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Abstract: Most recently, a technology termed TRIM-Away has allowed acute and rapid destruction
of endogenous target proteins in cultured cells using specific antibodies and endogenous/exogenous
tripartite motif 21 (TRIM21). However, the relatively large size of the full-size mAbs (150 kDa) results
in correspondingly low tissue penetration and inaccessibility of some sterically hindered epitopes,
which limits the target protein degradation. In addition, exogenous introduction of TRIM21 may
cause side effects for treated cells. To tackle these limitations, we sought to replace full-size mAbs
with the smaller format of antibodies, a nanobody (VHH, 15 kDa), and construct a new type of
fusion protein named TRIMbody by fusing the nanobody and RBCC motif of TRIM21. Next, we
introduced enhanced green fluorescent protein (EGFP) as a model substrate and generated αEGFP
TRIMbody using a bispecific anti-EGFP (αEGFP) nanobody. Remarkably, inducible expression
of αEGFP TRIMbody could specifically degrade intracellular EGFP in HEK293T cells in a time-
dependent manner. By treating cells with inhibitors, we found that intracellular EGFP degradation by
αEGFP TRIMbody relies on both ubiquitin–proteasome and autophagy–lysosome pathways. Taken
together, these results suggested that TRIMbody-Away technology could be utilized to specifically
degrade intracellular protein and could expand the potential applications of degrader technologies.

Keywords: TRIM21; nanobody; TRIMbody; TRIM-away; TRIMbody-away; targeted protein degradation

1. Introduction

Protein depletion or degradation technologies are widely used for researchers to
understand the biological functions of intracellular proteins, which could be achieved by
either interfering with protein synthesis or inducing protein degradation for controlling
intracellular protein levels [1]. Traditional ways to disturb protein synthesis include manip-
ulations of gene sequences by CRISPR/Cas9 genome editing technology, targeting mRNA
transcripts by RNA interference (RNAi), and morpholino antisense oligonucleotides [2–5].
However, protein depletion by those approaches is indirect and depends on the inherent
turnover of the protein, which may be time-consuming or result in depletion resistance for
some long-lived proteins. To induce direct degradation of a protein of interest, a number
of approaches have been designed harnessing the power and specificity of the intracellu-
lar protein degradation machinery, such as proteolysis-targeting chimaeras (PROTACs),
lysosome-targeting chimaeras (LYTACs), dTAGs, chaperone-mediated autophagy targeting,
and non-genetic IAP-dependent protein erasers (SNIPERs) [6–10]. All of these approaches

Biomolecules 2021, 11, 1512. https://doi.org/10.3390/biom11101512 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-5993-8288
https://doi.org/10.3390/biom11101512
https://doi.org/10.3390/biom11101512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11101512
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11101512?type=check_update&version=1


Biomolecules 2021, 11, 1512 2 of 15

have limitations, and their successful application depends on the protein of target and the
experimental model of choice.

Recently, a technology termed TRIM-Away has been developed to acutely and rapidly
degrade endogenous proteins in mammalian cells without change of the genome or mRNA
expression level, using anti-target antibodies and TRIM21, which belongs to the TRIM
(tripartite motif-containing) family [11,12]. The large majority of TRIM family proteins
contain an N-terminal RBCC motif [13–15], followed by C-terminal domains of various
length and diverse composition that are often used to target specific substrates and mediate
diverse functions [16,17]. The structural arrangement of the RBCC motif is highly conserved
within the TRIM protein family, while the C-terminal region is highly variable [18,19], of
which the most common is the PRY-SPRY domain, also known as the B30.2 domain. TRIM21
has a mass of 54 kDa and consists of an N-terminal RBCC motif and a C-terminal PRY-SPRY
domain [20,21]. The RBCC motif includes a RING domain with E3 ubiquitin ligase activity,
a B-box domain, and a coiled-coil dimerization domain [22,23]. The PRY-SPRY domain
binds to the Fc fragment of immunoglobulin with high affinity [24–26]. Therefore, TRIM-
Away technology mainly relies on antibodies entering cells, where they recognize the target
protein and bind to TRIM21, leading to substrate ubiquitination and degradation [27].
However, the conventional antibodies had relatively large size (150 kDa), which results
in correspondingly low tissue penetration and inaccessibility of some sterically hindered
epitopes [28,29], and limits the degradation efficacy of target protein in cells.

An attractive alternative is using smaller antibody fragments to replace full-size mAbs.
Single-domain antibodies (sdAbs), also designated as VHHs or nanobodies, have a small
size with only 15 kDa, resulting in unique advantages compared to mAbs, including larger
number of accessible epitopes, relatively lower production costs, and improved biophysical
properties [30,31]. Thus, we constructed a new type of fusion protein, designated as TRIM-
body, by fusing the truncated form of TRIM21 with the nanobody. The truncated TRIM21
retained only the N-terminal RBCC domain and deleted the C-terminal PRY-SPRY domain.
Therefore, TRIMbody possesses the functions of TRIM21 and mAbs, but has relatively
small size. In this study, αEGFP TRIMbody, composed of a bispecific anti-EGFP (αEGFP)
nanobody and truncated TRIM21, effectively degrade EGFP in cells that stably express
EGFP protein in cytosol, whatever αEGFP TRIMbody is transient or inducible expressed.
Moreover, we found both proteasome inhibitor and autophagy–lysosome inhibitor treat-
ment could lessen the target protein degradation by αEGFP TRIMbody, indicating the
TRIMbody function depends on both the proteasome and autophagy–lysosome pathways.
Therefore, this TRIMbody-based protein degradation is designated as TRIMbody-Away
technology, which could expand the landscape of the applications of degrader technologies
and provide an alternative approach for potential therapeutic benefit in future.

2. Materials and Methods
2.1. Plasmids

HLTV-hTRIM21 (Addgene, Watertown, USA, 104973) and pHR-LaG16-LaG2
(Addgene, Watertown, USA, 85421) were purchased from Addgene. C-terminal His6-
Flag tagged HLTV-αEGFP TRIMbody was generated by subcloning RBCC motif of TRIM21
and LaG16-LaG2 fragment into the HLTV expression vector (BamHI-EcoRI) using ClonEx-
press MultiS One Step Cloning Kit (Vazyme, Nanjing, China, C113-01). RBCC-LaG16-LaG2
(αEGFP TRIMbody) was then subcloned into a “all-in-one” tetracycline-inducible promoter
construct (pTet-on-3G) using the BamHI and EcoRI sites. The LaG16-LaG2 gene was cloned
into the pComb3x phagemid and the EGFP gene was cloned into the pET-28a as described
above. pUg-EN2-EGFP was made by cloning the EGFP fragment into lentiviral vector
pUg-EN2. All new constructs in this study were verified by DNA sequencing. The plas-
mids psPAX2 and pMD2.G were a kind gift from Shibo Jiang (Fudan University, Shanghai,
China). The recombinant vector was transformed into Top10 or Stbl3 competent cell for
propagation.
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2.2. Expression and Purification of TRIM21 and TRIMbody

The recombinant vector plasmids were used for transformation of E. coli strain
C43(DE3) pLysS cells. A single and freshly transformed colony was added to 4 mL 2× YT
medium with 100 µg/mL ampicillin, 34 µg/mL chloromycetin, and 2% (wt/vol) glucose,
incubated at 37 ◦C with vigorous shaking at 250 rpm for 3~4 h, and then transferred into
200 mL of SB medium with 100 µg/mL ampicillin for continued incubation until optical
density of the culture at 600 nm reached 0.6~0.8 (after 3~4 h). Next, IPTG (isopropyl-1-
thio-β-d-galactopyranoside) was added to a final concentration of 1 mM to induce protein
expression, and the culture was further incubated overnight at 22 ◦C, 250 rpm. Bacte-
ria were collected by centrifugation at 8000 rpm for 10 min and re-suspended in 30 mL
Ni-NTA Binding Buffer (0.1 mol/L PBS, 0.5 mol/L NaCl, pH 8.0). The bacteria solution
was lysed by sonication and clarified by centrifugation at 8000 rpm for 10 min at 4 ◦C.
The resulting supernatant was further purified using Ni-NTA column (Cytiva, Stockholm,
Sweden, 17526802) according to the manufacturer’s protocol. The protein concentration
was measured spectrophotometrically, and the degree of protein purity was determined by
SDS-PAGE.

