathogenic impacts on the protein structure, func-

tion, stability, and solubility through amino acid replacement in the protein sequence 

[11,13]. These nsSNPs can be categorized as either pathogenic/deleterious, causing disease 

phenotypes, or tolerated/neutral, causing no effect on protein structure and function 

[14,15]. Non-coding SNPs (5′ UTR and 3′ UTR SNPs and intron SNPs) play important roles 

in gene expression, variation, and gene regulation that affect the translation of the protein. 

Subsequently, this outcome leads to altered protein production. Hence, non-coding SNPs 

of the TP63 gene can assist in identifying the altered gene expression together with gene 

regulation. 

Different computational tools and approaches to predict deleterious SNPs and their 

roles in protein stability, function, and structure are extensively used [16–19]. One study 

investigated the nsSNPs of the human CHK2 gene using computational tools to predict 

the structural and functional impacts on the protein [20]. In another study, researchers 

applied several computational tools along with molecular docking and MD simulations 

to predict the structural and functional impacts of SNPs in the human STK11 gene [21]. 

Similarly, nsSNPs in the human hTERT gene were analyzed for their structural and func-

tional significance through in silico tools [22]. Overall, these studies revealed the effective-

ness and usage of computational tools to characterize the genetic variants in a target gene 

of interest. Several other studies also implemented in silico tools differently along with 

molecular docking and MD simulations to characterize nsSNPs in different genes [23,24] 

and to design drugs for COVID-19 [25,26]. However, only limited studies have explored 

both nsSNPs and non-coding SNPs in different genes, and few studies have implemented 

molecular docking and molecular dynamics (MD) simulation approaches to validate 

nsSNPs. Moreover, no study has been performed for the analysis of nsSNPs with molec-

ular docking and MD simulation approaches for the TP63 protein. Therefore, the main 

goals of this study were as follows: 

1. Determine the consequences of various nsSNPs in the human TP63 gene on the TP63 

protein using different in silico tools.  

2. Evaluate the effect of nsSNPs on the binding affinity of the TP63 protein with its lig-

ands (DNA) by molecular docking to confirm the consequences. 

3. Simulate interactions of DNA and TP63 protein with molecular dynamics simula-

tions to validate the effect on protein function caused by high impact nsSNPs. 

Furthermore, the study also aimed to analyze non-coding SNPs in the TP63 gene 

through RegulomeDB, PolymiRTS, and GTEx portal to investigate the functionally im-

portant non-coding SNPs in this locus. 

2. Methods and Materials 

We retrieved the SNP data from the ENSEMBLE genome database and obtained 

64,144 SNPs in both the coding and non-coding categories. Then, we filtered missense 

SNPs, which are described as nsSNPs of the coding region in the TP63 protein. Intron, 5′ 

UTR, and 3′ UTR SNPs were also selected for non-coding SNPs (836) of the TP63 protein. 

The functional consequence analysis was carried out using nine different in silico tools. 

First, 28 nsSNPs were retrieved through analysis with SIFT, Polyphen2, and CADD. Later, 
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17 nsSNPs were obtained after analysis with six in silico tools (i.e., PROVEAN, ClinVar, 

MutPred2, PANTHER, PhD-SNP, and SNPs&GO). The structural impact analysis was ac-

complished by implementing ConSurf, HOPE, I-Mutant, and Mutation 3D, and nine 

nsSNPs were found with significant deleterious effects. Further, molecular docking anal-

ysis was performed. Docking analyses were chosen to perform MD simulations to verify 

the outcome of the predictions. In the case of non-coding SNPs, Regulome DB analysis 

and GTEx portal were utilized along with PolymiRTS analysis. A flowchart showing the 

different steps of this study is presented in Figure 1. 

 

Figure 1. Schematic representation of the pipeline for in silico analysis of SNPs in the TP63 protein 

using different computational tools and algorithms. 
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2.1. SNP Data Retrieval 

In this study, the human TP63 gene was investigated in the ENSEMBL genome 

browser [27]. The transcript encoding the full-length TP63 protein (680 amino acids) was 

selected to retrieve SNP data [28]. Further, SNPs were downloaded from the dbSNP da-

tabase [29].  

2.2. Sequence Investigation (Functional Consequence Analysis of nsSNPs) 

Sorting Intolerant From Tolerant (SIFT) was used to detect the deleterious nsSNPs. 

SIFT can differentiate functionally neutral amino acid changes from functionally deleteri-

ous ones [30]. This software presumes that major amino acids will be retained; shifts at a 

particular position appear to be predicted as deleterious in proteins. If the normalized 

probability is less than the tolerance value (0.05), then substitutions are considered as “del-

eterious” and equal or higher than 0.05 is considered as “tolerated”. Reference SNP IDs 

(rsIDs) of each variant of the human TP63 protein (UniProt ID: Q9H3D4) and individual 

amino acid substitutions were provided as input in the SIFT tool, and the resulting score 

values along with their interpretations were recorded. 

Polymorphism Phenotyping v2 (PolyPhen2) uses Naive Bayes to classify and predict 

the functional impacts of allele modifications [31]. For each variant, PolyPhen2 estimates 

the position-specific independent count (PSIC) based on site-specific sequence conserva-

tion along with the difference of scores between the native and mutant variants. Poly-

Phen2 classifies the SNPs into 3 different classes: (1) benign, (2) possibly damaging, or (3) 

probably damaging. The input on the PolyPhen2 web server includes the FASTA se-

quence of human TP63 protein and the individual amino acid substitutions. 

Combined Annotation-Dependent Depletion (CADD) [32] is an SNP predicting algo-

rithm that prioritizes causal variants in polymorphism studies. CADD integrates multiple 

annotations in a single metric by comparing variants that have survived in a natural se-

lection to simulate mutations. CADD prioritizes causal variations in both research and 

clinical settings. Chromosomal locations of the human TP63 variants are given as input to 

the CADD web server. 

Protein Variation Effect Analyzer (PROVEAN) is a server that assesses the functional 

impact of a substituted amino acid or insertion-deletion mutation on a protein across or-

ganisms. PROVEAN can provide high-throughput analysis at both the genomic and pro-

tein levels for human and mouse variants [33]. For each variant, PROVEAN calculates a 

score from the alignment of homologous sequences, and a score of −2.5 is considered dam-

aging. Input in the PROVEAN web server was the FASTA sequence of human TP63 pro-

tein and changes in single amino acids (nsSNPs). The TP63 protein sequence from the 

NCBI database was the input sequence for PROVEAN. A cutoff score of −2.5 was selected 

for deleteriousness. 

SNPs&GO uses functional annotations of proteins to assess the impact of single 

amino acid substitutions [34]. SNPs&GO analysis provides the prediction of SNPs using 

three tools, i.e., SNP&GO, PhD-SNP, and PANTEHR. SNPs&GO utilizes support vector 

machines, and input includes the sequence or its three-dimensional protein structure, tar-

get variations, and gene ontology (GO) term functionality. The output of the algorithm 

provides the probabilities of association of each SNP with disease(s). 

ClinVar helps to analyze human genetic variations along with annotation of variant 

disease associations. ClinVar aggregates the known variant interpretations and makes 

them publicly available on the ClinVar database [35]. The ClinVar database was searched 

by individual amino acid changes to identify disease-associated variants. 

