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Abstract: One-dimensional (1D) sliding of DNA-binding proteins has been observed by numerous
kinetic studies. It appears that many of these sliding events play important roles in a wide range of
biological processes. However, one challenge is to determine the physiological relevance of these
motions in the context of the protein’s biological function. Here, we discuss methods of measuring
protein 1D sliding by highlighting the single-molecule approaches that are capable of visualizing
particle movement in real time. We also present recent findings that show how protein sliding
contributes to function.
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1. Introduction

The interactions between proteins and DNA are involved in most cellular functions of
DNA, including DNA replication, DNA repair and recombination, and gene transcription
and regulation. Many if not all protein–DNA interactions are essential for those processes.
When the physical properties of genomic DNA have been well described by a worm-like
chain model [1,2], a number of biophysical studies have provided evidence of protein
performing one-dimensional (1D) sliding along the DNA [3–6]. These highly dynamic
protein–DNA interactions have served as models for understanding the macromolecular
interactions in biology.

The concept of protein 1D sliding has been recognized for several decades. DNA/RNA
polymerases and helicases that operate one nucleotide after another are early examples that
obviously must move in 1D along a DNA strand [7,8]. Further investigations have found
that many sequence-specific DNA-binding proteins, including a number of restriction en-
donucleases and transcription factors, also slide along the double-stranded DNA (dsDNA)
to search for target sites [9–11]. While most studies have inspected protein 1D sliding using
relatively simple systems, many complicated biological questions involve protein complex
assembly and multiple reaction steps that could not be assessed with these systems. In
this review, we have summarized recent studies of protein 1D sliding. Several modes of
the sliding and the methods for measuring protein movement have been introduced and
discussed here. Of particular interest, we highlight the observations that have ultimately
revealed the biological functions of protein 1D sliding.

2. Modes of Protein 1D Sliding
2.1. Translocation

The mechanisms of protein 1D sliding can be categorized into several modes. Probably
the most familiar one for biologists is translocation. The majority of DNA/RNA poly-
merases and helicases hydrolyze nucleoside triphosphate (NTP) and have been suggested
to use the released energy for moving along DNA in a unidirectional manner [12–15]. This
unidirectional movement is defined as translocation (Figure 1a). Moreover, there are other
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proteins that also translocate along the DNA by NTP hydrolysis but do not couple the
directional motions to the nucleotide incorporation or strand separation activity [16]. Those
enzymes are referred as translocases. As it can be seen, the translocation is an active motion,
and the proteins that perform translocation may be considered as molecular motors on
DNA [17,18]. While the protein translocation activity certainly requires NTP hydrolysis,
the reverse is not necessarily true—a protein that performs 1D sliding and contains NTPase
activity may not translocate along the DNA (see Section 2.3).
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hydrolysis (NDP: nucleoside diphosphate, Pi: inorganic phosphate). (b) Facilitated diffusion: protein passively slides on
DNA to search targets after nonspecific binding. (c) Sliding as a clamp: ring-like protein passively slides on DNA with
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2.2. Facilitated Diffusion

In biophysical studies, three-dimensional (3D) diffusion and random collision are
usually used to describe and predict the searching dynamics of two biomolecules that
interact with each other. Interestingly, it was reported that the lacI repressor could bind its
target sequence about two orders of magnitude faster than the predicted [3,19]. Further
analysis found that lacI was capable of nonspecifically binding to DNA by electrostatic
interactions and then passively sliding on DNA to locate its specific binding site [20,21].
This progression is termed as facilitated diffusion, where the search process has been
“facilitated” by protein 1D sliding (Figure 1b). Since then, many other enzymes have been
found that utilize this mechanism for a target search, including restriction endonucleases
and other transcription factors.