2.3. Size Exclusion Chromatography (SEC)

Protein samples (TRIM21 and TRIMbody) were prepared at concentrations of 250 µg/mL
in HEPES buffer. Each sample (500 µg) was injected onto an analytical SuperdexTM

200 Increase 10/300 GL column (Cytiva, Stockholm, Sweden, GE28-9909-44) connected
to an FPLC ÄKTA BASIC pH/C system (GE Healthcare, Stockholm, Sweden, avant 150).
HEPES (25 mM HEPES, pH 7.5, 200 mM NaCl) was used as the running buffer at the flow
rate 0.5 mL/min, and the eluted proteins were monitored at 280 nm. A minimum of three
independent experiments was performed. All proteins were stored in 20 mM Tris (pH 8.0),
150 mM NaCl, 1 mM DTT.

2.4. Binding ELISA

An enzyme-linked immunosorbent assay (ELISA) was used to determine the binding
capability of the αEGFP TRIMbody to EGFP. EGFP and LaG16-LaG2 were expressed in
E. coli BL21. Purified EGFP protein was coated on 96-well Costar half-area high-binding
assay plates (Corning, Kennebunk, USA, 3690) overnight at 100 ng/well in PBS overnight
at 4 ◦C, and blocked with 100 µL per well of 3% (w/v) blocking buffer (PBS with 3% BSA) at
37 ◦C for 1 h. The plates were washed with PBS with 0.05% Tween 20 (PBST), then threefold
serial dilutions of αEGFP TRIMbody (RBCC-LaG16-LaG2), TRIM21 (RBCC-PRY-SPRY),
αEGFP nanobody (LaG16-LaG2), and αHBsAg TRIMbody (RBCC-G12-scFv) were added
and incubated at 37 ◦C for 1.5 h. Plates were washed five times with PBST and 50 µL of
1:1000 HRP conjugated anti-Flag antibody (Sigma-Aldrich, St. Louis, USA, A8592) in PBS
were added per well before incubation at 37 ◦C for 45 min. After extensive washes with
PBST, the binding activity was measured with the subsequent addition of diammonium
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) substrate (Roche Applied Sci-
ence, Mannheim, Germany, 11684302001) and the optical density of each well was read at
405 nm (OD405) using a Microplate Spectrophotometer (Biotek, Winooski, USA, Epoch).

2.5. Cell Culture and Transient Transfection

HEK293T cell lines were purchased from ATCC and maintained in Dulbecco’s modi-
fied Eagle’s medium (high glucose) supplemented with 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin (10,000 units/mL) at 37 ◦C and 5% CO2. HEK293T cell lines
were authenticated to be mycoplasma-negative using a Myco-Lumi™ Luminescent My-
coplasma Detection Kit (Beyotime, Shanghai, China, C0297S). HEK293T-EGFP cells were
transient transfected with the appropriate plasmids using the LipofectamineTM 2000 Trans-
fection Reagent (Invitrogen, Carlsbad, USA, 11668-019) according to the manufacturer’s
instructions.
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2.6. Generation of Cell Lines Stably Expressing EGFP and TRIMbody

Lentivirus was produced by co-transfection of HEK293T cells with a lentiviral transfer
vector and packaging plasmids (psPAX2 and pMD2.G). Transfection was performed using
PEIpro Transfection Reagent (Polyplus, Strasbourg, France, 115-0015) according to the
manufacturer’s instructions. Cell culture supernatants were collected 48 h after transfection,
filtered through a 0.45 µm filter, and added to trypsinized recipient cells (1 mL viral
supernatant per well in a 6-well plate) supplemented with polybrene (8 µg/mL). The
packaged viruses were used to transduce HEK293T-EGFP cells and HEK293T-EGFP/Tet-
On-3G-αEGFP TRIMbody cells. HEK293T-EGFP-positive population of cells were sorted
by flow cytometry from fluorescence-activated cell sorting (FACS) on a BD FACSAria IIu
using 405 nm lasers to isolate a low-level expressing EGFP-positive population of cells.
HEK293T-EGFP cells engineered with the Tet-On-3G-αEGFP TRIMbody expression system
were obtained by G418 selection (700 µg/mL) and then the surviving cells were seeded at
0.8 cells/well in 96-well plates for single-colony amplification. After 2 weeks in culture,
single colonies were picked and split between two 48-well plates on separate plates. One
half of monoclonal cell strains were first treated with 10 µg/mL of Doxycycline (Dox,
Sigma Aldrich, St. Louis, USA, D9891) for 48 h to induce αEGFP TRIMbody expression and
αEGFP TRIMbody-positive cells were selected by fluorescence microscopy screening. The
other half of Tet-on-αEGFP TRIMbody-positive monoclonal cell strains were maintained
and amplified using DMEM supplemented with 10% FBS without Dox addition for further
characterization experiments.

2.7. Flow Cytometry Analysis

To analyze EGFP expression, cells were dissociated into single cells then added at a
1:2 v/v ratio to DMEM with 10% FBS. Data were collected on a BD FACSCalibur flow
cytometer with a 488 nm laser for excitation and detection in the FITC channels and
analyzed using FlowJo V10. FACS gating was based on the corresponding untreated cell.

2.8. Induction of αEGFP TRIMbody Expression with Doxycycline

293T-EGFP/Tet-On-3G-αEGFP TRIMbody cells were plated at a density of 30% conflu-
ence on plates in DMEM. After 24 h of seeding once the colonies have attached, 10 µg/mL
of Dox was added to the medium and cells were cultured for 72 h replenishing with fresh
Dox-containing medium every 24 h. To test for induction of αEGFP TRIMbody expression,
control and test cell lines were harvested at the indicated times for protein extraction or
fixed for immunostaining.