MutPred2 enhances pathogenic amino acid substitution prioritization, predicts po-

tentially disease-causing molecular pathways, and returns interpretable distributions of 

the pathogenicity score on individual genomes [36]. Input in the MutPred2 web server 

was the FASTA sequence of human TP63 protein and changes in single amino acids 

(nsSNPs). 
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InterPro and NCBI domain prediction tools employ protein families to predict do-

mains of protein by evaluating them functionally. The Conserved Domain Search tools in 

NCBI [37] and InterPro [38] were used to identify the domains of the TP63 protein. nsSNPs 

were positioned in three domains of the protein. For both domain searching tools, the 

input query was the FASTA amino acid sequence of the TP63 protein. The NCBI domain 

search tool used Pfam superfamily classification and InterPro used different classification 

programs such as Pfam, InterPro, and others to identify the domains and regions in TP63. 

I-Mutant2.0 is an algorithm that uses a support vector machine to provide an assess-

ment of protein stability change for the variations in single nucleotides [39]. I-Mutant2.0 

uses either protein structure or protein sequence for predictions and estimates the shift in 

protein stability, and simultaneously predicts the corresponding Delta G (∆∆G) values. 

∆∆G or double changes intended is a measurement for determining the effects of a single 

point mutation on protein stability. It is considered to be a good predictor of whether or 

not a point mutation will improve the stability of the protein. The sequence of the human 

TP63 protein and individual amino acid substitutions were given as input in the I-Mutant 

2.0 web server. 

As an algorithm and web server, Mutation3D detects changes in amino acids within 

protein three-dimensional structures. Mutation3D can distinguish functional and non-

functional variations [40]. The mutation3D web server enables users to examine the sub-

stitution in several common formats while offering easy access to examine mutation clus-

ters derived from 6811 cancer sequencing studies reported from over 975,000 somatic mu-

tations. 

ConSurf web server was utilized to recognize evolutionarily conserved amino acid 

residues (native) and to classify nsSNPs in each position [41]. According to the evolution-

ary relationship, the ConSurf server determines the evolutionary conservation rate of the 

amino acid positions in a protein molecule through a user-submitted protein sequence 

and its homologs. Consurf is a tool that gathers information to perform phylogenetic anal-

ysis using the empirical Bayesian method to calculate the conservation scores, which are 

divided into nine discrete bins. Bin 9 refers to the most conserved positions and bin 1 

indicates the least conserved positions. More exclusively, conservation scores ranging 

from 7–9, 5–6, and 1–4 denote the high, middle, and low conserved amino acids, respec-

tively. 

HOPE analyzes functional and structural impacts of point mutations. HOPE incor-

porates data from multiple information sources including measurements of 3D protein 

coordinates using services of WHAT IF Web, sequence annotations at UniProt database, 

and predictions of DAS service [42]. Data stored with these sources are used to classify 

the effects of a mutation on both protein function and three-dimensional structure using 

a decision scheme. With the help of text, statistics, and animations, HOPE produces a re-

port that is simple to use and easily understandable.  

2.3. Structural Modeling 

Phyre2 [43] was used to predict the structure of TP63. Phyre2 predicted the 2RMN 

(PDB ID:2rmn) structure, which is a DNA binding domain of TP63. 2RMN was also ob-

tained in PDBSum server [44] by searching with the full sequence of TP63 and generating 

the full PROCHECK analyses with the RAMACHANDRAN plot (Figure S6). PROCHECK 

statistics and plots have been supplied in the supplementary section. This 3D structure 

was extensively used to generate wild-type and mutant peptide structures of nsSNPs for 

molecular docking analysis. 

2.4. Molecular Docking 

Molecular docking was performed to assess the impacts of nsSNPs on the interac-

tions between DNA and TP63. The DNA is a direct ligand of the TP63 protein. Binding 

affinity is a measurement of the interactions between protein molecules and ligands, 



Biomolecules 2021, 11, 1733 6 of 30 
 

protein, peptide, or DNA. In this study, molecular docking was performed on the Auto-

Dock Vina platform using virtual screening tools -PyRx [45]. 3QYN (i.e., PDB ID:3qyn, 

which is a complex DNA binding domain of TP63 and two DNA chains) was taken for 

the analysis. DNA structure was extracted, and a single chain was chosen using USCF 

Chimera 1.14 to perform docking analysis. In DNA–protein docking, the DNA chain was 

used as a macromolecule. Peptides of wild-type TP63 protein and mutant TP63 protein 

were used as ligands. A similar approach was followed in another study where deleteri-

ous effects of nsSNPs of the human RASSF5 gene on protein structure and function were 

predicted by employing in silico analysis [46]. All wild-type and mutant peptides of TP63 

were generated using the build structure tool in Chimera 1.14 [47] with energy minimiza-

tion. The DNA molecule and ligands were uploaded in PyRx and subsequently converted 

into PDBQT (.pdbqt) format using Autodock Vina [48]. We also put the grid box parame-

ters as follows: X = 41.2, Y = 52.0, Z = 50.0. The binding interactions were visualized in 

Chimera 1.14. 

2.5. Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation was performed to observe the binding interac-

tions of wild-type and mutant TP63 protein with DNA to obtain insight into the structural 

dynamics and stability for 250 ns. The YASARA Dynamics suite [49] was used for per-

forming MD simulation, and the AMBER14 force field [50] was employed to describe the 

macromolecular system. In the beginning, the TP63 peptide–DNA complexes were 

cleaned together with the optimization of the H-bond network. Then, the grid size of 96.96 

× 96.96 × 96.96 Å  was set in a cubic box with the conditions of the periodic boundary. The 

ionic strength of Na+/Cl− was 0.9% for neutralizing the system at 310 K and pH 7.4. The 

temperature was simulated using the Berendsen thermostat where the pressure was kept 

constant throughout the process. A periodic boundary condition was incorporated to per-

form the simulation. The particle-mesh Ewald method [51] was used for long-range elec-

trostatic interaction calculations at a cut-off distance of 8 Å. Multiple time-step algorithms 

were employed where the simulation time step was selected as 1.25 fs [52]. Finally, MD 

simulation was performed for 250 ns, and snapshots were saved at every 100 ps into MD 

trajectory for analysis. Bond distance, bond angle, dihedral angles, coulombic and van der 

Waals interactions, solvent-accessible surface area (SASA), radius of gyration (Rg), and 

root-mean-square-deviation (RMSD) of the complexes were collected from the MD simu-

lations. 

2.6. Analysis of the Functional Consequences of Non-Coding SNPs 

RegulomeDB offers an annotation of regulatory SNPs and integrates the information 

from experimental data sets, computational predictions, and manual annotations from 

ENCODE. This tool assigns scores to variants to distinguish the functional SNPs from a 

wide pool [53]. rsIDs of the individual variants were submitted to the RegulomeDB data-

base to assess the consequences of noncoding SNPs. 

Polymorphism in microRNAs and their Target Sites (PolymiRTS) database 3.0 incor-

porates data from ligation, hybrids sequence, and crosslink experiments to analyze 

miRNA–mRNA interactions [54]. The PolymiRTS database analyzes the functional conse-

quences of SNPs in miRNA target sites and seed regions. rsIDs of the individual variants 

were submitted to the PolymiRTS database to assess the consequences of noncoding 

SNPs. 

