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Abstract: G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers
which are considered critical to modulate their function. However, studying the existence and
functional implication of these complexes is not straightforward as controversial results are ob-
tained depending on the method of analysis employed. Here, we use a quantitative single molecule
super-resolution imaging technique named qPAINT to quantify complex formation within an ex-
ample GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between
fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to
protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We
demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic
receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1,
under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2

receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers,
and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not
affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization
under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action
and therapeutic targeting.

Keywords: super-resolution; DNA-PAINT microscopy; qPAINT; G-protein coupled receptors; puriner-
gic receptor Y2 (P2Y2); oligomerization

1. Introduction

G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors in
eukaryotic cells. These seven-transmembrane receptors have influence in physiological
events such as cell to cell communication, immune responses, nerve transmission and
even hunger and sleep regulation [1–3]. The role of GPCRs in diseases such as rheumatoid
arthritis, heart disease, cancer, obesity, and neurodegenerative disorders accentuates the
need to investigate this family of receptors further. More than a third of all drugs approved
by the FDA target GPCRs [4] but often such drugs have a variety of poorly understood
mechanisms, as a recent example surrounding opioid receptor agonists illustrates [5–8].
Understanding these mechanisms, and their influence on GPCR activation, is paramount
to improving GPCR drug development.

GPCRs have been shown to form dimers and/or oligomers, where the receptor is
present in groups of two or more receptors of the same or different kind. There are several
reports of oligomers affecting ligand-binding pharmacology, function, trafficking, and
internalisation compared to their monomeric form [9,10]. Several experimental techniques,
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ranging from traditional biochemical approaches to biophysical ensemble methods based
on resonance energy transfer (RET), such as fluorescence resonance energy transfer (FRET)
and bioluminescence resonance energy transfer (BRET), have been key to observing the
formation of dimers and oligomers [11,12]. However, one of the main issues with these
techniques is that they cannot provide information on the size of the oligomeric complexes,
nor on the location of the GPCRs in the cell. Over the years, different optical microscopy
approaches, based on molecular brightness analysis, have been proposed to tackle some of
these shortcomings [13–15]. However, they provide average oligomerization information,
and it is not possible to extract the precise stoichiometry of specific molecular complexes.
A suitable technique to provide information on the oligomeric state of GPCRs and their
dynamics down to the single-molecule level is single-molecule tracking [16–18]. Yet,
this typically requires receptor densities that are orders of magnitude lower than those
occurring in natural settings. The relevance of this shortcoming is particularly important
when investigating GPCR oligomerization in certain cancer cell lines, where the receptors
are overexpressed.

Here, we present a novel single-molecule based approach to study the oligomerization
of a rhodopsin-like GPCR, the purinergic receptor Y2 (P2Y2), in a pancreatic cancer cell line
with high expression of the receptor [19]. Our approach is based on the most recently devel-
oped single-molecule localization microscopy (SMLM) method named DNA-PAINT [20]
(a variation of point accumulation for imaging in nanoscale topography) in combination
with an imaging analysis pipeline suitable for protein quantification. DNA-PAINT is an
SMLM technique that relies on the repetitive binding between two short complementary
single-stranded DNAs, one conjugated to a fluorescent dye (imager strand) and the other
chemically coupled to either a primary or secondary antibody targeting the protein of
interest (docking strand). These short-lived transient events (millisecond to second range)
create the necessary blinking required for SMLM, allowing the localization of the position
of single molecules with nanometer precision. Over the course of the experiment, these
cumulative DNA binding events form a cluster of single molecule localizations within
the true position of the biological target, as illustrated in Scheme 1. Depending on the
DNA pair’s binding kinetics in particular the association rate, kon, and the imager DNA
strand concentration, ci, each docking strand is visited by an imager at a frequency given
by (kon *ci), which corresponds to the inverse of the dark time for a single docking strand
(i.e., length of time that a docking strand is not bound to an imager strand between binding
events) [21]. The frequency of the imagers binding to their docking strand scales linearly
with the number of docking strands, and this is the principle of the quantitative analysis
known as qPAINT (Scheme 1). The predictable binding kinetics between imager and
docking strands make qPAINT suitable to accurately correlate the frequency of single-
molecule events with the underlying number of labelled molecular targets [21], overcoming
‘overcounting’ artifacts observed with other SMLM techniques.