2.9. Laser Scanning Confocal Microscope and Live Cell Imaging

A laser scanning confocal microscope (Leica, Wetzlar, Germany, TCS-SP8) equipped
with a 60× phase contrast oil immersion objective (numerical aperture = 1.0) was used to
monitor the distribution and alteration of EGFP fluorescent signals from 293T-EGFP/Tet-
on-αEGFP TRIMbody cells after treating with Dox. 293T-EGFP/Tet-On-αEGFP TRIMbody
cells were cultured on 15 mm glass bottom culture dishes (Nest, Wuxi, China, 801002) and
plated at a density of 30% confluence on plates in DMEM medium. After 24 h of seeding,
10 µg/mL of Dox was added to the medium and cells were cultured for 72 h replenishing
with fresh Doxycycline-containing medium every 24 h. All live cell imaging was carried
out on a DeltaVision Elite high-resolution cell imaging system (GE Healthcare), equipped
with a 60× phase contrast oil immersion objective and live cell imaging environment
control system (Live Cell Instrument). Approximately 3 × 105 293T-EGFP/Tet-on-αEGFP
TRIMbody cells were seeded into each well of 4-chamer 35mm glass bottom dish with a
20 mm microwell (Cellvis, Hangzhou, China, D35C4-20-1-N) in the presence or absence
of Dox. The chamber was supplemented with 5% CO2 and maintained at 37 ◦C with a
microscope stage heater. After 24 h of seeding, scattering distributed 293T-EGFP/Tet-on-
αEGFP TRIMbody cells were filmed for 6 h. Time series images of EGFP fluorescence were
captured in 15 min intervals and then merged for visualization by softWoRx 6.5.
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2.10. Immunostaining

Glass coverslips was put into 6-well plate, and 3 × 105 cells were seeded on coverslips.
Cells were fixed with 4% paraformaldehyde for 15 min at room temperature and then
permeabilized with 0.3% Triton-X 100 and then blocked with 3% BSA for 1 h at room
temperature. Post blocking, cells were incubated with the anti-Flag primary antibody
(Yeasen, Shanghai, China, 30503ES20) overnight at 4 ◦C, then washed with PBS at room
temperature and incubated with secondary antibody conjugated to Alexa® Fluor 594
(Yeasen, Shanghai, China, 33212ES60) for 1 h at room temperature. The cells were washed
and stained using Hoechst 33,342 (Yeasen, Shanghai, China, 40731ES10) to visualize the
nuclei. A laser scanning confocal microscope (Leica, Wetzlar, Germany, TCS-SP8) was also
used to investigate the colocalization of EGFP and αEGFP TRIMbody; this instrument is
equipped with a 405 nm violet laser, a 488 nm blue laser, a 561 nm green laser, and a 639 nm
red laser.

2.11. Protein Extraction and Western Blot Assay

For Western blot analysis, cells at the indicated times were pelleted, washed with
1×PBS, then lysed with RIPA buffer supplemented with protease inhibitor cocktail
(Beyotime, Shanghai, China, P1010), phosphatase inhibitor cocktail (Beyotime, Shanghai,
China, P1050), and 0.1% benzonase nuclease (Beyotime, Shanghai, China, D7121) on ice for
30 min and clarified by centrifugation at 10,000 rpm for 20 min at 4 ◦C and the supernatant
fractions were collected. Total protein concentration was estimated using BCA protein
assay kit (Pierce, Rockford, USA, 23227) and equivalent amounts (10 µg) of lysate were
electrophoresed on 12% SDS-PAGE gel. Color Prestained Protein Standard was used to
determine molecular weight. The gel was electro-blotted onto PVDF membrane (Merck Mil-
lipore, Carrigtwohill, Ireland, ISEQ00010) and blocked in TBS-T with 5% non-fat dried milk
for 1 h at room temperature with gentle shaking. Membranes were incubated with primary
antibodies at 4 ◦C overnight with gentle shaking, then washed three times with PBS-T. The
membrane was then incubated with appropriate HRP-conjugated secondary antibodies in
blocking buffer (TBS) for 1 h at room temperature with gentle shaking. Membranes were
washed three times with PBS-T, blots were developed with enhanced chemiluminescence
(ECL), and signals were captured with the chemiluminescence imaging system (Tanon,
Shanghai, China, 5200).

2.12. RNA Isolation/cDNA Synthesis and Quantitative Real-Time PCR (qRT-PCR) Assay

Total RNA was extracted from cells by TRIzol reagent (Life Technologies, Austin, USA,
15596-026) following the manufacturer’s instructions. Ten micrograms of total RNA were
converted to cDNA by performing reverse transcription PCR (RT-PCR) using PrimeScript™
RT reagent kit (TaKaRa, Dalian, China, RR037A). β-actin was used as internal reference
genes for normalization. Quantitative real-time PCR was performed using a CFX Connect
Real-Time PCR system (Bio-Rad) with a TB Green® Premix Ex Taq™ Kit (TaKaRa, Dalian,
China, RR420A) using the following protocol: pre-denaturation at 95 ◦C for 2 min; followed
by 40 cycles of 5 s at 95 ◦C for denaturation and 30 s at 60 ◦C for annealing. At the end of
the PCR cycles, melting curve analysis was performed to validate the specificity of the PCR
products generated for each set of primers. Three technical replicates of each cDNA sample
were collected. The primer sequences used for cDNA amplification (5′~3′) are listed in
Table S1. The relative quantification method (2−∆∆CT) was used to evaluate quantitative
variation between replicates examined.

2.13. Statistical Analysis

Statistical analyses were performed using Prism software (Version 8, GraphPad soft-
ware). Error bars depict the SD or SEM as indicated. Statistical significance was calculated
using an unpaired, two-tailed Student’s t test and depicted at the levels of * p < 0.05,
** p < 0.01, and *** p < 0.001.
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3. Results
3.1. αEGFP TRIMbody has High Binding Activity to EGFP Protein In Vitro

TRIM21 belongs to the TRIM protein family and consists of a classic N-terminal RBCC
motif and C-terminal PRY-SPRY domain. Among them, the RBCC motif can target protein
to the proteasome via its E3 ubiquitin ligase activity and PRY-SPRY domain mediates
immunoglobulin Fc fragment binding in a pincer-like interaction [32–34] (Figure 1a). To
generate a new construct with both protein degradation activity and antibody-binding
specificity, we fused the RBCC motif of TRIM21 to a nanobody that can bind to a targeted
antigen. The corresponding protein was designated as TRIMbody, and the system was
described as TRIMbody-Away. As shown in Figure 1b, TRIMbody is a multi-domain
protein consisting of an N-terminal RING domain with E3 ubiquitin ligase activity, a B-box
domain, a coiled-coil dimerization domain, and a C-terminal nanobody fragment which
specifically recognizes intracellular proteins of interest.
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C-terminal bispecific anti-EGFP (αEGFP) nanobody (LaG16-LaG2). (d) Coomassie-stained gel shows TRIM21 and αEGFP
TRIMbody proteins. Lane 1, protein molecular weight marker 1 (5~270 kDa); Lane 2, TRIM21; Lane 3, αEGFP TRIMbody;
Lane 4, protein molecular weight marker 2 (10~250 kDa). (e) Size exclusion chromatography of αEGFP TRIMbody and
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Nanobody, and αHBsAg TRIMbody to EGFP were evaluated by ELISA. The EGFP were coated on ELISA plates, and
HRP-conjugated anti-Flag antibody was used for detection of binding TRIM21, αEGFP TRIMbody, αEGFP Nanobody, and
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To test whether TRIMbody could mediate degradation of the target protein, we chose
EGFP protein as a proof-of-concept substrate. The previously reported nanobodies against
EGFP, LaG16 and LaG2 were selected [35,36] and designed for bispecific anti-EGFP (αEGFP)



Biomolecules 2021, 11, 1512 7 of 15

nanobody. Then, an αEGFP TRIMbody was generated that comprised of an RBCC domain
and bispecific αEGFP nanobody (Figure 1c). αEGFP TRIMbody could also be expressed as a
soluble form in E. coli with the help of Lipoyl, as well as TRIM21. By analysis of SDS-PAGE,
purified TRIM21 and αEGFP TRIMbody proteins exhibited major bands with molecular
weights of 66 and 77 kDa, respectively (Figure 1d). Next, we examined the oligomeric
state of the αEGFP TRIMbody by SEC analysis. The elute volume for αEGFP TRIMbody
was determined at 10.3 mL, and 10.4 mL for purified TRIM21 protein, confirming that
the αEGFP TRIMbody and TRIM21 have been correctly expressed (Figure 1e). Further,
we measured the binding ability of αEGFP TRIMbody to EGFP by ELISA. Furthermore,
a single-chain fragment of G12 antibody that recognizes HBsAg of HBV was used to
generated αHBsAg TRIMbody and served as a negative control. We observed that the
bispecific anti-EGFP nanobody (LaG16-LaG2) has a EC50 value of 2.40 nM in EGFP binding,
while the αEGFP TRIMbody showed more evident binding activity to EGFP, with an EC50
value of 0.63 nM (Figure 1f), which could be due to dimerization of TRIM21 leading to
enhanced binding avidity. Remarkably, there was no obvious EGFP binding activity for
negative controls.