2.3. Sliding as a Clamp

The continuous protein–DNA contacts without dissociation are usually necessary
to support facilitated diffusion. However, there are proteins that obviously slide with
intermittent DNA contacts. Members of this group include proteins that can form special
conformations on DNA, such as a clamp encircling the DNA (Figure 1c). A classic example
is the DNA replication factor (β-clamp in prokaryotes, also known as proliferating cell
nuclear antigen, or PCNA, in eukaryotes), which is a ring-shaped clamp and requires a
clamp loader to load it onto the DNA [22,23]. Coincidentally, the DNA mismatch repair
(MMR) proteins, MutS and MutL homologs, also form ATP-dependent ring-like clamps
during MMR. These sliding clamps do not always interact with the DNA backbone but
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can maintain a relatively long lifetime (several minutes) during sliding [24–27]. It is now
well established that the MutS and MutL sliding clamps are actually molecular switches
that undergo Brownian motion along the DNA, while their ring-like structures prevent the
proteins from disassociating from the DNA [24,27].

2.4. Hopping or Jumping

Another type of protein sliding with intermittent DNA contacts is hopping/jumping,
where the protein diffuses with a series of disassociation and rebinding events [3] (Figure 1d).
Compared with the facilitated diffusion, one could imagine the protein may slide faster
and is able to bypass obstacles during hopping/jumping. As a result, proteins combining
facilitated diffusion and hopping/jumping seem to be more efficient when searching
for target sites [28]. However, distinct from the sliding clamps that are topologically
constrained to the DNA, it is now still unclear how the hopping/jumping occurs.

2.5. Intersegmental Transfer

In some scenarios, large DNA molecules can form transient DNA loops. A few proteins
are capable of moving between two sites on DNA via these intermediate “loops”, which
is referred to as intersegmental transfer (Figure 1e). Intersegmental transfer allows the
protein to move from one site of DNA to another without dissociation, thus facilitating the
target search [3]. However, intersegmental transfer is more likely to occur when the protein
contains two or more DNA binding surfaces, since the two binding sites need to be accessed
concurrently [3]. Therefore, this mode of sliding only relates to distant translocations on
large DNA molecules by a limited subset of DNA-binding proteins [29,30].

3. Approaches for Observing Protein 1D Sliding

Bulk assays were initially designed and performed to monitor protein sliding. How-
ever, these methods usually provide indirect evidence and lack dynamic information;
now, they have been largely overtaken by single-molecule experiments. Single-molecule
imaging, especially single-molecule tracking using a total internal reflection fluorescence
(TIRF) microscope, is capable of following a single protein and obtaining its trajectory on a
DNA substrate. Other single-molecule methods, including force spectroscopy, also can be
used for protein sliding investigation.

3.1. Biochemical Assays

Biochemical assays have been useful for measuring the speed and processivity of a
polymerase or helicase. For example, by measuring the DNA products, Satoko Maki and
Arthur Kornberg found that DNA polymerase III holoenzyme moved along the template
strand at the rate of roughly one base every 2 milliseconds (ms) [31]. Using a helicase assay
to detect DNA unwinding events, Frank G. Harmon and Stephen C. Kowalczykowski have
determined the translocation rates of E. coli RecQ helicase on DNA [32]. The facilitated
diffusion of restriction endonuclease also can be detected by electrophoretic mobility shift
assay (EMSA). Rau and Sidorova have successfully determined the sliding rate of EcoRI
and have demonstrated that the EcoRI likely performed a rotation-coupled diffusion along
the DNA [10]. The method was based on measuring the ratio of the dissociation rate of
protein from DNA containing one specific binding site to the dissociation rate from DNA
containing two specific binding sites [10]. Remarkably, the formation of an MutS sliding
clamp was initially discovered by biochemical assays in the 1990s. Gradia et al. have found
that the MSH2–MSH6 complex (human MutS homologs) initially recognized a mismatch,
while the ATP binding induced the complex to form a ring-like clamp on DNA [25,26].
Interestingly, this clamp has been later found to slide on DNA in a hydrolysis-independent
way and eventually dissociated from DNA ends [25,26]. Although these assays have
collected a great wealth of data, most evidence seem to be too indirect to describe the
sliding processes and lack of kinetics as well as quantifications.
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3.2. Single-Molecule Tracking

Over the past two decades, the developments of single-molecule techniques have
enabled the observations of the individual behavior of a single particle, which eliminate
the average effects during measurement and do not require synchronizations [33]. Single-
molecule tracking that can follow a single fluorescent protein at a large time scale is ideal
for measuring protein sliding along DNA.