To demonstrate the potential of qPAINT to study GPCRs oligomerization status, we
investigated the nanoscale distribution of the P2Y2 receptor, a member of the d subgroup
of the family A of GPCRs, in the cancer cell line AsPC-1, as it endogenously expresses
high levels of this receptor and single cells are easily imaged due to its low levels of
cell grouping [19]. P2Y2 has been related to immune regulation, bone mineralisation,
intraocular pressure, HIV-1 infection, and cancer metastasis and proliferation [22–25]. P2Y2
has recently gained traction due to its role in several cancers such as breast, head and
neck, prostate, and pancreatic [19,25–27]. This receptor, which can interact with adenosine
triphosphate (ATP) and uridine triphosphate (UTP), is known to homo-dimerise and homo-
oligomerise [28,29]. When applied to P2Y2, qPAINT revealed the molecular densities and
nano- and micro-scale spatial arrangements of GPCRs down to the single molecule level, as
well as their modulation in response to agonist and antagonist treatment. Understanding
the natural oligomerisation state of P2Y2 and the effect of agonists and antagonists could
inform the mechanist action of P2Y2 and aid in targeting it therapeutically.
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Scheme 1. Overview of qPAINT analysis pipeline (created with BioRender.com, BioRender,
Toronto YTO, Canada).

2. Materials and Methods
2.1. Cell Culture

AsPC-1 cells, a cell line derived from pancreatic ductal adenocarcinoma [30] and
PS-1 cells, which are immortalised human pancreatic stellate cells [31] were a kind gift
from Prof. Hemant Kocher (Barts Cancer Institute, London, UK). Cells were cultured using
RPMI-1640 medium (Gibco, Amarillo, TX, USA) for AsPC-1 cells and DMEM-12 (Sigma-
Aldrich, St. Louis, MO, USA) for PS-1 cells. Media was supplemented with 10% fetal bovine
serum (Sigma-Aldrich, St. Louis, MO, USA) and cells were kept at 37 ◦C and 5% CO2 in a
humid incubator. To study the effect of agonist and antagonist treatment, AsPC-1 cells were
treated with 100 µM of the P2Y2 agonist, adenosine 5′-triphosphate disodium salt hydrate
(Sigma-Aldrich, St. Louis, MO, USA) and 5 µM of the P2Y2 antagonist AR-C 118925XX
(Tocris, Bristol, UK) for 1 h before fixation.

2.2. Cell Fixation and Immunofluorescence Staining for Antibody Validation

AsPC-1 and PS-1 cells were seeded in coverslips placed in a 6 well-plate (Corning,
Corning, NY, USA) at a seeding density of 200,000 cells per well. Cells were fixed in
4% paraformaldehyde (LifeTech, Carlsbad, CA, USA) for 30 min and washed 3× in PBS.
Cells were permeabilised with 0.1% Triton X-100 (Avantor, Radnor Township, PA, USA)
and incubated for 10 min. The coverslips were washed 3× with PBS. Blocking was
performed using 5% bovine serum albumin (Merck, Kenilworth, NJ, USA) in PBS for
1 h. To image P2Y2 receptors, the anti-P2Y2 receptor antibody (APR-010, Alomone labs,
Jerusalem, Israel), which binds to the third intracellular loop between the fifth and sixth
transmembrane domain of P2Y2, was used for immunostaining. The P2Y2 antibody was
diluted in blocking solution at 1:200 as previously reported [32]. Cells were incubated
overnight at 4 ◦C with the antibody dilution followed by 3× PBS washes. Then, the
secondary antibody Alexa Fluor 546 goat anti-rabbit (Invitrogen, Waltham, MA, USA)
was added (1:1000) and left incubating for 1 h. For nuclear staining, 4′,6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich, St. Louis, MO, USA) dilution (1:1000) was added and
incubated for 10 min. Slides were mounted with coverslips using Mowiol (Calbiochem,
San Diego, CA, USA). Fluorescence images were taken with a Zeiss LSM 710 confocal
microscope (Zeiss, Oberkochen, Germany).
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2.3. DNA—Antibody Coupling Reaction