3.2. Degradation of Intracellular EGFP by Inducible Expression of αEGFP TRIMbody

Based on the EGFP binding by αEGFP TRIMbody, we next investigated its target
protein degradation function in EGFP-expressing cells. To obtain the stably expressing
EGFP cell lines, we performed live cell FACS sorting of 293T cells infected with lentivirus
to isolate EGFP-positive cells, and the sorted cells were kept growing and still showed
that 99.9% of the population are EGFP-positive at least for five passages, suggesting
that expression of EGFP in 293T cells is relatively stable (Figure 2a). Expressing vectors
with αEGFP TRIMbody were transiently transfected into EGFP stably expressing 293T
cells, and then EGFP fluorescence intensity of cells at the indicated time was determined
and analyzed via flow cytometry analysis. Meanwhile, vector, RBCC only, TRIM21 only,
αEGFP nanobody, and αHBsAg TRIMbody were used as the controls. We observed that
transfection of αEGFP TRIMbody resulted in significant decrease in EGFP fluorescence at
24 and 48 h in a time-dependent manner, but the fluorescence has no significant decrease
at 72 h compared with 48 h, which may result from dilution loss of transfected αEGFP
TRIMbody plasmid due to transient transfection, leading to insufficient expression of
αEGFP TRIMbody protein in cells, or compensatory supply of EGFP protein by constitutive
expression of EGFP. In contrast, transfection of RBCC, TRIM21, and αEGFP nanobody
showed no decrease of the fluorescence (Figure 2b), suggesting that the RBCC domain and
αEGFP nanobody failed to trigger intracellular EGFP degradation. Moreover, we found
that αHBsAg TRIMbody, which was confirmed to have no EGFP binding ability in ELISA
(Figure 1f), also did not induce intracellular EGFP degradation in EGFP-expressing 293T
cells (Figure 2b). The results showed that the combination of the RBCC domain and specific
antibody are necessary for degradation of intracellular EGFP.
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Figure 2. Degradation of EGFP by αEGFP TRIMbody. (a) Stable expressing EGFP 293T cell lines were analyzed by flow
cytometry. At least 15,000 cells were counted for each experiment. Percentages correspond to EGFP-positive cells falling
within the gate were drawn. (b) EGFP expressing was decreased in cells after αEGFP TRIMbody transfection. Error
bars indicate standard deviations (n = 3). (c) The inducible expression of αEGFP TRIMbody by Dox treatment in stable
HEK293T-EGFP cells caused EGFP degradation. Scale bars, 25 µm. (d) Mean fluorescence intensity of EGFP in cells
untreated or treated with Dox. Mean fluorescence intensity was measured using flow cytometry and indicated by bar
graphs (n = 3 replicates per group). Data represent the mean ± SEM. *** p < 0.001 represents statistical significance.
(e) Subcellular localization of αEGFP TRIMbody and EGFP in αEGFP TRIMbody-inducible and EGFP-stable expressing
cells. Nuclei were stained with Hoechst 33342; green represents the EGFP protein, red represents the αEGFP TRIMbody
tagged with anti-Flag antibody conjugated-Alexa® Fluor 594. White arrows indicate co-localization of EGFP and αEGFP
TRIMbody in cytosol of the cells. Scale bars, 7.5 µm. (f,g) The degradation of EGFP was determined by Western blot
analysis. Cells were treated with Dox for 72 h and equal amounts of cell lysates (10 µg) were loaded in each well. Through
immunoblotting with anti-Flag antibody, the relative optical density of bands on the blots was analyzed by software. Values
are the mean ± SEM (n = 3/group). Statistical significance between ligands were determined using a two-way ANOVA test.
*** p < 0.001 versus control.

Additionally, to avoid instability and side effects of transient transfection, the inducible
expression of αEGFP TRIMbody by Doxycycline (Dox) treatment in stably expressing EGFP
cells was constructed using the Tet-On-3G system and further degradation of EGFP was
measured by confocal laser scanning microscope or flow cytometry. This system was
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sensitive to Dox treatment and the optimal Dox concentration was 10 µg/mL (Figure S1).
Fluorescence images of cells showed that EGFP was universal and stably expressed and
mainly located in the cytoplasm. Notably, αEGFP TRIMbody was not expressed in cells
under no Dox treatment, while addition of Dox caused αEGFP TRIMbody expression that
co-localized with EGFP (Figure 2e), suggesting that αEGFP TRIMbody can be successfully
induced and bound to EGFP via the specificity of the anti-EGFP nanobody. Following Dox
addition, EGFP aggregated quickly in cytosol with a spotty pattern at 24 h. In contrast, no
significant difference of EGFP was observed without Dox treatment (Figure 2c). Moreover,
the quantitative EGFP fluorescence of cells after Dox induction was measured to assess the
efficacy of induced αEGFP TRIMbody for EGFP degradation. Cells were treated with Dox
and then fixed in 4% paraformaldehyde, and the EGFP fluorescence was analyzed via flow
cytometry. The EGFP fluorescence was decreased by 25% at 24 h and had a 67% reduction
after 48 and 72 h (Figure 2d). Next, we examined the EGFP and αEGFP TRIMbody protein
level after Dox treatment by Western blot analysis and found that αEGFP TRIMbody
proteins in cells were induced and kept stably expressed at 24, 48, and 72 h (Figure 2f,g). As
for EGFP protein levels, no significant difference was observed in the absence of Dox. By
contrast, substantial degradation of EGFP in Dox-treated groups was observed, with 40%
reduction at 24 h and 60% decrease at 48 and 72 h after Dox addition (Figure 2g), indicating
that intracellular EGFP degradation was subject to Dox induction and αEGFP TRIMbody
expression.

3.3. Dynamic Examination of EGFP Degradation and Accompanying Fluorescent Puncta within
24 h after αEGFP TRIMbody Induction

Due to the fact that there was a significant decrease of EGFP protein level at 24 h
induction by Dox, we expected that the αEGFP TRIMbody-mediated EGFP degradation
process may happen earlier. Therefore, to further characterize the EGFP degradation dy-
namic pattern and visualize EGFP fluorescence puncta over time upon αEGFP TRIMbody
expression, cells were exposed to Dox or vehicle for as long as 24 h and imaged every
6 h using a laser scanning confocal fluorescence microscope (Figure 3a). Meanwhile, we
quantified the EGFP fluorescence intensity of cells by flow cytometry analysis (Figure 3b).
The punctate EGFP was observed 6 h later by Dox induction and the EGFP fluorescence
signal was significantly decreased after 12 h of Dox treatment, reaching maximal reduction
of 30% of EGFP fluorescence intensity compared to control at 24 h (Figure 3a,b). Next,
EGFP fluorescent puncta was examined from fluorescent images using ImageJ software
and we observed it appear as early as 6 h in Dox-treated cells (Figure 3c). Additionally,
the puncta area increased dramatically by at least 60-fold compared to controls at 12 and
24 h of Dox treatment (Figure 3d). We speculate that formation of EGFP puncta upon Dox
treatment may be due to of EGFP in cytosol through αEGFP TRIMbody induction and
recruitment.