The single-molecule tracking can be acquired using a TIRF microscope, such as a
prism-type TIRF or objective-type TIRF [33]. A TIRF microscope allows the illumination
of a thin region of the specimen (≈100–300 nm), which significantly increases the signal-
to-noise ratio during imaging [24,33]. To image the fluorophore, flow chambers are often
used by the assembly of a quartz slide, a piece of double-sided tape, and a coverslip, where
the quartz slide has been treated with chemical reagents to produce a polyethylene glycol
(PEG)/biotin-PEG passivated surface [34]. A motorized syringe pump is usually employed
to deliver buffers or samples via controlled laminar flow [33].

In a typical single-molecule tracking experiment, the DNA is usually immobilized on
the quartz surface via the biotin–neutravidin–biotin or digoxigenin–antibody interactions
(Figure 2a). DNA molecules can be stretched by laminar flow and linked to the surface at
both ends, or they can be linked at a single end and stretched by a continuous laminar flow.
A similar method such as “DNA curtains”, which uses a combination of nanofabricated
surface patterns and fluid lipid bilayers to align hundreds of DNA molecules (Figure 2a),
has been developed recently [35]. However, some single-molecule experiments still suffer
from the nonspecific protein binding on the surface, where the undesirable background
signals significantly reduce the resolutions of the target proteins. Thus, a novel single-
molecule tracking platform named “DNA skybridge” has been designed and applied to
monitor proteins only on DNA (Figure 2a) [36]. Although the quartz barrier used in the
DNA skybridge platform has not been commercially available, it is expected that most
single-molecule tracking systems can be replaced by this surface-condition-independent
and high-throughput method in future. In some single-molecule tracking assays, C-trap
optical tweezers combining confocal fluorescence microscope have been used [37]. Instead
of DNA immobilization on a quartz surface, the C-trap captures a DNA molecule by
optical traps (Figure 2a), where the changes of DNA lengths and protein positions can be
recorded simultaneously. While the C-trap instrument is now commercially available, one
disadvantage is that only one molecule can be observed during a single experiment.

To monitor the DNA–protein interactions in real time, the fluorophore-labeled proteins
can be injected into the chamber after DNA immobilization. For single-molecule tracking,
the Cyanine (Cy3 and Cy5) and Alexa Fluor dyes, which are small probes that have
both high quantum yields and high photostabilities, are recommended. To conjugate the
protein with a fluorophore, methods include Cys-maleimide chemistry [33], hydrazinyl-
iso-pictetspengler ligation [38], and sortase-mediated reaction [39], which only introduce
small tags onto the proteins, and it has been shown that these can largely retain the
biological activities of enzymes. In contrast, the commonly used fluorescent proteins are
not recommended due to their large sizes and short lifetimes under TIRF illumination [40].
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3.3. smFRET and PIFE

Single-molecule fluorescence resonance energy transfer (smFRET) has been widely
applied in single-molecule studies. This approach uses a pair of donor and acceptor fluo-
rophores to measure the distances between two biomolecules at 1–10 nanometer scales [33]
(Figure 2b, left). Although this range of distance seems to be too narrow to observe a
protein sliding on a large DNA molecule, appropriate strategy could be employed that the
diffusion process still could be detected. For example, end blocked and Cy5-labeled DNA
substrates were immobilized under TIRF to measure the DNA-binding by Cy3-MutS [41].
The diffused Cy3-MutS on the Cy5-DNA produced an FRET efficiency that could be clearly
distinguished from the mismatch bound one. More importantly, the smFRET data have
demonstrated that the ATP binding induced the mismatch-bound MutS switching into
another mode of diffusion that had a much longer lifetime on DNA [41,42]. Later, the
conformation of this long-life MutS has been determined as a sliding clamp on DNA [24].
smFRET also has been used to observe the sliding of a single-strand DNA-binding protein
(SSB) on a single-stranded DNA (ssDNA) [43]. In this study, a ssDNA substrate containing
81 nucleotides (nt) was used, where the donor and acceptor fluorophores were separated
by 69 nt. The diffusion of SSB along the ssDNA altered the distances between the donor
and acceptor, which induced large FRET fluctuations in a millisecond timescale [44].
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Protein-induced fluorescence enhancement (PIFE) also has been employed to study
protein translocation. PIFE refers to a phenomenon when a protein binds very close to
a fluorescent dye, where the local viscosity of the dye can be changed and leads to an
increase in fluorescence intensity (Figure 2b, right). Compared with FRET, PIFE does not
require protein labeling and has a detection range from 0 to 3 nanometers [45]. Myong
et al. have constructed a 25 bp double-stranded RNA (dsRNA) with a DY547 labeled at
one end [46]. They have observed a periodic fluorescence fluctuation when ATP and RIG-I
protein were co-injected. The authors suggested that the RIG-I repetitively translocated
along the dsRNA, which resulted in PIFE during single-molecule imaging [46]. Neverthe-
less, smFRET and PIFE have shown a relatively low resolution when they were used to
determine the intermediate states of protein diffusion, and the trajectories of protein sliding
along DNA cannot be directly measured. Thus, the combinations of multiple analysis are
usually preferred.