DNA labelling of anti-P2Y2 receptor antibody (APR-010, Alomone labs, Jerusalem, Israel)
was performed via maleimidePEG2-succinimidyl ester coupling reaction [20,33]. Briefly,
13 µL of 1 mM thiolated DNA (5′-Thiol-AAACCACCACCACCA-3′, Eurofins, Ebersberg,
Germany) was reduced by mixing it on a shaker with 30 µL of a freshly prepared 250 mM
DDT (Thermo Fisher Scientific, Waltham, MA, USA) solution for 2 hrs. 30 min after the
reduction of the thiol-DNA started, 175 µL of 0.8 mg/mL primary antibody was incubated
with 0.9 µL of 23.5 mM maleimide-PEG2-succinimidyl ester cross-linker solution (Sigma-
Aldrich, St. Louis, MO, USA) on a shaker for 90 min at 4 ◦C in the dark. To remove excess
DDT and cross-linker, both reactions were purified by spin filtration using a Microspin
Illustra G-25 columns (GE Healthcare, Chicago, IL, USA) and a Zeba spin desalting column
(7K MWCO, Thermo Fisher Scientific, Waltham, MA, USA), respectively. The resultant
products were mixed and incubated on a shaker overnight at 4 ◦C in the dark. Finally, excess
DNA was removed via Amicon spin filtration (100K, Merck, Kenilworth, NJ, USA) and
antibody-DNA concentration was measured using a NanoDrop One spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Cell Fixation and Immunofluorescence Staining for DNA-PAINT Imaging

AsPC-1 cells were seeded at 50% confluency on six-channel glass bottomed mi-
croscopy chambers (µ-SlideVI0.5, Ibidi, Fitchburg, WI, USA) and pre-fixed for 30 min
with pre-warmed 4% paraformaldehyde (LifeTech, Carlsbad, CA, USA) at room temper-
ature. Following 3× washes in PBS, cell membranes were permeabilised for 5 min in
0.1% Triton X-100 solution (Avantor, Radnor Township, PA, USA) and washed 3× in PBS.
Auto-fluorescence was quenched using 50 mM ammonium chloride solution (Avantor,
Radnor Township, PA, USA) for 5–10 min and washed 3× in PBS. Cells were then blocked
in 5% bovine serum albumin (Merck, Kenilworth, NJ, USA) for 60 min and subsequently
incubated with the DNA-labelled anti-P2Y2 receptor antibody diluted in blocking buffer
overnight at 4 ◦C. The next day, cells were washed 3× in PBS prior to incubation with
150 nm gold nanoparticles (Sigma-Aldrich, St. Louis, MO, USA) which were used as
fiducial markers. A 1 nM imager strand solution was made in the presence of an oxygen
scavenging and triplet state quencher system consisting of 1× PCA (Stock 40× PCA solu-
tion), 1× PCD (Stock 100× PCD solution), and 1× Trolox (Stock 100× Trolox solution) in
1× PBS + 500 mM NaCl buffer and incubated in the dark for 1 h 40× PCA (protocatechuic
acid) stock was made from 154 mg of PCA (Sigma-Aldrich, St. Louis, MO, USA) in 10 mL of
Ultrapure Distilled water (Invitrogen, Waltham, MA, USA) adjusted to pH 9.0 with NaOH
(Avantor, Radnor Township, PA, USA). 100x PCD (protocatechuate 3,4-dioxygenase) solu-
tion was made by adding 2.2 mg of PCD (Sigma-Aldrich, St. Louis, MO, USA) to 3.4 mL
of 50% glycerol (Sigma-Aldrich, St. Louis, MO, USA) with 50 mM KCl (Sigma-Aldrich,
St. Louis, MO, USA), 1 mM EDTA (Invitrogen, Waltham, MA, USA), and 100 mM Tris
buffer (Avantor, Radnor Township, PA, USA). 100x Trolox solution was made by dissolving
100 mg of Trolox (Sigma-Aldrich, St. Louis, MO, USA) in 0.43 mL methanol (Sigma-Aldrich,
St. Louis, MO, USA), 0.345 mL 1 M NaOH, and 3.2 mL of Ultrapure Distilled water (In-
vitrogen, Waltham, MA, USA). After gold nanoparticle incubation, cells were washed
again 3× in PBS and immediately imaged using the imager strand solution. The imager
DNA (5′-TGGTGGT-3′) strand was conjugated to the fluorescent molecule Atto643 at the
3′ terminus.