Furthermore, we assessed the EGFP and αEGFP TRIMbody protein level by Western
blot analysis and found that EGFP significantly reduced at 24 h of Dox treatment, but not
for 6, 12, and 18 h of Dox induction (Figure 3e,f). Meanwhile, αEGFP TRIMbody was
successfully induced at 6 h of Dox treatment, reaching to higher levels after adding Dox for
12 to 24 h. We noticed that the EGFP puncta appeared at 6 h of Dox treatment, accompanied
with induction of αEGFP TRIMbody, and followed by the reduction of the EGFP fluores-
cence signal. Finally, the EGFP protein level was detected to decrease at 24 h of induction.
These results implied that EGFP degradation happened with the formation of puncta,
which may be through αEGFP TRIMbody-mediated intracellular EGFP aggregation, then
followed by change of conformation of EGFP, leading to reduction of the fluorescence
signal, finally destructed by the RBCC domain-involved degradation pathway. In addition,
we performed live-cell imaging on cells and observed the dynamic process of degradation
of intracellular EGFP during αEGFP TRIMbody induction (Videos S1 and S2).
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Figure 3. Characterization of αEGFP TRIMbody temporal expression pattern. (a) Laser scanning confocal fluorescence
microscopy images showed the change in EGFP expression over time with and without Doxycycline. Scale bars are
25 µm. (b) Mean fluorescence intensity of EGFP in cells that were untreated or treated with Dox. Mean fluorescence
intensity is measured using flow cytometry and indicated by bar graphs (n = 3 replicates per group). Data represent the
mean ± SEM. The ns represents no significance, * represents p < 0.05, and *** represents p < 0.001. (c) EGFP fluorescent
puncta was examined from fluorescent images using ImageJ software. (d) Relative EGFP puncta area of autophagosomes
or autolysosomes was measured using ImageJ software. Statistical analysis of the puncta area of autophagosomes and
autolysosomes per cell were samples from a pool of at least 3 images. Data represent the mean ± SEM. ns represents
no significance, *** represents p < 0.001. (e) Western blotting analyzed EGFP and αEGFP TRIMbody levels in the total
cell lysate at the indicated times. Equal amounts of cell lysates (10 µg) were loaded in each well and immunoblotted
with anti-Flag antibody. (f) Graphs show statistic results from relative optical density of bands on the blots. Values are
the mean ± SEM. (n = 3/group). Statistical significance between ligands was determined using a two-way ANOVA test.
** p < 0.01, versus control.
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3.4. TRIMbody Induces Intracellular Protein Degradation through the Proteasome and
Lysosomal Pathway

As mentioned above, the RBCC domain of TRIM21 has E3 ligase activity. To test
whether αEGFP TRIMbody-induced EGFP degradation relied on proteasome activity, we
used MG132, a proteasome inhibitor, to treat cells for 24 h with Dox induction, then cells
were harvested for imaging and assessed for EGFP fluorescence intensity as described
above. The results showed that the amount of EGFP puncta was less and EGFP fluo-
rescence intensity was stronger in the presence of MG132 (Dox+MG132+) compared to
no MG132-treated group (Dox+) (Figure 4a,b), indicating that inhibition of the protea-
some degradation pathway by MG132 treatment contributed to suppression of αEGFP
TRIMbody-mediated intracellular protein degradation. However, the EGFP fluorescence
intensity in the MG132-treated group (Dox+MG132+) was still not comparable with the
group without Dox treatment (Dox−) (Figure 4b), suggesting that another degradation
pathway may be involved. Besides the ubiquitin proteasome system, intracellular proteins
could be degraded via the lysosomal pathway. To further test if EGFP protein degrada-
tion by αEGFP TRIMbody was mediated through the lysosome, we treated cells with the
autophagy–lysosome inhibitor Chloroquine (CQ, 40 µM). Strikingly, Chloroquine treat-
ment reduced the EGFP puncta area, partially rescuing the EGFP fluorescence intensity
reduction by Dox treatment (Figure 4c,d). In addition, Chloroquine treatment had a more
obvious rescue effect compared to MG132 treatment, with less EGFP puncta and higher
EGFP fluorescence intensity, suggesting that the autophagy–lysosome pathway contributed
more to αEGFP TRIMbody-mediated EGFP degradation. We also noticed that the rela-
tive mRNA levels of ubiquitin B, MAP1LC3A, MAP1LC3B, ULK1, SQSTM1/p62, Atg5,
Beclin1/Atg6, Atg7, and Atg12 were increased upon overexpression of αEGFP TRIMbody
(Figure S2). Based on these results, we concluded that both MG132 and Chloroquine treat-
ment could, but not completely, rescue αEGFP TRIMbody-mediated intracellular EGFP
degradation. Therefore, TRIMbody-Away technology could be utilized for intracellular
protein degradation and relies on both proteasome and autophagy–lysosome pathways.
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inhibitor MG132 on degradation of EGFP. (b) Average fluorescence intensity of EGFP in cells untreated or treated with Dox
or MG132 was measured using flow cytometry and indicated by bar graphs (n = 3 replicates per group). Data represent
the mean ± SEM. ** p < 0.01 and *** p < 0.001 represent statistical significance. (c) Effect of autophagy–lysosome inhibitor
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Chloroquine (CQ) on degradation of EGFP. (d) Average fluorescence intensity of EGFP in cells untreated or treated with
Dox or Chloroquine (CQ) was measured using flow cytometry and indicated by bar graphs (n = 3 replicates per group).
Data represent the mean ± SEM. ** p < 0.01 and *** p < 0.001 represent statistical significance.

4. Discussion

Examining gene function in different cell types or tissues exists in at least three layers
of perturbation, including DNA modification, RNA interference, and protein degrada-
tion [37,38]. However, the utility of DNA/RNA editing methods can be limited by reducing
of the target protein through a long time of process including DNA/RNA-targeted excision
and protein turnover, which may delay the manifestation of phenotypes and activate a
compensatory mechanism. In contrast, techniques for disrupting intracellular protein
enable the direct analysis of its biological function. Recently, TRIM-Away, a promising
approach to degrade endogenous proteins acutely and rapidly in mammalian cells, was
developed to remove unmodified native proteins by microinjection of anti-targets antibod-
ies and TRIM21 protein into cells. However, the difficulty on manipulations of a bulk cell
population limited its extensive application. In addition, it was reported that TRIM21 is
involved in the regulation of innate immunity and the inflammatory IFN pathway [39,40].
Thus, exogenous induction of TRIM21 by microinjection or electrotransfection needs rig-
orous investigation. The relatively large size of the full-size mAbs (150 kDa) results in
correspondingly low tissue penetration and inaccessibility of some sterically hindered
epitopes, which further limits the degrading efficacy of endogenous protein by Trim-Away
Technology. In order to resolve the concern of potential side effects of full-size mAbs and
TRIM21, we established an alternative approach by fusing of the function RBCC domain of
TRIM21, containing E3 ubiquitin ligase motif, with the fragment of anti-EGFP nanobody,
to target intracellular EGFP for degradation.