Genotype-Tissue Expression (GTEx) finds the association between genetic alterations 

and gene expression in human tissues. GTEx relates these regulatory mechanisms to traits 

and diseases [55]. rsIDs of the individual variants were submitted to the GTEx database 

to assess the consequences of noncoding SNPs. 
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3. Results 

3.1. TP63 SNP Data Retrieval 

The SNP data for the TP63 gene contained a total of 64,144 SNPs with transcript ID: 

ENST00000264731.8. Among all, different SNPs were as follows: (1) 455 missense or non-

synonymous SNPs (nsSNPs), (2) 242 synonymous SNPs, (3) 680 UTR SNPs, (4) 62727 in-

tron SNPs, (5) 11 frameshift SNPs, (6) 6 inframe SNPs, (7) 11 stop-gained SNPs, and (8) 12 

other SNPs. Different categories of SNPs are presented in Figure S1. 

3.2. Prediction of Functionally Important nsSNPs in the TP63 Gene 

A variety of tools were selected for computational analysis of the nsSNPs of TP63. 

Initially, SIFT, PolyPhen2, and CADD were used for the analysis. Out of 455 nsSNPs, 194 

SNPs were predicted to be deleterious by SIFT. Probably damaging criteria were selected 

using PolyPhen2, and 121 nsSNPs were found as deleterious. Later, CADD was used to 

predict the nsSNPs. Likely deleterious criteria were chosen, and 28 nsSNPs were predicted 

to be deleterious (Table S1). Further, 28 nsSNPs were selected for analysis using 

PROVEAN, CLinVar, SNPs&GO, and MutPred2. A total of 23 SNPs were predicted to be 

deleterious/pathogenic, and the remaining five SNPs were detected as neutral by 

PROVEAN. ClinVar evaluated nine nsSNPs as pathogenic, three nsSNPs as likely patho-

genic, three nsSNPs with uncertain significance. The rest of the nsSNPs were not found in 

the ClinVar repository (Table S2). 

SNPs&GO simultaneously performed the analysis using three different tools: PhD-

SNP, PANTHER, and SNPs&GO, and provided results separately along with probability 

scores (Table 1). The number of deleterious nsSNPs predicted by SNPs&GO, PhD-SNP, 

and PANTHER was 28, 23, and 24, respectively (Figure 2A). MutPred2 predicted the struc-

tural/functional effect such as gain or loss of a definite structure or function in domains of 

TP63 due to SNPs. Through this analysis, seven nsSNPs were found to cause no gain or 

loss of structure in protein, describing no effect due to SNPs. The remaining 21 nsSNPs 

were shown to cause gain or loss of structural parts of a specific protein. 
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Table 1. Prediction of 17 SNPs with PROVEAN, ClinVar, PhD-SNP, PANTHER, SNPs&GO. 

SNP rsID (dbSNP) Domain Function 

Methods 

Mutpred2 PROVEAN ClinVar PhD-SNP PANTHER SNPs&GO 

Mdscore Mutpred2 Impact Score Impact Result 
Predic-

tion 

Proba-

bility 

Predic-

tion 

Proba-

bility 

Predic-

tion 

Proba-

bility 

R408C rs1282887680 Oligomerization 0.662  −7.064 Deleterious not found Disease 0.771 Disease 0.927 Disease 0.996 

R408H rs751698974 Oligomerization 0.508  −4.461 Deleterious not found Disease 0.767 Disease 0.83 Disease 0.996 

R376C rs757536818 
Interaction with 

HIPK21 
0.355  −3.65 Deleterious not found Disease 0.716 Neutral 0.477 Disease 0.996 

C347F rs1064793282 DNA binding domain 0.932 
Gain of Strand (Pr = 0.27 | P = 

0.03) 
−10.073 Deleterious Pathogenic Disease 0.91 Disease 0.975 Disease 0.997 

D351G rs121908844 DNA binding domain 0.863  −6.41 Deleterious Pathogenic Disease 0.836 Disease 0.916 Disease 0.997 

D355N rs1553857889 

DNA binding do-

main/Interaction with 

HIPK21 

0.706  −3.512 Deleterious Pathogenic Neutral 0.337 Disease 0.675 Disease 0.988 

G349E rs866267914 DNA binding domain 0.852 

Gain-Intrinsic disorder P = 

0.04 

Loss of Strand P = 0.02 

−7.342 Deleterious Pathogenic Disease 0.661 Disease 0.955 Disease 0.987 

R266Q rs121908849 DNA binding domain 0.807 
Loss of Strand P = 0.02) 

Altered Stability P = 0.01 
−3.612 Deleterious Pathogenic Disease 0.806 Disease 0.924 Disease 0.994 

R318H rs121908840 DNA binding domain 0.725 
Loss-ADP-ribosylation at 

R318 P = 0.03 
−4.645 Deleterious Pathogenic Disease 0.885 Disease 0.959 Disease 0.995 

R319H rs886039442 DNA binding domain 0.742  −4.627 Deleterious Pathogenic Disease 0.865 Disease 0.948 Disease 0.995 

R337Q rs113993967 DNA binding domain 0.861 

Gain-Strand P = 0.02) 

Gain-ADP-ribosylation at 

R338 P = 0.05) 

Gain-Pyrrolidone carboxylic 

acid at R337 P = 0.02) 

−3.618 Deleterious Pathogenic Disease 0.8 Disease 0.901 Disease 0.995 

R343Q rs121908841 DNA binding domain 0.801 
Gain of Strand P = 0.03); 

Altered Stability P = 0.02) 
−3.663 Deleterious Pathogenic Disease 0.855 Disease 0.902 Disease 0.996 



Biomolecules 2021, 11, 1733 9 of 30 
 

R379C rs761885185 
Interaction with 

HIPK21 
0.515 

Loss- Intrinsic disorder P = 

0.02); 

Loss-Phosphorylation at T382 

P = 0.01); 

Loss-Acetylation at K375 | P = 

0.01); 

Altered Disordered interface P 

= 0.04) 

−2.648 Deleterious 
Uncertain 

significance 
Neutral 0.424 Disease 0.602 Disease 0.995 

R379H rs765502786 
Interaction with 

HIPK21 
0.312  −1.476 Neutral 

Uncertain 

significance 
Neutral 0.227 Neutral 0.413 Disease 0.989 

L562R rs774221257 SAM 0.896 

Altered Transmembrane pro-

tein P = 9.7 × 10-5 

Altered Ordered interface P = 

0.02. 

Altered Stability P = 0.03. 

Loss-Sulfation at Y564 P = 0.03 

−2.328 Neutral not found Disease 0.787 Disease 0.517 Disease 0.998 

R647H rs774550896 
Transactivation inhibi-

tion 
0.834 

Altered Metal binding P = 2.9 

× 10-3). 

Altered DNA binding P = 1.2 × 

10-3); 

Altered Disordered interface P 

= 0.04). 

Loss-Proteolytic cleavage at 

R643 P = 0.02). 

Altered Transmembrane pro-

tein P = 0.03). 

