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Abstract: Cardiac arrhythmia has been defined as one of the abnormal heart rhythm symptoms,
which is a common problem dealt with by cardiologists. Zebrafish were established as a powerful an-
imal model with a transparent body that enables optical observation to analyze cardiac morphology
and cardiac rhythm regularity. Currently, research has observed heart-related parameters in zebrafish,
which used different approaches, such as starting from the use of fluorescent transgenic zebrafish,
different software, and different observation methods. In this study, we developed an innovative
approach by using the OpenCV library to measure zebrafish larvae heart rate and rhythm. The pro-
gram is designed in Python, with the feature of multiprocessing for simultaneous region-of-interest
(ROI) detection, covering both the atrium and ventricle regions in the video, and was designed to
be simple and user-friendly, having utility even for users who are unfamiliar with Python. Results
were validated with our previously published method using ImageJ, which observes pixel changes.
In summary, the results showed good consistency in heart rate-related parameters. In addition,
the established method in this study also can be widely applied to other invertebrates (like Daphnia)
for cardiac rhythm measurement.

Keywords: zebrafish; cardiac rhythm; arrhythmia; OpenCV; computer vision; Daphnia

1. Introduction

Heart rate is a measurement of cardiac activity represented in the number of beats per
minute (bpm) [1]. Generally, heart rate has some subtle differences between beats, known
as heart rate variability (HRV), which shows a specific range for the average heart rate
within the species. For example, the range in humans is 60–100 bpm, and if the heart rate is
beyond this range, it is considered bradycardia or tachycardia. Bradycardia is a condition
when the heart rate is lower than the lowest threshold (<60 bpm) of HRV. On the other
hand, tachycardia is when the heart rate is higher than the highest threshold (>100 bpm).
In addition, more severe cases are reported as arrhythmia, showing high HRV, and all
these conditions have life-threatening risks related to symptoms causing cardiovascular-
related death. Therefore, it can be treated as a warning for cardiac electrophysiologists and
cardiologists [2–4].
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The factors that affect heart rate measurement are based on biological conditions,
such as physical activity, stress, sleep, heart diseases, illness, and therapeutic applications.
Photoplethysmography (PPG), a non-invasive optical method, is primarily applied to
record the volumetric behavior in peripheral blood circulation [5]. The PPG method was
based on the reflection of a specific wavelength in segments of the human body, and it can
be used to measure the blood volume pulse (BVP) during the cardiac cycle [6]. PPG can
be used with low-intensity infrared (IR) light for heart rate measurement, and the wave
pattern reflected from tissue during the cardiac cycle has similarity to electrocardiogram
(ECG) peaks which could be used to diagnose cardiac arrhythmia. Verkruysse et al. [7]
explained that plethysmographic signals could also be recognized in video with the help
of the conventional color camera, revealing new heart rate measuring probabilities. Recent
advances of PPG made it applicable in biomedical research to predict early vital signs of
arrhythmia in patients [8,9]. The non-invasive approach used to estimate human heart rate
was created by Poh et al. [10] by tracking user face videos with a blind source distinction of
the color channels into self-supporting elements. Wu et al. [11] worked with their Eulerian
video magnification (EVM) framework to observe the human pulse and amplify the color
signals that are prominent for the view of minor changes. Furthermore, Balakrishnan
et al. [12] used a unique method for extracting the heartbeat from different videos by putting
a mark on the head of a human and then measure its detailed movement. Chen et al. [13]
proposed an illumination-invariant approach for measuring the heart rate evaluation.
It was comprised of both the near-infrared channel and the detailed data obtained by a
RealSense 3D (RGBD) camera. The feasibility of measuring human heart rate with the help
of video is now advanced, which allows measuring heartbeat with low light intensity.

Moreover, Davila et al. [14,15] launched a non-contact method of estimating the arterial
pulse that gave a figure of HRV parameters. However, developing non-contact sensors
comprising the physiology of the arterial pulse and the regular changes in light absorption
and reflection in the dermis is still challenging. Moreover, the advanced techniques of
detecting the heartbeat are implemented by independent component analysis (ICA) on the
color channels of recorded videos to get the PPG signal are commonly practiced in various
biomedical research fields. Alghoul et al. [16] proposed and compared the EVM-based
method to the ICA-based approaches to enhance heart rate detection and HRV analysis
in humans.