Next, by transient transfection and Tet-on inducible expression of αEGFP TRIMbody
in stable EGFP-expressing HEK293T, we revealed the intracellular EGFP degradation
mediated by αEGFP TRIMbody in a time-dependent pattern. Moreover, by examination
of EGFP puncta, EGFP fluorescence intensity, and protein level upon αEGFP TRIMbody
at different time points of Dox induction, we observed EGFP puncta firstly appeared,
followed by a decrease of fluorescence intensity, and finally destruction/degradation of
EGFP protein, implying a dynamic degradation process of intracellular EGFP regulated by
αEGFP TRIMbody. The different period of time of EGFP fluorescence intensity deduction
and EGFP protein degradation indicated that EGFP fluorescence intensity loss was not fully
represented by protein degradation, and might through an intermediate state, may probably
be due to change of protein confirmation. Thus, the calculation of EGFP degradation time of
TRIMbody-Away according to fluorescence intensity loss was definitely worth negotiating
over. Furthermore, HEK293T-Low-EGFP cells engineered with the Tet-On-3G-αEGFP
TRIMbody expression system were also obtained as described above. Expressing αEGFP
TRIMbody in stable HEK293T-Low-EGFP cells could degrade intracellular EGFP in a
similar time-dependent manner (Figure S3). In conclusion, the Tet-on inducible TRIMbody
system has no side effects of transfection, is easy to handle by addition of Dox to culture
media or washing it out to reverse the degradation effect, and potentially could be used to
dynamically observe the relevant phenotypes associated with target protein degradation.

The majority of cellular proteins are rapidly degraded and compensated with newly
synthesized copies [41]. Thus, exploring the function of long-lived intracellular proteins
is more challenging [42–45]. In this study, we used EGFP as a model substrate, which
has a long life time and is hard to turnover, and also EGFP expression was stably and
constitutively driven by the EF promoter in a lentivirus construct, and these reasons might
explain why αEGFP TRIMbody-mediated intracellular EGFP was not completely degraded
in our observation. Another possibility was that the inducible expression of αEGFP
TRIMbody could only be detected at 6 h post Dox treatment with few molecules, which
might not be sufficient for disrupting the intracellular EGFP protein. Although αEGFP
TRIMbody showed promising intracellular protein degradation ability in cytoplasm, we
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did not evaluate the degradation ability for an endogenous native protein. It is worthy of
further exploration as the growing pool of nanobodies directly recognizing endogenous
proteins are available.

5. Conclusions

By fusing a nanobody with the RBCC motif of TRIM21, a novel fusion protein that
specifically degraded intracellular protein was generated, and this protein was termed as
TRIMbody. We introduced EGFP as a model substrate and generated αEGFP TRIMbody
using a bispecific anti-EGFP (αEGFP) nanobody. Next, by inducible expression of αEGFP
TRIMbody in stable HEK293T-EGFP cells, we demonstrated this system could degrade
intracellular EGFP in a time-dependent manner. Further, addition of proteasome inhibitor
and autophagy–lysosome inhibitor suppressed the degradation of intracellular EGFP
protein, demonstrating that EGFP protein degradation mediated by αEGFP TRIMbody
relies on both the proteasome and autophagy–lysosome pathways. Thus, TRIMbody
may be used as a powerful strategy for degrading intracellular proteins. In addition,
as the CRISPR-Cas9-mediated knock-in method becomes increasingly popular, in situ
tagging with GFP is likely to become commonplace and it is worthy to try this system for
degradation of GFP-tagged endogenous proteins. Moreover, by using cell-type/tissue-
specific promoter to drive expression of the αEGFP TRIMbody transgene, it is possible to
try this system in a cell-type/tissue-specific degradation in vivo. Collectively, TRIMbody-
Away technology could be exploited to specifically degrade intracellular protein and may
expand the potential applications of degrader technologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11101512/s1, Figure S1: Determination of the optimal Dox concentration, Video S1:
Time-lapse movie of dynamic exchange of cytoplasmic EGFP protein, related to Figure 2c, Video S2:
Time-lapse movie of dynamic exchange of EGFP protein aggregates between the fluorescent puncta
and cytoplasmic pool, related to Figure 3a, Figure S2: the relative mRNA levels of genes related to
ubiquitin and autophagy in cells that were untreated or treated with Dox, Table S1: Primers used in
this study, Figure S3: Degradation of EGFP by αEGFP TRIMbody in 293T-EGFP-Low/Tet-On-3G-
αEGFP TRIMbody cells.

Author Contributions: Conceptualization, T.Y. and J.R.; methodology, G.C.; software, C.W.; val-
idation, G.C. and Z.Y.; investigation, G.C. and Y.L.; data curation, G.C.; writing—original draft
preparation, G.C.; writing—review and editing, Y.W., J.R. and T.Y.; visualization, G.C. and S.Z.; super-
vision, Z.Y.; project administration, A.H. and Y.K.; funding acquisition, T.Y. All authors contributed to
data analysis and commented on the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (grant number 2019YFA0904400), National Natural Science Foundation of China (grant number
81822027, 81630090, 81902108), Chinese Academy of Medical Sciences (grant number 2019PT350002),
and Science and Technology Commission of Shanghai Municipality (grant number 20DZ2254600,
20DZ2261200).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Bondeson, D.P.; Crews, C.M. Targeted Protein Degradation by Small Molecules. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 107–123.

[CrossRef] [PubMed]
2. Röth, S.; Fulcher, L.J.; Sapkota, G.P. Advances in targeted degradation of endogenous proteins. Cell. Mol. Life Sci. 2019, 76,

2761–2777. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biom11101512/s1
https://www.mdpi.com/article/10.3390/biom11101512/s1
http://doi.org/10.1146/annurev-pharmtox-010715-103507
http://www.ncbi.nlm.nih.gov/pubmed/27732798
http://doi.org/10.1007/s00018-019-03112-6
http://www.ncbi.nlm.nih.gov/pubmed/31030225


Biomolecules 2021, 11, 1512 14 of 15

3. Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.;
Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367. [CrossRef] [PubMed]

4. Nikan, M.; Tanowitz, M.; Dwyer, C.A.; Jackson, M.; Gaus, H.J.; Swayze, E.E.; Rigo, F.; Seth, P.P.; Prakash, T.P. Targeted Delivery of
Antisense Oligonucleotides Using Neurotensin Peptides. J. Med. Chem. 2020, 63, 8471–8484. [CrossRef]

5. Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.; Federico, A.;
et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021, 384, 205–215. [CrossRef]
[PubMed]

6. Ottis, P.; Palladino, C.; Thienger, P.; Britschgi, A.; Heichinger, C.; Berrera, M.; Julien-Laferriere, A.; Roudnicky, F.; Kam-Thong, T.;
Bischoff, J.R.; et al. Cellular Resistance Mechanisms to Targeted Protein Degradation Converge Toward Impairment of the
Engaged Ubiquitin Transfer Pathway. ACS Chem. Biol. 2019, 14, 2215–2223. [CrossRef]

7. Banik, S.M.; Pedram, K.; Wisnovsky, S.; Ahn, G.; Riley, N.M.; Bertozzi, C.R. Lysosome-targeting chimaeras for degradation of
extracellular proteins. Nature 2020, 584, 291–297. [CrossRef] [PubMed]