3.4. Single-Molecule Force Spectroscopy

Single-molecule force spectroscopy approaches have emerged as useful tools to in-
vestigate the motions and forces associated with enzymatic activity. The optical tweezers,
also known as optical traps, are one of the most versatile single-molecule manipulation
techniques that can measure the force and the displacement of the trapped particle si-
multaneously with sub-nanometer resolution [47]. In a typical configuration of optical
tweezers, a tightly focused laser beam exerts radiation pressure on a small dielectric bead,
which is attached to the molecule of interest such as a DNA. In some experimental designs,
the other end of the DNA is tethered to the surface (Figure 2c, top) or a second bead for
stretching [48,49] (Figure 2c, middle). While the dsDNA maintains a longer extension
distance than the ssDNA under low force (≈2 pN), the unwinding of dsDNA can be
monitored in real time [50,51]. A DNA-binding protein, such as a polymerase, also can be
attached to the second bead (Figure 2c, bottom), where the translocation of the enzyme
on DNA can be observed [52]. Compared with other force spectroscopy methods, the
optical tweezers have a much higher spatial resolution; however, they can only measure
one molecule at a time. This drawback of low-throughput has limited its application in
protein sliding investigation.

Another type of force spectroscopy is referred to as magnetic tweezers, which utilize a
similar concept as optical tweezers. Instead of using the optical traps, magnetic tweezers
contain magnets that provide an external magnetic field to manipulate dozens of magnetic
particles simultaneously. In a general magnetic tweezers set up, a superparamagnetic bead
is tethered to one end of a DNA molecule, while the other end of the DNA is attached
to the slide surface [53] (Figure 2d, left). The external magnets are able to impart both
twist and tension to the DNA, making magnetic tweezers an excellent method to study the
motions of DNA translocases or topoisomerases [54–56]. Alternatively, a flow-stretching
set-up has been designed, where the instrument combines the magnetic force and the
drag force created by a laminar flow to hold the paramagnetic beads and stretch the
DNA (Figure 2d, right). Using the flow-stretching assay, a number of DNA molecules
have been tracked in real time, and the DNA replication, unwinding, and excision events
were studied [57–59]. Due to the large volume of the magnetic field, the magnetic force
spectroscopy is able to monitor hundreds of DNA molecules at one time but with lower
spatial and temporal resolutions.

Atomic force microscopy (AFM) generates images by scanning a small cantilever with
a sharp tip over the surface of a sample. By placing the tip in contact with the molecule of
interest and moving the surface with respect to the tip, force can be modulated precisely,
thereby changing the cantilever deflection. Cantilever deflection is further monitored by
a laser beam reflected from the sharp tip onto a position-sensing detector [60] (Figure 2e).
High-speed atomic force microscopy (HS-AFM) has been used to image the DNA–protein
complex in real time, where the protein diffusion on DNA can be visualized [61]. Neverthe-
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less, the main limitations of AFM come from the nonspecific interactions between proteins
and the surface that may suppress the sliding [61].

4. Biological Significance of Protein 1D Sliding

Protein 1D sliding has been shown to be involved in many biological processes. Here,
we summarize and discuss the significance of protein 1D sliding in biology.