2.5. DNA-PAINT Imaging Experiments

AsPC-1 cells were imaged on a custom built total internal reflection fluorescence (TIRF)
microscope based on a Nikon Eclipse Ti-2 microscope (Nikon Instruments, Tokyo, Japan)
equipped with a 100× oil immersion TIRF objective (Apo TIRF, NA 1.49) and a Perfect
Focus System. Samples were imaged under flat-top TIRF illumination with a 647 nm laser
(Coherent OBIS LX, 120 mW, Santa Clara, CA, USA), magnified with both a custom-built
telescope (AC254-050-A-ML and AC508-075-A-ML, Thorlabs, Newton, NJ, USA) and a



Biomolecules 2021, 11, 1503 5 of 13

variable beam expander (BE02-05-A, Thorlabs, Newton, NJ, USA), before passing through a
beam shaper device (piShaper 6_6_VIS, AdlOptica, Berlin, Germany) to transform the Gaus-
sian profile of the beam into a collimated flat-top profile. Laser polarization was adjusted
to circular using a polarizer (LPVISC050-MP2, Thorlabs, Newton, NJ, USA) followed by a
quarter waveplate (LAS-043013, Laser 2000, Cambridge, UK). The beam was focused into
the back focal plane of the microscope objective using a suitable lens (AC508-300-A-ML,
Thorlabs, Newton, NJ, USA), passed through a clean-up filter (FF01-390/482/563/640-25,
Semrock, Rochester, NY, USA) and coupled into the objective using a beam splitter (Di03-
R405/488/561/635-t1-25×36, Semrock, Rochester, NY, USA). Fluorescence light was spectrally
filtered with an emission filter (FF01-446/523/600/677-25, Semrock, Rochester, NY, USA) and
imaged on a sCMOS camera (ORCA-Flash4.0 V3 Digital, Hamamatsu, Hamamatsu City, Japan)
without further magnification, resulting in a final pixel size of 130 nm in the focal plane,
after 2× 2 binning. Typically, 15,000 frames were acquired with 100 ms integration time
and a laser power density at the sample of 0.5 kW/cm2. Schematic representation of the
optical set-up is depicted in Figure S1.

2.6. DNA-PAINT Image Reconstruction and Cluster Analysis

Images were processed and reconstructed using the Picasso software (Version 0.3.3) [20].
Briefly, single molecule events were identified and localised from the raw fluorescent DNA-
PAINT imaging experiments using the ‘Localize’ module of Picasso. Subsequently, images
were drift corrected with the ‘Render’ module of Picasso using a stepwise protocol. First,
via an image sub-stack cross correlation analysis and then using gold nanoparticles as
fiducial markers. Localizations with uncertainties greater than 13 nm were removed while
no merging was performed for molecules re-appearing in subsequent frames. Finally,
regions of interest (ROIs) of ~4 by 4 µm2 were selected within the ‘Render’ module of
Picasso and analysed using the implementation of DBSCAN from PALMsiever [34] in
MATLAB (2021a) [35]. DBSCAN is a data clustering algorithm that detects clusters of
localizations by looking for the minimum number of points (‘minPts’) within a circle with
radius epsilon (‘eps’). For ‘eps’, we used the localisation precision of our DNA-PAINT
images as determined via the nearest-neighbour based analysis, which was ca. 10 nm for all
the images. For ‘minPts’ we chose a parameter in accordance with the binding frequency
of the imager strand and the number of recorded frames, in our case this value was set to
10 localisations.