Zebrafish have proven to be a good vertebrate model for cardiovascular research,
which has a transparent body in the larva stage, enabling visual observation of cardiac
activity [17–20]. The heart rate of zebrafish is closer to humans (120–180 bpm) compared to
mice (300–600 bpm), which are one of the most commonly used animal models [21]. Most
methods calculate heart rate data by recording region-of-interest (ROI), followed by digital
image processing to obtain cardiac-related data [22–25]. In our previous works, two ImageJ-
based methods in terms of time series analyzer (TSA) [26] and kymograph [21] were
reported to conduct cardiac rhythm measurement in zebrafish. However, some limitations
in image-based methods on measuring cardiac rhythms were encountered, such as the data
variation from different ROI locations and tedious manual or semi-automated operation
processes [27–30]. Recently, advancements in Artificial Intelligence (AI) and computer
vision library [31] provide wide application in the healthcare environment to reduce cost
and time for more efficient clinical practices. Furthermore, there are several available spatial
measurement algorithms used in computer vision, such as Channel and Spatial Reliability
Tracking (CSRT) [32], Joint Approximate Diagonalization of Eigen-matrices (JADE) [33],
and Cross-Correlation algorithm [34]. ICA is one of the promising methods to determine
heart rate from facial videos and non-contact devices [35]. In addition, OpenCV is a very
powerful library for the analysis of image or video datasets in AI and deep learning. It has
more than 2500 available algorithms that provide users with a wide range of applications
depending on their necessities [36]. It is supported by Windows, Linux, and Mac-OS,
and other operating systems and interfaces for C++ Python, Java, and MATLAB [37].
Inspired from previous computer vision tools developed for cardiac rhythm detection
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in humans, in this study, OpenCV is used to detect zebrafish cardiac activity from a
video dataset in Python programming language [38] for the first time. The feature of
simultaneously selecting ROIs for atrium and ventricle in video with presenting automatic
results are the hallmarks of this study. Additionally, user-friendly tools and less tedious
methods will benefit researchers to analyze huge datasets.

2. Materials and Methods
2.1. Zebrafish Embryo Maintenance

All experiments involving zebrafish were performed according to the guidelines
approved by the Institutional Animal Care and Use Committees (IACUCs) of Chung Yuan
Christian University (Approval No. 109001, issue date 15 January 2020). Wild-type AB
strain zebrafish were maintained in a continuously aerated and filtered water system.
According to previously reported protocols, the water temperature was maintained at
26 ± 1 ◦C with 14/10 h of light/dark cycle [39]. Male and female zebrafish with a ratio of
2:1 and placed into the breeding chamber at nighttime before breeding. The following day,
the separator was removed, and the embryos were collected after 2 h. After harvesting,
embryos were immediately cleaned from the impurities with double distilled water and
put into an incubator with a temperature of 28 ◦C until the time of treatment. To ease
the time calculation, all embryos were counted as 0 h post-fertilization (hpf) at the time
of fertilization.

2.2. High-Speed Videography

During recording the heart chamber of zebrafish, 3% methylcellulose was used as
a mounting solution, and larvae at 72 hpf were set on a petri dish with the lateral view
facing up. A high-speed charged coupled device (CCD; AZ Instrument, Taichung City,
Taiwan) camera mounted on the inverted microscope (ICX41, Sunny Optical Technology,
Zhejiang, China) was used to record the zebrafish heart chamber. The LPlan modulation
objective lens with 10× magnification was used to get the image of the zebrafish larvae
cardiac chamber. The recording was done using HiBestViewer Software (AZ Instrument,
Taichung City, Taiwan) at 200 frames per second (fps) for 10 s.