4.1. Facilitation of Target Search

One of the well-recognized functions of protein 1D sliding is to accelerate the target
search process. For many DNA-binding proteins that specifically recognize particular
sequences, such as transcription factors, endonucleases, and DNA methyltransferases, the
target sites only constitute a minute fraction of the genome DNA (Figure 3a). Thus, the
target search should be highly efficient. Actually, it is the case. Some of the proteins locate
their target sites much more rapidly than the theoretical calculated one that uses a general
diffusion–collision mechanism [19]. The search process was later modeled as a two-step
event, where nonspecific protein–DNA binding first occurs and is followed by a 1D sliding
to the target site. For example, the lacI repressor [19,20], tumor suppressor p53 [11,62],
and endonucleases EcoRV, BcnI, and Endonuclease V [9,63–66] have been reported to
slide along the DNA to facilitate the target search. Interestingly, while the continuous
protein–DNA contacts without dissociation were initially believed to be essential for
the searching processes [11,63,64], further evidence have shown that the sliding was
accompanied by occasional hopping/jumping events, which helped the enzymes to locate
their target sites [9,62,65–70]. The combination of sliding with continuous DNA contacts
and hopping/jumping suggests a trade-off between speed and accuracy during the target
search [68].
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Figure 3. Biological functions of protein 1D sliding. (a) An illustration showing the process of an endonuclease targeting
a sequence-specific site among the genome by facilitated diffusion. Arrows indicate the sliding of an endonuclease to a
target site. (b) An illustration showing a helicase unwinding and rezipping on DNA. Black arrows indicate the directions of
helicase translocation. (c) An illustration showing a DNA repair protein scanning along the DNA backbone and recognizing
a damage site (red star). (d) An illustration showing the distant communications between a mismatch (red star) and an
excision/incision site via MutS and MutL sliding clamps. Arrows indicate the sliding of MutS and MutL. (e) An illustration
showing condensin binding to the DNA and extruding it as a loop to spatially organize the chromosomes.

For some proteins that rely on guide RNA for targeting, 1D sliding is considered as
lateral diffusion, which is a concept that originated from the lateral movements of lipids
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and proteins found in the membranes. Argonaute (AGO), a component of RNA-induced
silencing complex (RISC), has been shown to perform both the facilitated diffusion and
intersegmental transfer to accelerate RNA base pairing and bypass barriers [71–73]. Other
RNA-guided endonucleases, such as the CRISPR-Cas9 and CRISPR-Cas12 systems, have
been shown to slide on DNA as well [61,74,75]. However, a single-molecule study using
DNA curtains has demonstrated that the CRISPR-Cas9 frequently located its targets by 3D
diffusion [76], suggesting the contributions of 1D sliding of Cas proteins may be smaller
than that of other DNA-binding proteins.

Protein complexes also have been shown to slide along the DNA for a target search.
During homologous recombination (HR), the damaged DNA ends are first processed by
strand resection to produce 3′ ssDNA overhangs [77]. Then, RecA/Rad51 forms helical
filaments on the ssDNA, which are further aligned with a homologous dsDNA to initial
repair. This progression is referred as the “homology search” [78]. Both the facilitated
diffusion and intersegmental transfer of RecA filaments on dsDNA have been observed
during the homology search [79,80]. Moreover, a recent single-molecule study further
revealed that the Rad54 protein, a crucial HR factor that promotes strand invasion, could
act as a motor driving ATP-dependent translocation to enhance recognition efficiency in
homology search [81]. These data have demonstrated the indispensable roles of 1D sliding
in DNA recombination.

4.2. Processivity Regulation

For most polymerases and helicases, it is obvious that the protein 1D translocation
increases their processivity on DNA. However, sometimes, the 1D sliding can also stimu-
late a specific activity of the protein. For example, besides the helicase unwinding events
that have been observed in bulk assays, single-molecule techniques have determined that
many helicases undergo rezipping processes, which are enzyme-translocation-limited
strand annealing events [51,56,82] (Figure 3b). The rezipping was later found to be in-
duced by the conformational changes and strand switching of the helicase during DNA
translocation [51,56], which can be regulated by SSB binding and other processivity fac-
tors [59]. This unwinding–rezipping control may help to limit possible long-range unwind-
ing events that might lead to detrimental double-strand DNA breaks (DSBs) in cells [59].
In addition, E. coli RNA polymerase also has been found to employ a backtracking motion
to proofread RNA synthesis [83].