Altered Stability P = 0.04) 

−2.062 Neutral not found Disease 0.761 Disease 0.743 Disease 0.997 

R655Q rs764601563 
Transactivation inhibi-

tion 
0.656 

Altered Disordered interface P 

= 0.04. 

Altered Metal binding P = 

0.03. 

Altered DNA binding P = 0.03. 

−1.246 Neutral not found Disease 0.755 Disease 0.591 Disease 0.996 
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Altered Transmembrane pro-

tein P = 0.05) 
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(A) (B) 

Figure 2. (A) Number of nsSNPs predicted through different Insilco tools that are described as deleterious or neutral in 

two different colors. (B) Upset plot describing a different number of deleterious nsSNPs predicted by the tools. Eight 

nsSNPs were predicted as deleterious by six Insilco tools. Here, connecting dots represent a combination of the tools that 

predicted deleterious SNPs. 

Different types of gain/loss of structure and function/altered function for protein 

TP63 were observed after analysis with MutPred2. The impacts in MutPred2, such as loss 

of strand, gain of strand/intrinsic disorder, altered ordered interface, altered DNA bind-

ing, altered stability, altered metal binding, etc., were found with significant p-value and 

high MutPred2 scores (Table 1). MutPred2 evaluated nine DNA binding domain SNPs 

with high probability scores and altered structure and functions. 

3.3. Domain Identification for nsSNPs 

The NCBI conserved domain search tool provided three domains of TP63 protein as 

follows; (1) P53 DNA binding domain (177–358 amino acid residues) usually binds to the 

DNA, (2) P53_tetramer domain (392–428 amino acid residues), which is described as P53 

tetramerization motif according to the Pfam protein family, and (3) SAM_tumor_63 (543–

607 amino acid residues), which is defined as SAM domain of tumor-p63 proteins, where 

SAM stands for sterile alpha motif (Figure S4). InterPro defined these three domains as 

p53_DNA_bd (DNA binding), p53_tetrameristn, and SAM domain, respectively. Besides 

these domains, UniProt provided four regions: (1) transcription activation, (2) interaction 

with HIPK21, (3) oligomerization, and (4) transactivation inhibition. These domains and 

regions have specific lengths or regions in the protein and are summarized in Figure 3. 
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Figure 3. Seventeen nsSNPs that were predicted as deleterious are shown in the three principal domains of TP63 protein. 

SIFT, PolyPhen-2, CADD, PROVEAN, ClinVar, MutPred2, SNPs&GO, PhD-SNP, 

and PANTHER were evaluated as pathogenic/deleterious 17 nsSNPs that are positioned 

in three principal domains (Figure 3). Among them, eight nsSNPs were predicted as dis-

ease-causing by all in silico tools (Figure 2B). Prioritizing the nsSNPs within the domains 

of TP63, these 17 nsSNPs were selected for structural analysis with I-Mutant 2.0, ConSurf, 

Mutation 3D, and HOPE. 

3.4. Structural Analysis 

3.4.1. I-Mutant 2.0 Analysis 

The selected 17 nsSNPs of the TP63 protein were then chosen to check for protein 

stability through analysis with I-Mutant 2.0. All 17 nsSNPs were predicted to decrease the 

stability of the TP63 protein by I-Mutant 2.0 (Table 2), as DDG/∆∆G was negative for all 

nsSNPs run by this tool. 

Table 2. Effect of nsSNPs on protein stability using I-Mutant 2.0. 

SNP DDG/𝛁𝛁𝑮 Stability 

R408C −1.01 

Decreased 

R408H −1.38 

C347F −0.48 

D351G −1.64 

D355N −1.49 

G349E −1.48 

R266Q −1.03 

R318H −1.3 

R319H −1.38 

R337Q −0.91 

R343Q −0.99 

R379C −0.41 

R379C −0.14 

L562R −1.84 

R647H −1.97 

R655Q −1.96 
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3.4.2. Effect of nsSNPs on Evolutionary Conservation of TP63 Protein Using Consurf 

Seventeen nsSNPs were submitted for ConSurf analysis. 11 wild-type residues (R266, 

R319, R337, R343, R376, R408, G349, D351, D355, R647, and R655) were observed as highly 

conserved. Among them, R319 is a structural and buried residue, and the others are func-

tional and exposed (Figure 4A). The structural residue plays an important role in the pro-

tein conformation or the folding of TP63. The R319 residue is buried because of the pro-

tein’s hydrophobic core. Three residues were found to be medium conserved; two resi-

dues (R318, R379) are functional and exposed, and one (C347) is buried. The remaining 

residue (L562R) is not conserved (Figure 4B). ConSurf analysis showed that nsSNPs 

R408C, R408H, C347F, D351G, D355N, G439E, R266Q, R318H, R319H, R337Q, R343Q, 

R379C, R379C, L562R, R647H, and 655Q are in highly conserved residues are deleterious 

for the TP63 protein’s structure and function. 

3.4.3. Mutation 3D Analysis 

Seventeen nsSNPs were selected to perform 3D analysis using the Mutation 3D tool. 

This analysis showed the three-dimensional structure of 153–388 residue length (available 

in PDB with 100% sequence similarity) TP63 protein with 12 nsSNPs. Nine SNPs are pre-

sent in the DNA binding domain of TP63. The other SNPs are in two different domains: 

one is the p53 tetramer domain, and the other is the SAM-2 domain (Figures S2 and S3). 

3.4.4. HOPE Analysis 

Seventeen SNPs were chosen for evaluation using the HOPE web server tool. For 

each nsSNP, there was a change in size, charge, and hydrophobicity of the amino acid 

residues in the respective positions of the TP63 protein. The size of amino acid residues 

was changed to large/small and the charge was observed to lose/gain. Increased/de-

creased hydrophobicity was also observed in the protein through the loss of hydrogen 

bonds due to nsSNPs. These changes disrupt the correct folding of the protein. Results 

from HOPE analysis are presented in Table 3. Hence, (1) regulation of the protein’s activ-

ity through the signal transfer from binding domain to activity domain and (2) binding of 

other molecules, are hampered. These effects impede the protein’s function overall. 

Table 3. Prediction of structural and functional consequences of nsSNPs in TP63 through Project HOPE. 

SNPs 
Size & Charge 

Characteristics & Features 
Wild-Type Mutant 

R376C Large & (+ve) Small & (0) 

Hydrophobicity: High. 

Effect: High. 

Protean folding: Affected. 

Loss of interaction: High & distributed; 

R4(0)8C Large & (+ve) Small & (0) 

R4(0)8H Large & (+ve) Small & (0) 

C347F Small & (0) Large & (0) 

D351G Large & (−ve) Small & (0) 

D355N Large & (−ve) Small & (0) 

G349E Small & (0) Large & (−ve) 

R266Q Large & (+ve) Small & (0) 

R318H Large & (+ve) Small & (0) 

R319H Large & (+ve) Small & (0) 

R337Q Large & (+ve) Small & (0) 

R343Q Large & (+ve) Small & (0) 

R379C Large & (+ve) Small & (0) 

R379C Large & (+ve) Small & (0) 

L562R Small & +(0) Large & (+ve) 

R647H Large & (+ve) Small & (+ve) 

R655Q Large & (+ve) Small & (+ve) 

(+ve): Positive, (−ve): Negative, (0): Neutral. 
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Figure 4. (A) Conservation analysis of nsSNPs using ConSurf. (B) Distribution of high-risk nsSNPs of TP63. 