2.7. qPAINT Analysis

For qPAINT analysis we used a custom-written MATLAB (2021a) [35] code that
analyses the fluorescence time series of each detected localization cluster to estimate
the number of P2Y2 receptors for each cluster as described previously [21,33]. In short,
localizations corresponding to the same cluster were grouped and their time stamps (frame
number) used to reconstruct the sequence of dark times per cluster as continuous frame
times that did not contain an event. All the dark times per cluster were pooled and used to
obtain a normalised cumulative histogram of the dark times which was then fitted with the
following exponential function: 1 – exp(t/τd) to estimate the dark time, τd, per cluster. The
inverse of the dark time was calculated for each cluster and stored as the qPAINT index of
the cluster (qi).

To estimate the number of P2Y2 receptors per cluster, a calibration was performed
with the DNA-PAINT data of all cells and verified by analysing DNA-PAINT images of
DNA labelled anti-P2Y2 receptor antibody deposited on glass slides. For each DNA-PAINT
data series a histogram of cluster qPAINT indices for small clusters (i.e., clusters with a
maximum point distance of 150 nm) was obtained and fitted with a multi-peak Gaussian
that exhibited peaks at multiples of a qPAINT index of 0.012 Hz. This calibration value,
corresponding to the qPAINT index for one binding site, qi1, was used to estimate the
number of P2Y2 receptors per cluster as the ratio of the qPAINT index of the cluster, qi and



Biomolecules 2021, 11, 1503 6 of 13

qi1. To recover a likely distribution of P2Y2 receptors in each cluster of localizations, we
used k-means clustering, where k corresponds to the protein copy number per cluster.

2.8. Statistical Analysis

For DNA-PAINT imaging, a minimum of twenty-five ~4 by 4 µm2 regions obtained
from 7–9 AsPC-1 cells were analysed per condition (control, agonist, antagonist). Statistical
analysis was performed via R (Version 4.0.3, The R Foundation, Vienna, Austria) using the
rstatix package [36,37]. Distribution of data points and their variance were determined.
Groups of three independent conditions were compared using non-parametric pairwise
Wilcoxon rank sum tests using the Holm correction method for multiple hypothesis testing.
Differences were statistically significant when adjusted p < 0.05. (n.s., p > 0.05; * p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001). Plots were created in R using the packages ggplot2, ggpubr,
tidyverse, and ggprism.

3. Results
3.1. Super-Resolution Imaging of P2Y2 Receptors in AsPC-1 Cells Using DNA-PAINT

To unravel the molecular organization of P2Y2 receptors in and near the plasma mem-
brane of AsPC-1 cells, we used DNA-PAINT imaging under total internal reflection (TIR)
excitation (see Figure S1 for a schematic representation of the optical set-up). Figure 1a
shows a representative super-resolution image of P2Y2 obtained via DNA-PAINT. TIR exci-
tation allows investigation of samples at or near the cell membrane by optically sectioning
light illumination to only the most superficial ~100 nm of the sample. This is extremely
beneficial in the study of GPCRs located at the plasma membrane as the receptors are
typically not only at the cell membrane, but also at intracellular sites such as endosomes,
endoplasmic reticulum, and the Golgi complex [38] and TIRF imaging minimizes their
intracellular visualisation.
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P2Y2 receptors were labelled with a primary antibody which we validated using
the immortalised human pancreatic stellate cell line PS-1 as it expresses traces amounts
of the protein of interest (see Figure S2 for negative control results) [19,39]. For DNA-
PAINT imaging, the anti-P2Y2 receptor antibody was chemically coupled to an optimised
docking strand sequence design to increase imaging speed. The docking strand features
a repetitive (ACC)n sequence motif that provides 3× overlapping binding sites for the
imager strand (Figure 1a, inset) [40]. The benefit of such docking sequence is not only
the increase of imaging speed, but also the possibility to use relatively low imager strand
concentrations achieving a high signal-to-noise ratio and single-molecule localisation
precision. In our experiments we achieved an overall localisation precision of ~10 nm using
a 1 nM concentration of imager strand fluorescently labelled with ATTO643, as determined
by the nearest-neighbour-based analysis (Figure S3).