As mentioned above (Section 2.3), β-clamp/PCNA forms a special ring-shaped con-
formation on DNA that provides a mobile platform to tether the DNA polymerase. While
the replication sliding clamp itself usually adopts an intrinsically closed ring-like configu-
ration, a sliding clamp loader belonging to the AAA+ ATPase family first binds ATP and
recognizes the β-clamp/PCNA molecule to produce a cleft on the clamp [84]. Then, this
complex binds a primer–template junction on DNA to stimulate the ATPase activity of the
clamp loader [85,86]. ATP hydrolysis releases the loader from the β-clamp/PCNA and
DNA, leading to the closure of the β-clamp/PCNA on substrate DNA [87,88]. Studies have
demonstrated that the PCNA moves along DNA using two different sliding modes: it slides
by tracking the DNA backbone in the rotational-coupled mode, while it moves at higher
rates in the non-helical diffusion mode [89,90]. Most importantly, the replication sliding
clamp exhibits a half-life of tens of minutes on DNA that enhances polymerase processivity
by more than 1000-fold [91,92]. Other clamp-like proteins that have a long lifetime on
DNA, such as the Mre11-Rad50-Nbs1 (MRN) complex, MutS, and MutL homologs, also
have been shown to act as processivity factors during DNA repair [58,59,93,94].

4.3. DNA Duplex Interrogation

DNA damage occurs at a rate of 10,000 to 1,000,000 lesions per cell per day [95].
To maintain the stability of the genome, repair proteins have to recognize DNA lesions
efficiently. Many DNA repair proteins have been reported to scan along the DNA for
damage sites (Figure 3c), including the base excision repair protein glycosylases [96–99],
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mismatch repair protein MutS homologs [41,100], and nucleotide excision repair protein
Rad4, XPA, and UvrB [101,102]. Among these studies, it is generally believed that the 1D
sliding is used to follow the DNA backbone for lesion recognition, where a damage site
only slightly destabilizes the helical structure of a duplex DNA [41,99,100]. In other words,
the scanning processes likely involve rotation-coupled diffusions along the DNA helix,
while the proteins are in continuous contact with the duplex DNA [41,103].

4.4. Distant Communications

In DNA repair pathways, 1D sliding has been employed to mediate the communica-
tions between multiple proteins. DNA mismatch repair (MMR) is an excision–resynthesis
system that corrects mismatched nucleotides or insertion-deletion loops to maintain ge-
nomic stability [104]. While the MutS and MutL homologs are responsible for MMR
initiation, the highly specific downstream MMR events rely on the distant communications
between a mismatch and a strand discrimination site [105]. Although it has been previously
established that the MutL homologs mediate multiple protein–protein interactions to con-
nect mismatch recognition with strand incision/excision [106,107], the mechanism has not
been revealed until recently. Single-molecule studies showed that MMR began with mispair
search by a MutS dimer, where mismatch recognition triggered the formation of an ATP-
bound MutS sliding clamp [25,41]. In E. coli that evolved DNA adenine methylation (Dam)
and MutH as strand discrimination sources, MutS sliding clamps recruited MutL dimers
onto the DNA by forming MutS–MutL complexes, where a single N-terminal domain
(NTD) of MutL associated with MutS [24,108]. ATP binding induced the dimerization of
MutL NTDs, leading to the formation of a MutL sliding clamp on the mismatched DNA [24].
Subsequently, the MutL sliding clamp recruited MutH endonuclease to introduce multiple
strand breaks on the newly replicated strand as well as directed UvrD helicase to displace
the error-containing DNA [24,59]. During E. coli MMR, both the MutS and MutL homologs
utilize multiple sliding modes to achieve their functions: (1) Before mismatch recognition,
MutS performs 1D diffusion along the DNA to search for a damage site [41]; (2) ATP-bound
MutS adopts a similar configuration as β-clamp/PCNA to diffuse freely and maintain a
long lifetime on DNA, which enables the loading of multiple MutS molecules from a single
mismatch [109]; (3) The MutS–MutL complex moves with rotation-coupled diffusion along
the DNA to have the MutL warped around the DNA helix [24]; (4) ATP binding induces
the formation of a MutL ring-like clamp on DNA, where the MutL clamp slides with an
extremely long lifetime on DNA to help MutH endonuclease search for a hemi-methylated
site, as well as facilitate the UvrD helicase to excise the mis-incorporated strand [24,59]
(Figure 3d). Another example of distant communications by 1D sliding is the PARP1, the
member of the poly(ADP-ribose) polymerases (PARPs) family. The PARP1 undergoes
auto-PARylation after damage recognition, which decreases the affinity of PARP1 for the
lesion. This allows the protein to slide on DNA and thus facilitates the recruitment of other
repair proteins [110].