C347F showed loss of di-sulfide bridge that affects the stability of the TP63 protein 

structure. R343Q, R266Q, R319H, R337Q, and R318H were observed to cause (1) smaller 

sizes of amino acid residue, (2) loss of positive charge, and (3) increased hydrophobicity 

in the protein. Glycine (G) is very flexible and possesses a particular conformation for the 

TP63 protein; D351G or G349E disrupts the protein structure. HOPE created images for 

the nine SNPs using a partial 3D structure of the TP63 protein (PDB ID: 3QYN). These 

SNPs are present in the DNA binding domain showing the wild-type and mutated resi-

dues at one position with two different colors (Figure 5). Therefore, we decided to perform 

molecular docking for these nine DNA binding domain SNPs. 
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Figure 5. (A–F) The nine nsSNPs projected as harmful through all in silico tools. Image of the modified structure of TP63 

protein was accomplished using Project HOPE. The native residue is indicated in green, and the altered residue for each 

SNP is depicted in red. Here, the side chain of the residue is displayed in color, and the whole protein is pictured in grey 

color. Notably, (A) C347F and (E) G349E show that modified residue which is in red is much bigger than native residue 

presented in green. In Figure 5B,C,E–I, the mutated residues are smaller than wild-type residue. In the case of (B) D351G, 

mutated G is not shown because of no side chain, and only wild-type residue is displayed in green. All of these structural 

changes retain detrimental impacts on the shape, conformation, and function of TP63. Note: (A) C347F, (B) D351G, (C) 

R343Q, (D) D355N, (E) G349E, (F) R266Q, (G) R319H, (H) R337Q, and (I) R318H. Figure panels (A–F) were downloaded 

from HOPE [42]. 

3.5. Structural Effect Analysis of nsSNPs 

Molecular Docking 

The DNA binding domain structure of TP63 protein is an available PDB structure, 

and the DNA is a direct ligand for the TP63 protein. Thus, DNA binding domain nsSNPs 

were selected for molecular docking analysis. Furthermore, these nsSNPs were evaluated 

as pathogenic by all in silico tools, and HOPE created the image for these SNPs.  

The results of molecular docking showed the binding affinity of mutated and native 

TP63 peptides (ligands) towards DNA and determined the consequences of nsSNPs on 

TP63–DNA interactions. Five nsSNPs (R266Q, R319H, C347F, G349E, and D351G) were 

shown to decrease in binding affinity compared to wild-type peptides while interacting 

with DNA (Table 4). The interaction patterns of the docked DNA–protein complexes were 

visualized and studied in USCF Chimera 1.14 (Figure 6A–D). DNA–TP63 complexes are 

shown in Figure 7, where peptides are in the active site of the DNA. G349E showed a 
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decrease in binding affinity with DNA by losing H-bonds. G349 and R319 formed seven 

and eight bonds, respectively, whereas E349 and H319 created three and four bonds, re-

spectively, with the DNA. Wild-type peptide (G349) showed a binding affinity of −6.4 

kcal/mol, which was reduced to −5.8 KJ/mol due to mutation. Thus, a significant reduction 

was observed for R319H, C347F, and G349E. Finally, these three nsSNPs were selected for 

MD simulations. 

Table 4. Binding affinity of nine nsSNPs using molecular docking. 

Wild-Type Mutant  

Residue Binding Affinity Residue Binding Affinity 
Binding Affinity 

Change 

R266 −6.2 Q266 −5.9 Decrease 

R318 −5.3 H318 −6.2 Increase 

R319 −5.8 H319 −5.4 Decrease 

R337 −5.5 Q337 −5.8 Increase 

R343 −5.8 Q343 −5.8 Neutral 

C347 −6 F347 −5.6 Decrease 

G349 −6.4 E349 −5.8 Decrease 

D351 −5.6 G351 −5.4 Decrease 

D355 5 N355 −5.8 Increase  
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Figure 6. Ligand binding effect of nsSNPs through molecular docking (A–F). DNA and native/ mutant TP63 peptide com-

plexes are shown, where DNA is represented by gray and TP63 peptide is denoted by light sea green with red-colored H-

bonds. (A) Wild-type or native protein (G349) binding with DNA reveals that R352 has three H-bonds with DNA back-

bone. L353 formed one H-bond each with A12 and A11 of DNA. In addition, C345 and R350 formed one H-bond with 

DNA backbone and A9 of DNA, respectively. (B) Mutated peptide E349 formed only four hydrogen bonds. Due to SNP, 

E349 lost four hydrogen bonds, accompanied by loss of interaction with DNA. (C) Native R319 TP63 peptide generated a 

total of eight H-bonds. R318 formed two H-bonds each with A10 and A12 of the DNA. Additionally, R319 formed two 

bonds with A10 and A11 in DNA. (D) Mutant H319 formed only four H-bonds, and it is observed that R318 formed two 

hydrogen bonds with DNA sugar (A13) and H319 formed only one H-bond. This finding correlates with binding affinity 
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reduction in the docking results, as there is a significant number of hydrogen bond loss due to SNP. (E) Wild-type or 

native protein C347 binding with DNA reveals that C345 in peptide has two H-bonds with DNA backbone, A346; I344 

formed one H-bond each with DNA backbone, too. R343 and R352 also generated one H-bond each. (F) Mutant F347 in 

TP63 formed a total of six H-bonds. Most of those bonds are different than native residue, and it is observed that R350 

formed two H-bonds, whereas it did not form any bond in wild-type. P348 also created bonds with DNA. New bonds are 

formed but original bonds are lost, which makes the structure less stable and correlates with reduced binding affinity in 

the docking results. Figures were created in USCF Chimera 1.14. 

   

(A) (B) (C) 

   

(D) (E) (F) 

Figure 7. The binding site of DNA molecule with surface representation in molecular docking com-

plexes of TP63–DNA, showing both wild-type and mutant proteins. (A–F) represent the following: 

(A) G349, (B) E349, (C) R319, (D) H319, (E) C347, and (F) F347 complexed with DNA. Here, blue 

color indicates DNA and red color denotes TP63 protein. 

3.6. Molecular Dynamics (MD) Simulations 

A 250 ns molecular dynamics simulation was conducted to study the deviation of 

binding interactions of mutant TP63 proteins (E349, F347, H319) with DNA from native 

TP63 proteins (C347, R319, and G349) with DNA. MD simulations were performed in 

terms of root mean square deviation (RMSD), Rg, SASA, and H-bond analysis to observe 

the deviations of structural dynamics between native and mutant(s)in normal physiolog-

ical conditions. RMSD values were estimated for native and mutant TP63–DNA com-

plexes to assess the alteration effects. 
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3.6.1. RMSD Analysis 

While G349 and E349 showed similar RMSD values for DNA–peptide structure, 

H319 showed increased RMSD values compared to the R319–DNA complex and no sig-

nificant change in RMSD for native 347 and mutant 347 complexes. Increased RMSD val-

ues in R319–DNA were observed and reached an apex of 23.6 Å  at 33.2 ns. Similarly, an 

increased RMSD value was observed between F347–DNA (24Å ) and C347–DNA (20Å ), 

and the average value was decreased for the mutant structure. The average RMSD values 

for G349–DNA, R319–DNA, and C347–DNA were 12.06 Å , 12 Å , and 9.82 Å  respectively, 

whereas the average RMSD values for E349–DNA, H319–DNA, and F347–DNA were 

11.03 Å , 13.09 Å , and 8.50 Å  respectively (Figure 8 (A1), Table S6). Simulations from 150–

250 ns showed fewer fluctuations for these three mutants and wild-type structures (Figure 

8 (A2)). These wild-type–mutant pairs indicate that the RMSD was significantly higher for 

mutant structures than wild-type ones. 