8. Nabet, B.; Roberts, J.M.; Buckley, D.L.; Paulk, J.; Dastjerdi, S.; Yang, A.; Leggett, A.L.; Erb, M.A.; Lawlor, M.A.; Souza, A.; et al.
The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 2018, 14, 431–441. [CrossRef]

9. Dong, S.; Wang, Q.; Kao, Y.R.; Diaz, A.; Tasset, I.; Kaushik, S.; Thiruthuvanathan, V.; Zintiridou, A.; Nieves, E.; Dzieciatkowska, M.;
et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 2021, 591, 117–123. [CrossRef]

10. Ohoka, N.; Ujikawa, O.; Shimokawa, K.; Sameshima, T.; Shibata, N.; Hattori, T.; Nara, H.; Cho, N.; Naito, M. Different Degradation
Mechanisms of Inhibitor of Apoptosis Proteins (IAPs) by the Specific and Nongenetic IAP-Dependent Protein Eraser (SNIPER).
Chem. Pharm. Bull. 2019, 67, 203–209. [CrossRef]

11. Clift, D.; So, C.; McEwan, W.A.; James, L.C.; Schuh, M. Acute and rapid degradation of endogenous proteins by Trim-Away. Nat.
Protoc. 2018, 13, 2149–2175. [CrossRef] [PubMed]

12. Zeng, J.; Santos, A.F.; Mukadam, A.S.; Osswald, M.; Jacques, D.A.; Dickson, C.F.; McLaughlin, S.H.; Johnson, C.M.; Kiss, L.;
Luptak, J.; et al. Target-induced clustering activates Trim-Away of pathogens and proteins. Nat. Struct. Mol. Biol. 2021, 28,
278–289. [CrossRef] [PubMed]

13. Ozato, K.; Shin, D.M.; Chang, T.H.; Morse, H.C., 3rd. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev.
Immunol. 2008, 8, 849–860. [CrossRef]

14. Khan, R.; Khan, A.; Ali, A.; Idrees, M. The interplay between viruses and TRIM family proteins. Rev. Med. Virol. 2019, 29, e2028.
[CrossRef] [PubMed]

15. Rajsbaum, R.; García-Sastre, A.; Versteeg, G.A. TRIMmunity: The roles of the TRIM E3-ubiquitin ligase family in innate antiviral
immunity. J. Mol. Biol. 2014, 426, 1265–1284. [CrossRef] [PubMed]

16. Xu, Y.; Zhang, Z.; Xu, G. TRIM proteins in neuroblastoma. Biosci. Rep. 2019, 39, BSR20192050. [CrossRef] [PubMed]
17. Esposito, D.; Koliopoulos, M.G.; Rittinger, K. Structural determinants of TRIM protein function. Biochem. Soc. Trans. 2017, 45,

183–191. [CrossRef]
18. Zhang, J.R.; Li, X.X.; Hu, W.N.; Li, C.Y. Emerging Role of TRIM Family Proteins in Cardiovascular Disease. Cardiology 2020, 145,

390–400. [CrossRef]
19. Tomar, D.; Singh, R. TRIM family proteins: Emerging class of RING E3 ligases as regulator of NF-κB pathway. Biol. Cell 2015, 107,

22–40. [CrossRef]
20. Imam, S.; Talley, S.; Nelson, R.S.; Dharan, A.; O’Connor, C.; Hope, T.J.; Campbell, E.M. TRIM5α Degradation via Autophagy Is

Not Required for Retroviral Restriction. J. Virol. 2016, 90, 3400–3410. [CrossRef]
21. Foss, S.; Bottermann, M.; Jonsson, A.; Sandlie, I.; James, L.C.; Andersen, J.T. TRIM21-From Intracellular Immunity to Therapy.

Front. Immunol. 2019, 10, 2049. [CrossRef]
22. van Gent, M.; Sparrer, K.M.J.; Gack, M.U. TRIM Proteins and Their Roles in Antiviral Host Defenses. Annu. Rev. Virol. 2018, 5,

385–405. [CrossRef] [PubMed]
23. Vunjak, M.; Versteeg, G.A. TRIM proteins. Curr. Biol. 2019, 29, R42–R44. [CrossRef] [PubMed]
24. Napolitano, L.M.; Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation.

IUBMB Life 2012, 64, 64–71. [CrossRef] [PubMed]
25. Liu, B.; Li, N.L.; Shen, Y.; Bao, X.; Fabrizio, T.; Elbahesh, H.; Webby, R.J.; Li, K. The C-Terminal Tail of TRIM56 Dictates Antiviral

Restriction of Influenza A and B Viruses by Impeding Viral RNA Synthesis. J. Virol. 2016, 90, 4369–4382. [CrossRef] [PubMed]
26. Koepke, L.; Gack, M.U.; Sparrer, K.M. The antiviral activities of TRIM proteins. Curr. Opin. Microbiol. 2021, 59, 50–57. [CrossRef]

[PubMed]
27. Ibrahim, A.F.M.; Shen, L.; Tatham, M.H.; Dickerson, D.; Prescott, A.R.; Abidi, N.; Xirodimas, D.P.; Hay, R.T. Antibody RING-

Mediated Destruction of Endogenous Proteins. Mol. Cell 2020, 79, 155–166.e9. [CrossRef]
28. Wu, Y.; Jiang, S.; Ying, T. Single-Domain Antibodies as Therapeutics against Human Viral Diseases. Front. Immunol. 2017, 8, 1802.

[CrossRef]
29. Ding, Y.; Fei, Y.; Lu, B. Emerging New Concepts of Degrader Technologies. Trends Pharmacol. Sci. 2020, 41, 464–474. [CrossRef]
30. Chen, W.; Gong, R.; Ying, T.; Prabakaran, P.; Zhu, Z.; Feng, Y.; Dimitrov, D.S. Discovery of novel candidate therapeutics and

diagnostics based on engineered human antibody domains. Curr. Drug Discov. Technol. 2014, 11, 28–40. [CrossRef]
31. Wu, Y.; Li, C.; Xia, S.; Tian, X.; Kong, Y.; Wang, Z.; Gu, C.; Zhang, R.; Tu, C.; Xie, Y.; et al. Identification of Human Single-Domain

Antibodies against SARS-CoV-2. Cell Host Microbe 2020, 27, 891–898.e5. [CrossRef]

http://doi.org/10.1126/science.aba7365
http://www.ncbi.nlm.nih.gov/pubmed/32029687
http://doi.org/10.1021/acs.jmedchem.0c00840
http://doi.org/10.1056/NEJMoa2029392
http://www.ncbi.nlm.nih.gov/pubmed/33283990
http://doi.org/10.1021/acschembio.9b00525
http://doi.org/10.1038/s41586-020-2545-9
http://www.ncbi.nlm.nih.gov/pubmed/32728216
http://doi.org/10.1038/s41589-018-0021-8
http://doi.org/10.1038/s41586-020-03129-z
http://doi.org/10.1248/cpb.c18-00567
http://doi.org/10.1038/s41596-018-0028-3
http://www.ncbi.nlm.nih.gov/pubmed/30250286
http://doi.org/10.1038/s41594-021-00560-2
http://www.ncbi.nlm.nih.gov/pubmed/33633400
http://doi.org/10.1038/nri2413
http://doi.org/10.1002/rmv.2028
http://www.ncbi.nlm.nih.gov/pubmed/30609250
http://doi.org/10.1016/j.jmb.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24333484
http://doi.org/10.1042/BSR20192050
http://www.ncbi.nlm.nih.gov/pubmed/31820796
http://doi.org/10.1042/BST20160325
http://doi.org/10.1159/000506150
http://doi.org/10.1111/boc.201400046
http://doi.org/10.1128/JVI.03033-15
http://doi.org/10.3389/fimmu.2019.02049
http://doi.org/10.1146/annurev-virology-092917-043323
http://www.ncbi.nlm.nih.gov/pubmed/29949725
http://doi.org/10.1016/j.cub.2018.11.026
http://www.ncbi.nlm.nih.gov/pubmed/30668943
http://doi.org/10.1002/iub.580
http://www.ncbi.nlm.nih.gov/pubmed/22131136
http://doi.org/10.1128/JVI.03172-15
http://www.ncbi.nlm.nih.gov/pubmed/26889027
http://doi.org/10.1016/j.mib.2020.07.005
http://www.ncbi.nlm.nih.gov/pubmed/32829025
http://doi.org/10.1016/j.molcel.2020.04.032
http://doi.org/10.3389/fimmu.2017.01802
http://doi.org/10.1016/j.tips.2020.04.005
http://doi.org/10.2174/15701638113109990032
http://doi.org/10.1016/j.chom.2020.04.023