3.2. Quantitative Analysis of the P2Y2 Receptors Oligomerization via qPAINT Analysis
3.2.1. qPAINT Calibration

To investigate the nanoscale distribution and oligomerization state of P2Y2 receptors
in AsPC-1 cells, we subjected the DNA-PAINT data to qPAINT analysis. qPAINT allows
quantification of the exact number of antibody-labelled P2Y2 receptors within a cluster
of single molecule localisations by taking advantage of the first order binding kinetics
between individual imager and docking strands. Specifically, the method uses the average
dark time, τd, of a cluster of single molecule localizations to determine how many copies
of the protein reside within that cluster of points, N, via the following relationship

N = (kon ci τd)−1 = τd,1/τd (1)

where kon is the binding rate of imager to docking strand, ci is the concentration of the
imager strand, and τd,1 denotes the dark time for the case of a single protein and is equal to
(kon ci)−1. By examination of Equation (1), it is straightforward to see that every additional
protein residing in the same cluster of localizations will lead to a proportionally shorter
τd, as illustrated in Scheme 1. To calculate the dark times associated to each cluster, we
developed an automated data processing pipeline based on DBSCAN (density-based
spatial clustering of application with noise) [41]. In DNA-PAINT, a DNA-coupled antibody
is localised several times, rendering a cluster of localizations around the true position of
the labelled proteins, whereas non-specific binding events are detected as non-clustered
localizations. Therefore, we first used the clustering algorithm DBSCAN to automatically
identify clusters of localizations in all the data sets, as illustrated in Figure 1b. For each
detected cluster, we then calculated the average dark time between binding events by
fitting cumulative histograms of the dark time durations, as detailed in the Methods
section. Figure 1b presents two typical single molecule on/off time series sequences for the
highlighted cluster of localizations containing either one or two docking sites, respectively.
To provide a measurement that is directly proportional to the copies of labelled proteins
per cluster, N, we used the inverse of the measured dark time, a term known as the qPAINT
index, qi [42].

Figure 1c shows a histogram of the qPAINT indexes obtained from the DNA-PAINT
data acquired in AsPC-1 cells. This was achieved by selecting very small clusters in the
biological data set, based on their geometrical dimension, such that they visually contain
one, two, or several puncta. The qPAINT index histogram of P2Y2 receptors can be fitted
with a multi-Gaussian function with peaks located at multiples of a qPAINT index value
of qi1 0.012 Hz. This ‘quantal’ behaviour is characteristic of detecting one, two, or three units
of DNA docking strands in the same cluster of single molecule localisations. Similar results
were obtained when examining the qPAINT index histogram of a dedicated calibration
sample corresponding to DNA-coupled primary antibodies deposited on a glass coverslip
and imaged via DNA-PAINT with the same experimental conditions as the biological
experiments (Figure 1d). In this case, the qPAINT index histogram contains the information
of all the clusters detected in the calibration sample and exhibits a prominent peak at a
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small qPAINT index value of qi1 0.011 Hz and a secondary peak located at nearly double of
this value. The consistency between the qPAINT index value for a single docking strand
obtained in the calibration sample and the internal calibration of the P2Y2 data are a strong
indication of the accuracy of the qi1 value 0.012 Hz obtained in the biological samples. This
value was thus used to estimate the number of P2Y2 receptors in DNA-PAINT images as
the ratio between qi/qi1. This analysis also confirmed that it is possible to differentiate
between monomers, dimers, and higher order clusters of antibody-labelled P2Y2 receptors
using qPAINT analysis.

3.2.2. Comparison of P2Y2 Receptor Dimerization and Cluster Formation upon Agonist
and Antagonist Treatment of AsPC-1 Cells