 
(A1) 

 
(A2) 
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(C2) 

Figure 8. Analysis of RMSD, Rg, and SASA of wild-type and mutant TP63–DNA complexes at 250 ns. (A1) RMSD values 

of the backbone of DNA-native and mutant structures. (A2) RMSD values of respective wild-type–mutant pairs for 150–

250ns simulations. (B1) Rg values of the protein–DNA backbone over the entire simulation, (B2) The simulations from150–

250ns for respective mutant and native structures with DNA separately. (C1) SASA values for native and mutant TP63 

with DNA, and (C2) the values of SASA for 150–250ns simulations for the individual pair. The symbol coding scheme is 

as follows: wild-type R319 (yellow color), mutant H319 (light blue color), E349 (red color), wild-type G349 (gray color), 

wild-type 347 (green color), and mutant 347 (blue color). 

3.6.2. Rg Analysis 

Furthermore, Rg analysis was performed to determine the firmness and rigidity of 

the wild-type of DNA and mutant protein–DNA. Rg analysis showed a significant devia-

tion in mutant H319–DNA structure, and increased Rg values were observed compared 

to those of the wild-type complex (Figure 8 (B1)). The average Rg values for mutant and 

wild-type were 24.61 Å  and 19.22 Å , respectively. The mutant 349 and wild-type 349 com-

plexes showed a similar pattern of Rg values (i.e., average 20.93 Å  and 20.99 Å , respec-

tively) (Table S6). The increasing trend in Rg values was also observed in the F347–DNA 

structure compared to wild-type, and the average Rg value of mutant 347–DNA complex 

(15.84 Å ) was higher than that of the 347–DNA structure (13.50Å ). Simulations from 150–

250 ns presented almost stable dynamics for these three mutant and wild-type structures 

(Figure 8 (B2)). A closer view of the simulations is presented here for individual mutant–

wild-type complexes, and it can be observed that the Rg values were higher for mutant 

structures compared to those of the wild-type ones. 

3.6.3. SASA Analysis 

SASA analysis showed that mutant H319 provided increased SASA values through-

out the whole analysis compared to those of the wild-type R319 complex; the average 

values for these two structures were 5450 Å 2 and 5295 Å 2, respectively. However, average 

SASA values for wild-type and mutant 349 were 5426 Å 2 and 5355 Å 2, respectively (Figure 

8 (C1)) (Table S6). Higher SASA values represent the expansion of the structure. Hence, it 

can be assumed that wild-type and mutant E349, wild-type, and mutant 319 formed un-

stable structures with DNA. In the case of native and mutant 347–DNA complexes, a sig-

nificant deviation in SASA values was observed for mutant structures. However, the av-

erage SASA value was increased to a small extent in mutant complex compared to that of 

wild-type. In addition, in cases of maximum SASA values, the deviation was noticed be-

tween mutant and wild-type complexes. The later simulations (150–250 ns) clearly 

showed that the SASA values were higher for the mutant structures compared to those 
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for the wild-type ones (Figure 8 (C2)). In all three analyses, the later simulations represent 

the approximate equilibrium state of the simulations. 

The outcome of the simulation demonstrates that these three mutant DNA–TP63 

complexes can be unstable after a certain time and proves the damaging effect of nsSNPs. 

In addition, nonbonding interaction analysis (gray, green, red/orange/purple-colored 

dashed lines) was performed for all the wild-type and mutant structures (Figure S4). Wild-

type 319 showed several types of interactions: hydrogen bond (green color), pi-alkyl, or 

hydrophobic (gray, purple, orange/red), whereas mutant H319 showed fewer interactions 

by losing H-bonds. Mutant 349 showed fewer interactions with DNA bases compared to 

wild-type. The mutant 347–DNA structure also showed a smaller number of nonbonding 

interactions compared to native structures 

3.7. Analysis of Non-Coding SNPs 

The gene variants of TP63 with transcript ID ENST00000264731.8 were retrieved from 

the Ensemble database (Ensemble genome browser). The SNP source was the NCBI 

dbSNP database. The total number of noncoding SNPs (intron, 5’ UTR, 3’ UTR variants) 

was 836, with a global MAF range of 0.05–0.5. 

3.7.1. RegulomeDB Analysis 

A total of 836 SNPs were selected for RegulomeDB analysis. The filtering process led 

to 21 SNPs based on the proposed ranking criteria described on the RegulomeDB site (Ta-

ble S3). Out of 23 SNPs, 20 were intron variants, one was 5’ UTR, and the remaining two 

were 3’ UTR variants. 

3.7.2. Finding eQTLs Using GTEX Analysis  

The filtered 23 SNPs from Regulome DB analysis were further analyzed with the 

GTEX portal to identify the single tissue eQTLs. Among 23 noncoding SNPs, five SNPs 

(rs4488809, rs6774934, rs6794898, rs79155799, and rs4687090) were obtained for seven 

eQTLs (Table 5). In addition, tissue-specific eQTLs were observed for other genes, as well. 

Violin plots of single-tissue eQTLs are presented in (Figure S5). 

Table 5. eQTLs prediction of non-coding SNPs in GTEx portal. 

Gene 

Symbol 
Variant ID SNP ID (Non-Coding) p-Value NES Single Tissue eQTL 

TP63 chr3_189638472_T_C_b38 rs4488809 6.5 × 10-7 0.23 Lung 

TP63 chr3_189638472_T_C_b38 rs4488809 1.7 × 10-5 0.13 Nerve-Tibial 

TP63 chr3_189664468_A_G_b38 rs6774934 5.5 × 10-5 −0.34 Heart-Left Ventricle 

TP63 chr3_189664468_A_G_b38 rs6774934 6.5 × 10-5 −0.20 Nerve-Tibial 

TP63 chr3_189672911_G_C_b38 rs6794898 1.3 × 10-5 0.20 Lung 

TP63 chr3_189710792_T_G_b38 rs79155799 6.5 × 10-7 −0.17 Nerve-Tibial 

TP63 chr3_189721190_A_G_b38 rs4687090 1.7 × 10-5 −0.19 Nerve-Tibial 

3.7.3. PolymiRTS Analysis 

A total of 836 SNPs were analyzed with the PolymiRTS tool. Only 44 SNPs with miR-

base IDs and affecting miRNA sites were identified primarily. Those SNPs had ancestral 

alleles, changed alleles, and conservation scores that reflected the occurrence of miRNA 

sites in other vertebrates with a significant context + score change. These SNPs were clas-

sified into four functional groups: (1) D describes the disruption of a conserved miRNA 

site; (2) N describes the disruption of a non-conserved miRNA site; (3) C denotes the cre-

ation of a new miRNA site; and (4) O denotes without determination of an ancestral allele 

(Table S4). The results show that all of the miRNA target sites for miRNA predicted to be 

disrupted by SNPs in TP63 were obtained from CLASH experimental data (N). In the next 
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step, 44 SNPs were filtered considering the functional classes of C and D and conservation 

scores of 19–20. Finally, only five SNPs were obtained (Table S4). During the PolymIRTS 

analysis, the study obtained a list of SNPs associated with disease and human tissues pub-

lished in other studies (Table S5). We matched the five miRNA binding site prediction 

SNPs with SNPs of previous studies, and no matches were found. Thus, these five SNPs 

are novel and future research can be initiated. 