Biomolecules 2021, 11, 1512 15 of 15

32. Rhodes, D.A.; Isenberg, D.A. TRIM21 and the Function of Antibodies inside Cells. Trends Immunol. 2017, 38, 916–926. [CrossRef]
33. Hatakeyama, S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 2017, 42, 297–311.

[CrossRef]
34. de Taeye, S.W.; Rispens, T.; Vidarsson, G. The Ligands for Human IgG and Their Effector Functions. Antibodies 2019, 8, 30.

[CrossRef] [PubMed]
35. Fridy, P.C.; Li, Y.; Keegan, S.; Thompson, M.K.; Nudelman, I.; Scheid, J.F.; Oeffinger, M.; Nussenzweig, M.C.; Fenyö, D.; Chait, B.T.;

et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 2014, 11, 1253–1260. [CrossRef]
[PubMed]

36. Roybal, K.T.; Williams, J.Z.; Morsut, L.; Rupp, L.J.; Kolinko, I.; Choe, J.H.; Walker, W.J.; McNally, K.A.; Lim, W.A. Engineering T
Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors. Cell 2016, 167, 419–432.e16. [CrossRef]
[PubMed]

37. Tabrizi, S.J.; Ghosh, R.; Leavitt, B.R. Huntingtin Lowering Strategies for Disease Modification in Huntington’s Disease. Neuron
2019, 101, 801–819. [CrossRef] [PubMed]

38. Cromm, P.M.; Crews, C.M. Targeted Protein Degradation: From Chemical Biology to Drug Discovery. Cell Chem. Biol. 2017, 24,
1181–1190. [CrossRef]

39. Xue, B.; Li, H.; Guo, M.; Wang, J.; Xu, Y.; Zou, X.; Deng, R.; Li, G.; Zhu, H. TRIM21 Promotes Innate Immune Response to RNA
Viral Infection through Lys27-Linked Polyubiquitination of MAVS. J. Virol. 2018, 92, e00321-18. [CrossRef]

40. Manocha, G.D.; Mishra, R.; Sharma, N.; Kumawat, K.L.; Basu, A.; Singh, S.K. Regulatory role of TRIM21 in the type-I interferon
pathway in Japanese encephalitis virus-infected human microglial cells. J. Neuroinflamm. 2014, 11, 24. [CrossRef] [PubMed]

41. Toyama, B.H.; Savas, J.N.; Park, S.K.; Harris, M.S.; Ingolia, N.T.; Yates, J.R., 3rd; Hetzer, M.W. Identification of long-lived proteins
reveals exceptional stability of essential cellular structures. Cell 2013, 154, 971–982. [CrossRef] [PubMed]

42. Verzijl, N.; DeGroot, J.; Thorpe, S.R.; Bank, R.A.; Shaw, J.N.; Lyons, T.J.; Bijlsma, J.W.; Lafeber, F.P.; Baynes, J.W.; TeKoppele, J.M.
Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 2000, 275, 39027–39031.
[CrossRef] [PubMed]

43. Razafsky, D.; Ward, C.; Potter, C.; Zhu, W.; Xue, Y.; Kefalov, V.J.; Fong, L.G.; Young, S.G.; Hodzic, D. Lamin B1 and lamin B2 are
long-lived proteins with distinct functions in retinal development. Mol. Biol. Cell 2016, 27, 1928–1937. [CrossRef] [PubMed]

44. Savas, J.N.; Toyama, B.H.; Xu, T.; Yates, J.R., 3rd; Hetzer, M.W. Extremely long-lived nuclear pore proteins in the rat brain. Science
2012, 335, 942. [CrossRef]

45. Yang, L.; Ma, Z.; Wang, H.; Niu, K.; Cao, Y.; Sun, L.; Geng, Y.; Yang, B.; Gao, F.; Chen, Z.; et al. Ubiquitylome study identifies
increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nat. Commun. 2019, 10, 2191. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.it.2017.07.005
http://doi.org/10.1016/j.tibs.2017.01.002
http://doi.org/10.3390/antib8020030
http://www.ncbi.nlm.nih.gov/pubmed/31544836
http://doi.org/10.1038/nmeth.3170
http://www.ncbi.nlm.nih.gov/pubmed/25362362
http://doi.org/10.1016/j.cell.2016.09.011
http://www.ncbi.nlm.nih.gov/pubmed/27693353
http://doi.org/10.1016/j.neuron.2019.01.039
http://www.ncbi.nlm.nih.gov/pubmed/30844400
http://doi.org/10.1016/j.chembiol.2017.05.024
http://doi.org/10.1128/JVI.00321-18
http://doi.org/10.1186/1742-2094-11-24
http://www.ncbi.nlm.nih.gov/pubmed/24485101
http://doi.org/10.1016/j.cell.2013.07.037
http://www.ncbi.nlm.nih.gov/pubmed/23993091
http://doi.org/10.1074/jbc.M006700200
http://www.ncbi.nlm.nih.gov/pubmed/10976109
http://doi.org/10.1091/mbc.e16-03-0143
http://www.ncbi.nlm.nih.gov/pubmed/27075175
http://doi.org/10.1126/science.1217421
http://doi.org/10.1038/s41467-019-10136-w
http://www.ncbi.nlm.nih.gov/pubmed/31113955

	Introduction 
	Materials and Methods 
	Plasmids 
	Expression and Purification of TRIM21 and TRIMbody 
	Size Exclusion Chromatography (SEC) 
	Binding ELISA 
	Cell Culture and Transient Transfection 
	Generation of Cell Lines Stably Expressing EGFP and TRIMbody 
	Flow Cytometry Analysis 
	Induction of EGFP TRIMbody Expression with Doxycycline 
	Laser Scanning Confocal Microscope and Live Cell Imaging 
	Immunostaining 
	Protein Extraction and Western Blot Assay 
	RNA Isolation/cDNA Synthesis and Quantitative Real-Time PCR (qRT-PCR) Assay 
	Statistical Analysis 

	Results 
	EGFP TRIMbody has High Binding Activity to EGFP Protein In Vitro 
	Degradation of Intracellular EGFP by Inducible Expression of EGFP TRIMbody 
	Dynamic Examination of EGFP Degradation and Accompanying Fluorescent Puncta within 24 h after EGFP TRIMbody Induction 
	TRIMbody Induces Intracellular Protein Degradation through the Proteasome and Lysosomal Pathway 

	Discussion 
	Conclusions 
	References