Next, we aimed to demonstrate the applicability of qPAINT analysis to quantitatively
determine the agonist and antagonist dependent oligomerization state of the P2Y2 receptor
in single AsPC-1 cells. Figure 2 illustrates our automated data processing procedure.
First, we acquired DNA-PAINT images of the P2Y2 receptor in control AsPC-1 cells and
cells treated with agonist (ATP) and antagonist (AR-C 118925XX). Examples of these
super-resolution images are presented in Figure 2a. To statistically quantify the spatial
organisation of the GPCR in different conditions, we used DBSCAN to detect clusters of
single-molecule localisations in at least twenty five ~4 by 4 µm2 randomly selected regions
of interest (ROIs) obtained from 7–9 cells per condition (i.e., control, agonist, and antagonist
treated cells). After identifying clusters of localisations in each ROI (colour coded in
Figure 2b), we determined the dark time associated with each cluster and estimated the
copy number of P2Y2 receptors per cluster using the calibration value obtained as described
in Section 3.2.1. We used this information to quantify the density of antibody labelled
receptors, the percentage of receptors organised into clusters of proteins (clusters defined
as an assembly containing more than 5 copies of the receptor), the percentage of receptors
forming dimers, and the percentage of non-clustered P2Y2 receptors, defined as monomers.
Furthermore, we then used k-means clustering (a distance-based algorithm) to partition the
clusters of single molecule localisations into k clusters, where k is given by the copy number
of receptors per cluster. This pipeline, previously introduced by Simoncelli et al. [33],
allowed us to recover an accurate quantitative map of the nanoscale distribution of labelled
P2Y2 receptors in AsPC-1 cells (Figure 2c). Using k-means clustering, we were also able
to calculate that the mean distance between two P2Y2 receptors in the clusters identified
as dimers is 25 ± 10 nm (Figure S4). Considering both the physical size of the labelling
antibodies (13.7 nm) [43] and the localization error (10 nm, Figure S3), the furthest apart
two adjacent antibodies could be is ca. 27 nm ± 10 nm, which is within the range of the
measured dimer distance, suggesting that a distance of 25 ± 10 nm is likely to correspond
to the detection of true chemical dimerization.

Using this approach, we found that the density of labelled P2Y2 receptors in the
plasma membrane (and/or the membrane-proximal area) does not change upon agonist
or antagonist treatment (Figure 3a). Quantification of the extent of dimerization and
clustering of P2Y2 receptors also revealed that the percentage of receptors in monomers,
dimers, and clusters are not significantly different between agonist treated and control
conditions (Figure 3b–d). Similar trends were observed by Kotevic et al. [29] using FRET
measurements of HEK 293 cells co-expressing P2Y2-CFP and -YFP, where no significant
change in the FRET signal was observed upon exposure to the agonist, in their case
UTP. Unlike the comparison between control and agonist treated cells, there is a marked
decreased (ca. 50%) in the percentage of P2Y2 receptors forming clusters in antagonist
treated cells with respect to the control conditions (Figure 3d). The mean P2Y2 receptor copy
number per cluster was also highly significantly different between control and antagonist
and agonist and antagonist treated cells but did not change significantly between agonist
and control conditions (Figure 3e). Concurrent with the reduction of the percentage of
molecules forming clusters and number of molecules in clusters in antagonist treated cells,
this analysis also detected an increase in the percentage of P2Y2 receptors forming dimers
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and in the monomeric state (Figure 3b,c). Together these data indicate that the antagonist
prevents the formation of higher order clusters and reduces their size.
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Figure 2. Automated data processing procedure to localize and quantify P2Y2 receptor nanoscale
distribution. (a) Representative rendered DNA-PAINT images of P2Y2 proteins in AsPC-1 cells
under control, agonist, and antagonist treatments. White box indicates ROI for subsequent cluster
analysis displayed in (b). (b) DBSCAN cluster analysis output for ROIs indicated in (a) under control,
agonist, and antagonist treatments. Non-clustered points are shown in grey. (c) Quantitative protein
maps of the ROIs indicated in (a,b) displaying P2Y2 receptors (larger coloured points) in each cluster
overlayed on clustered DNA-PAINT single-molecule localizations. (Left to right) control conditions
indicated in grey, agonist conditions in yellow and antagonist conditions in blue.
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4. Discussion