4. Discussion 

TP63 is a tumor protein and acts as a transcription activator suppressor. nsSNPs of 

the TP63 gene were found to be associated with different types of disorders along with 

cancers [56]. In recent studies, different diseases or syndromes associated with coding 

SNPs or nsSNP indifferent isoforms of the TP63 protein have been identified and vali-

dated [57–61]. The present trend favors applying a range of in silico tools rather than a 

single tool to classify variants as damaging or neutral [62]. We performed a comprehen-

sive analysis of the SNPs located in the TP63 gene using various in silico tools and ap-

proaches to obtain higher precision in the predictions of the functional impacts of the 

nsSNPs on the TP63 protein. Most of the in silico algorithms work based on either se-

quence or structural features. For example, Polyphen 2.0 uses both 3D structure and se-

quence to give accurate predictions [63], while SIFT and PROVEAN can work effectively 

based on alignment data. Additionally, PolyPhen and SNPs&GO reinforced the predic-

tion results of the current study by incorporating structural data. Although prior studies 

have utilized tools such as SIFT, PolyPhen2, and CADD [64,65] as superior methods, we 

employed some additional tools to comprehensively characterize the missense and non-

coding SNPs. 

In this study, three nsSNPs (R319H, G349E, and C347F) were predicted as signifi-

cantly deleterious or detrimental based on their respective prediction scores. Conserved 

residues are generally used in proteins to regulate the biological system, such as in folding 

or protein stability. Enzymatic sites in proteins contain functional amino acids involving 

insignificant interactions with other proteins or molecules. These residues are more con-

served than the rest of the protein. From ConSurf analysis, it was observed that R319, 

G439, and C347 are highly conserved regions in the protein with a conservation score of 

9 (Figure 4). Moreover, R319 is buried and structural, G349 is functional and exposed, and 

C347 is buried. Maximum conserved regions are found in the DNA binding domain, 

which is functionally important for DNA binding of TP63 to perform as TF. In the DNA 

binding domain, R319H (histidine replaces arginine) presents a small-size molecule rather 

than wild-type, and a positive charge was lost. Large residues are placed in the protein 

for both G349E and C347F (glutamate and phenylalanine replace glycine and cytosine, 

respectively). Moreover, a negative charge is created for G349E and in the case of C347F, 

the charge remains neutral. Due to the negative charge, E349 can interact with other mol-

ecules or groups, or it can result in a rejection between the mutant and neighboring resi-

dues that disrupt natural processes. This outcome was observed by HOPE. The difference 

in mass and charge affects the dynamics of spatiotemporal protein–protein interactions 

[66,67]. These three SNPs distort the contact with residues in the surroundings and ham-

per the usual biological activities. In addition, buried and structural residue (arginine) is 

more hydrophobic than histidine residue and causes loss of hydrophobic interactions in 

the core of the protein. Due to these altered properties of the altered residue, (H) presents 

a significant alteration in 3D structure of TP63, specifically, with possible loss of interac-

tions such as H-bond interactions together with other nonbonding interactions. The al-

tered residue is in a binding domain that is important for other molecules to bind, and it 

is in interaction with residues in another binding domain, activity domain, and regulatory 

domain. The mutation may disrupt all of these interactions among domains, affecting the 

protein’s function, activity, and regulation. Hence, these nsSNPs can cause loss of ther-

modynamic stability, aberrant folding of TP63, and aggregation with other proteins. 
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We executed molecular docking of the TP63 protein and DNA complex to substanti-

ate the outcomes obtained with all the in silico tools. In a few studies, researchers showed 

a reduced binding affinity score for mutant protein compared to the wild-type [24,46]. The 

notable decrease in binding affinity for R319H and G349E was found due to H-bond loss 

(7/8 to 3/4) in TP63 peptide–DNA docked complexes. Therefore, the sustainability of the 

TP63–DNA complex is directly affected by hydrogen bond loss and binding affinity re-

ductions that lower the DNA–protein binding probabilities. From our results, it can be 

predicted that nsSNPs create deleterious changes in TP63 structure and function and may 

potentially cause diseases such as cancers. Additionally, nsSNPs with a high binding af-

finity score for the mutant TP63–DNA complex represent elevated stability compared to 

the native complex and can be utilized to obtain efficient drugs to treat cancers. nsSNPs 

cause changes in protein structure. The dynamic features of proteins can be explained by 

MD simulations displaying additional vital features (residue plasticity and secondary 

structural components) that contribute to protein stability [68]. MD simulations show the 

protein’s real motion and structural destruction due to SNPs. 

We executed MD simulations for three nsSNPs (R319H, G349E, C347). Because these 

three SNPs showed significantly low BA scores (Table 4) and were evaluated as patho-

genic by all in silico tools, MD simulation results showed that the mutant–DNA complexes 

were less stable than the native protein–DNA complexes under physiologic conditions. 

We performed MD simulations of two buried residues (R319/H319, C347/F347). RMSD, 

Rg, and SASA analysis demonstrated a substantial difference in mutant structures com-

pared to native structures. It is not possible to analyze each residual fluctuation of a nu-

cleotide. Each residual fluctuation of the protein has been obtained from simulations but 

did not provide structural insight due to the lack of analysis (inclusive of DNA) of residue 

fluctuations of the whole complex. Hence, we did not consider plotting RMSF analysis to 

observe the residue fluctuations due to DNA–protein simulation. Specifically, the high 

average RMSD value for the R319H mutant–DNA complex was due to loss of hydrogen 

bond interactions. Increased RMSD values for G349E and C347F at ~0–35 ns explain the 

split or damage to the attached complex. The stability of the protein decreases with higher 

RMSD values; the low average RMSD value for the native TP63–DNA complex demon-

strated the intactness of the complex, suggesting the stability of the complex (Figure 8 

(A1)). Due to the negative charge, E349 can interact with other molecules or groups. It is 

possible that due to increased nonbonding interactions such as electrostatic or hydropho-

bic interactions, RMSD was decreased. This increased stability can hamper the activity of 

TP63 as a TF. This is because TP63 may remain bound to DNA even if it is not required, 

leading to continuous transcription and abnormal production of TP63 and possibly dis-

eases. 

Simulations from 150–250 ns clearly showed the deviation in terms of RMSD, Rg, and 

SASA values of mutant structures compared to those of native TP63–DNA complexes. 