4.5. Loop Extrusion

Large chromosomes are spatially organized as chromatin loops to promote and reg-
ulate important cellular functions, such as gene expression, replication, and segregation.
Chromatin loops are formed by a process referred as “loop extrusion”, where the structural
maintenance of chromosome (SMC) complexes (for example, condensin and cohesin) bind
to the chromatin and extrude it as a loop [111] (Figure 3e). Recently, the DNA sliding of
condensin and cohesin has been directly observed by single-molecule imaging [16,112,113].
Evidence supported that the ATP-hydrolysis-driven 1D translocations of condensin pulled
the DNA into a foci, while flow stretching further demonstrated the formations of extruded
loops at the foci [112,113]. Similar observations have been made for the cohesin, which
established the cohesin–NIPBL as an ATP-driven molecular motor translocating along
dsDNA [114–116].
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5. Conclusions and Perspectives

Evolving experimental approaches, such as single-molecule techniques, as well as
the computational modeling that have not been discussed here [117], have expanded our
knowledge of how proteins modulate their motions on DNA. However, limitations remain
in many single-molecule studies. For example, it seems to be difficult to image protein
sliding with both high-resolution and high-throughput approach in a single experiment.
Single-molecule tracking, which can monitor hundreds of individual molecules at one
time, has a relatively low spatial resolution (about 200–300 nanometers). In contrast, opti-
cal tweezers usually retain a high spatial resolution (sub-nanometer) but only can study
one molecule at a time. Another limitation among these studies is the use of DNA sub-
strates that might be lack of physiological relevance. Most of the investigations employed
stretched and naked DNA to image protein 1D sliding. These substrates are obviously
different from the genomic DNA in cells that appear to be tangled and wrapped by nucle-
osomes. Future studies should focus on the preparation of DNA samples that are more
physiologically relevant.

While the 1D sliding has been observed for many DNA-binding proteins, sometimes,
it is still unclear if these motions are indispensable for their biological functions. Future
investigations should focus on protein functional studies other than simply reporting the
1D sliding phenomenon. For instance, to figure out whether the facilitated diffusion is
essential for the target search, mutations should be generated to exclusively abolish the
diffusion process but retain the catalytic activity of the protein of interest. Alternatively,
obstacles could be introduced on DNA to specifically hinder protein 1D diffusion. Next,
quantitative functional assays can be performed to evaluate the contributions of facilitated
diffusion during target search.

Understanding the mechanisms of protein 1D sliding can also help to identify and
predict mutations that cause human diseases. A recent study of human MLH1-PMS2 has
demonstrated that the heterodimers employ the N-terminal ATP-binding domains, the
C-terminal dimerization domains, and flexible linkers to form a closed ring-like clamp
diffusing along the DNA [27]. Mutations on the N- and C-terminal domains that disrupt
the sliding clamp formation result in the loss function of MLH1-PMS2, which leads to
Lynch Syndrome in humans [27]. In contrast, the MLH1–PMS2 disordered linkers primarily
supply the flexibility to wrap around the DNA; thus, no pathogenic missense mutation
within the linker domain has been found [27].

Although a lot of challenges remain, future studies that are capable of deciphering
how protein 1D sliding promotes the efficiency and specificity of a biochemical reaction
likely offer the potential for resolving complicated biological problems, such as the MMR
distant communications that are mediated by multiple sliding clamps.
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