Over the years, multiple optical microscopy techniques have been applied to the study
of GPCR oligomerization, with one of the first single molecule imaging studies done by
Kasai et al. [44]. Subsequently, both Spatial Intensity Distribution Analysis (SpIDA) [15,45]
and molecular brightness approaches [13,14] were also developed and applied to study a
variety of GPCRs. In recent years, single-molecule tracking and FRET imaging have also
been applied to identify key factors in the regulation of GPCRs dynamic interactions in liv-
ing cells [16,46]. While these techniques have been paramount to investigate the oligomeric
organisation of GPCRs and the dynamic interactions that control GPCRs signalling, many
challenges still remain; including the limitation of applicability to endogenous settings
(i.e., many of these methods require labelled receptors or fusion proteins) and the possibility
of multi-colour imaging to simultaneously study different types of hetero-oligomers. Most
recently, dSTORM (direct stochastic optical reconstruction microscopy), a single-molecule
super-resolution microscopy method, was employed to investigate the nanoscale organisa-
tion of a GPCR in presynaptic active zones [47], presenting a step-forward in visualising
the organization of these receptors in endogenous conditions with nanoscale resolution.
However, this was possible at the cost of increased experimental complexity, as the ap-
proach required transiently transfecting cells under controlled conditions to accurately
quantify the number of receptors per cluster of single-molecule localizations.

As a novel method for quantitative analysis and nano-scale visualisation of the
oligomeric state of GPCRs in single cells, here we employed a quantitative single molecule
based super-resolution imaging technique based on DNA-PAINT, named qPAINT. Our
approach allows the study of GPCR oligomerization in an endogenous setting, while
avoiding the difficulties experienced with other SMLM techniques, such as dSTORM or
PALM, to quantify the protein copy number [47,48]. During the last four years, exam-
ples of the use of qPAINT to quantify protein clustering in different biological systems
have started to emerge [33,42,49]. This work is the first to employ qPAINT towards the
study of GPCRs, a technique that can certainly help resolve contentious issues associated
with GPCR oligomerization in different settings. Furthermore, due to the comparative
advantages of DNA-PAINT over other SMLM techniques—it can routinely deliver lateral
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resolution in the 5–10 nm range and it allows multiplexing with a single laser source—it is
straightforward to expand the applicability of qPAINT to detect and quantify GPCR hetero-
oligomers. We note, however, that like any other technique that relies on antibody labelling,
its applicability will depend on the availability of validated antibodies and that the final
accuracy towards the absolute protein copy number is affected by the overall antibody-
target binding efficiency, which can lead to potential undercounting. Still, by keeping
data acquisition and analysis the same it is possible to draw conclusions about changes in
the nanoscale distribution of the receptors in the different conditions. Furthermore, the
presented approach is not suitable for live-cell imaging.

By leveraging the capabilities of qPAINT to its maximum potential, our study provides
a detailed quantitative characterization of the density, spatial organization, and stoichiom-
etry of the antibody labelled purinergic receptor Y2 oligomers in the pancreatic cancer
cell line AsPC-1. Specifically, our data indicate that P2Y2 receptors are highly expressed
in AsPC-1 cells with an average density of ca. 40 receptors per µm2. We find that P2Y2
receptors are mainly organised in nanodomains containing three or more sub-units, with
only 20% of the receptors forming dimers and 10% distributed as monomers. Our results
also show that while the oligomerization status of P2Y2 receptors does not change upon
agonist treatment, there is a marked reduction of the percentage of P2Y2 receptors forming
oligomers in antagonistic conditions. Our results are in line with current models for the
P2Y2 receptor, which imply that homo-oligomeric assemblies of P2Y2 receptors are re-
quired for receptor internalisation and the effect of the antagonist prevents the formation of
these complexes. Similar antagonist effects have been observed for CXCR4 and dopamine
D3 GPCR receptors [50,51]. The fact that we did not observe significant difference in
the oligomerisation of P2Y2 receptors in control and agonistic conditions suggest that
oligomeric assemblies could be part and parcel of the natural activation of the receptor.

In conclusion, we demonstrated the accuracy and ease of implementation of qPAINT
to quantitatively characterise the oligomeric state of GPCRs, alongside achieving single
receptor visualisation. qPAINT analysis of the oligomeric state of P2Y2 revealed consistency
with currently proposed models for this receptor [29,50,51].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11101503/s1, Figure S1: Schematic of custom-built super-resolution microscopy setup.
Figure S2: P2Y2 and DAPI immunofluorescent staining of AsPC-1 and PS-1 cells for anti-P2Y2 receptor
antibody validation. Figure S3: Overall localization precision of all super-resolution DNA-PAINT
images. Figure S4: Distance between P2Y2 receptors in dimers.
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