These analyses determined that the replacement of cysteine, arginine, and glycine with 

phenylalanine, histidine, and glutamate at respective positions in the TP63 protein signif-

icantly altered its structure from the native shape and configuration. As a result, the DNA 

binding affinity of TP63 protein potentially can be critically affected. Therefore, the nor-

mal functionality of the TP63–DNA complex may not be accomplished. Variations in the 

Rg value of mutant TP63–DNA complexes compared to native complexes may cause the 

TP63–DNA complex to be less compact than wild-type by enhancing the flexibility of the 

compound. This outcome can affect the binding of TP63 protein to DNA (Figure 8 (B1,B2)). 

The SASA findings (Figure 8(C1,C2)) showed that the average SASA value of mutant 

protein–DNA complexes always persisted to a significantly higher degree than that of the 

native structure in R319H and C347F mutations. The solvent-accessible surface area of the 

mutant–DNA complex was more expanded than that of the native TP63–DNA complex 

resulting in a less stable structure than the native one. This effect yields a lower probability 

of binding TP63 to DNA. Furthermore, the G349E mutant showed a low SASA value, in-

dicating a less stable structure of the DNA–protein complex due to less accessibility to the 
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DNA. However, the structural insight from mutant E349 showed that near the end of the 

simulation, the protein grossly engaged with DNA and showed more interactions with 

close packings, such as aggregations. Therefore, this was the reason for the decrease in 

SASA for mutant E349 near the end. The differences in the RMSD, Rg, and SASA values 

for native and mutant protein were further corroborated by nonbonding interactions. 

Hence, the evaluated nsSNPs (C347F, R319H, and G349E) have a significantly harmful 

effect on the stability of TP63–DNA complexes. This effect may obstruct the binding of 

TP63 to DNA in response to normal physiological activity, increasing the probability of 

causing cancers.  

Prior studies on mutant protein–ligand complexes have produced similar results 

with the analysis of RMSD, H-bonds, and SASA [69–72]. It was also observed that the 

fluctuation was high for the 0–125 ns simulation compared to the 150–250 ns simulation 

for these three analyses, specifically for RMSD (Figure 8 (A2, B2, C2)). In general, the fluc-

tuation in values of RMSD, Rg, and SASA is very common for the MD simulations, and 

that occurs because of structural changes over time, sometimes more drastically. The av-

erage or total values for RMSD, SASA, etc. will differ because each complex has different 

residues that are responsible for forming different interactions. Additionally, the simula-

tion was approaching equilibrium, which may reach around 500 ns. However, there is a 

limited facility to simulate for longer than 250 ns. 

The deleterious effects of R319H, G349E, and C347F are evident from the in silico 

analyses, molecular docking, and MD simulation. More specifically, the primary confor-

mation of the pathogenicity of R319H was observed due to reduced DNA binding, and 

the outcome was obtained through molecular docking. Subsequently, RMSD, Rg, and 

SASA values were increased significantly compared to those of the wild-type complexes. 

Hence, MD simulations confirmed all the previous predictions for R319H. The outcome 

was corroborated by another study where research showed the association of R319H with 

ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome, and non-syn-

dromic split hand-split foot malformation (SHFM) [73]. Hence, our study substantiated 

that the R319H mutant has a deleterious effect on the function and structure of TP63 pro-

tein. 

PolymiRTS analysis showed five non-coding SNPs that can alter the miRNA binding 

sites, hampering the regulation of the TP63 protein. miRNA binds to TP63 mRNA to reg-

ulate the production of TP63 protein by inducing translation inhibition through mRNA 

degradation. The 3′ UTR SNPs in the TP63 gene generate or interrupt target sites in 

mRNA, changing miRNA–mRNA interaction and perhaps resulting in aberrant TP63 sup-

pression [74]. The GTEx portal allows researchers to characterize the variance in gene ex-

pression levels caused by variations (SNPs) using large sample size and a variety of hu-

man tissues [75]. QTLs play a significant role in disease phenotypes or gene expression 

differences by influencing the splicing process via sQTLs or the expression levels of TP63 

via eQTLs [76]. Our study with the (GTEx) portal analysis showed single tissue eQTL 

SNPs in the TP63 gene (Table 5) with various tissue types. The violin plots of eQTLs show 

normalized expression of the TP63 gene with a specific SNP. Figure S5 demonstrates the 

SNPs in the specific tissues and indicates the alteration in the regulation of the TP63 gene 

affecting the regulation of protein products that cause diseases. Therefore, noncoding 

SNPs affect the normal regulation of TP63 gene expression and protein production. These 

effects can result in tumor progression. 

5. Conclusions 

In this study, we initially harnessed a combination of in silico tools to collect a total 

of 17 nsSNPs that can alter the structure and function of the TP63 protein. Among them, 

11 previously unreported nsSNPs, which were predicted to be pathogenic in our study, 

are crucial due to their impact on the structure and function of TP63. Nine DNA binding 

domain nsSNPs were finally predicted to be deleterious by all in silico tools. Molecular 

docking analysis of those SNPs indicated the deleterious effects by measuring the binding 
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affinity with DNA. MD simulations revealed that R319H, G349E, and C347F are likely to 

make the TP63 protein structure less stable and may hinder binding with the DNA that 

possesses a significant effect on the function of the protein. Specifically, R319H was found 

to be a significantly deleterious nsSNP of TP63 protein compared to the other two i.e., 

G349E and C347F. The noncoding SNP analysis revealed miRNA binding site disturbance 

and dysregulation of the expression of the TP63 gene in different tissue types. To confirm 

the association of three nsSNPs, five non-coding PolymiRTS analyzed SNPs, and five non-

coding GTEx analyzed SNPs with different diseases or cancers, experimental analysis 

needs to be carried out in the future, i.e., performing functional analysis in cell lines. This 

study will serve as a benchmark for further validation of the association of TP63 SNPs 

with cancers. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/biom11111733/s1, Figure S1:  SNP types and number of TP63, Figure S2. Mutations in 

protein structure, Figure S3. Three domains are shown in yellow color with blue box labeling after 

structural analysis with Mutation 3D, Figure S4. Non-bonding interactions of wild type TP63 and 

mutant TP63 proteins at 319, 349, and 347 positions (A,B,C,D,E,F,G,H,I,J,K,L) generated from the 

250ns snapshot of MD simulation, Figure S5. Violin plots of noncoding SNPs for single tissue eQTLs 

through analyzing with GTEx portal. The plots show the normalized TP63 gene expressions with 

mutations in different tissues along with significant p values, Figure S6. Ramachandran plot statis-

tics of Precheck analysis in PDB sum server for 3D structure of TP63 protein: 2RMN.A,B, L denote 

the alpha, beta, and loop structures in protein, Table S1. Functional nsSNPs Prediction in TP63 in 

SIFT, PolyPhen2, CADD, Table S2. Analysis of nsSNPs using PROVEAN and ClinVar, Table S3. 

Regulome DB results of non-coding SNPs, Table S4. miRNA binding site prediction of noncoding 

SNPs in TP63 protein through PolymiRTS, Table S5. PolymiRTS Results of noncoding SNPs for dis-

ease association, Table S6: RMSD, Rg, and SASA values from MD simulations. 
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