2.3. Calculation of Heart Rhythm Using ImageJ

For data validation, the heart rhythm was calculated using Time Series Analyzer
Plugin on FIJI distribution of ImageJ software (https://imagej.nih.gov/ij/plugins/time-
series.html, accessed on 30 July 2021) by calculating the dynamic change of the brightness
intensity. The calculation of the heart rate followed our previously published method [26].
The timing of each beat was obtained using the BAR Plugin on ImageJ (available online:
https://imagej.net/BAR, accessed on 30 July 2021) and the Poincare Plot plugin from
OriginLab software (Originlab Corporation, Northampton, MA, USA) was used to assess
the heart rate variability. Furthermore, the atrium-ventricle relaxation interval and vice
versa were also calculated to check for further cardiac rhythm dysregulation.

2.4. Calculation of Heart Rhythm by Using OpenCV Libraries

The concept of object tracking is observing moving objects in the video by using a
frame-by-frame analysis approach [40]. The initial step was importing various libraries
that contain classes and functions that can assist in heart rate computation. CV2 library for
OpenCV and imutils (a Python package, https://github.com/jrosebr1/imutils accessed
on 30 July 2021) [41] supported in resizing, shaping, translating, rotating, skeletoniz-
ing, displaying matplotlib images, sorting contours, and detecting objects. The other
libraries like math (https://docs.python.org/3/library/math.html accessed on 30 July
2021) [42], NumPy (https://numpy.org accessed on 30 July 2021) [43], pandas (https:
//pandas.pydata.org accessed on 30 july 2021) [44], and matplotlib (https://matplotlib.org
accessed on 30 july 2021) [45] supported in solving mathematical problems, matrices, data
analysis, and plotting graphs, respectively. SciPy (https://www.scipy.org accessed on
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30 July 2021), [46] is a library for linearization, optimization, linear algebra, integration,
interpolation, special functions, Fast Fourier Transform (FFT) [47], signal and image pro-
cessing, Ordinary Differential Equation (ODE) solvers, and other tasks common in science
and engineering [48]. Argparse library (https://docs.python.org/3/library/argparse.html
accessed on 30 July 2021) [49] was used to instantiate command lines that help the code
with much information and direction before starting. The overall schema of the study is
shown in Figure 1.

Figure 1. Schematic diagram showing the instrument setting and analysis pipeline for OpenCV-based cardiac rhythm
detection in this study. A: atrium, V: ventricle.

2.5. Proposed Framework

The initiation of the algorithm will create a loop, loading the video or the file path,
resizing the frames which will be processed. Next, bounding boxes are applied to the
atrium and ventricle area of the zebrafish heart in the video. Region of interest (ROI)
was defined in the raw video, which is well defined and described in the Viola–Jones
algorithm [50] in the study of face detection manually [51]. In this study, we used to make
a bounding box that contains pixels in the background in greyscale for both ROIs (atrium
and ventricle) with no fixed ratio in order to define more precise ROIs subdivisions [52].
The quality of video and the noises when transferring RGB signal to greyscale were
optimized by a stringent approach that has a large array of data within ROIs depending
upon the quality of signals from video sequences. A subset of ROIs was extracted by using
OpenCV, Scipy, and Numpy modules. Tracking was performed directly in determining the
ROI of each frame, which was challenging to detect peaks due to the noise in the video.
Spline interpolation was then used to get smoothen peaks to overcome the noisy signal
problem [53]. To consider of the atrium and ventricle chamber visibility, it was difficult

https://docs.python.org/3/library/argparse.html


Biomolecules 2021, 11, 1476 5 of 21

to extract data from the ROIs due to computational complexity. Therefore, the moving
subject of the video within ROI was checked repeatedly within 10 s intervals in the 60 fps
video dataset. The Mbox (https://docs.python.org/3/library/mailbox.html accessed
on 2 August 2021 was used to create a message box, which prompts the user to select
the respective ROI. Mbox from the ctype library is C compatible and could access C
file using DLL (https://www.dll-files.com accessed on 2 August 2021 or convert the C
libraries (https://docs.python.org/3/extending/extending.html accessed on 2 August
2021 to Python.

In order to get a precise heartbeat value, we used the function ‘def round_half_up’
hat round off float’s values to the nearest integers and is available in the math library.
The normalized array function was available in the NumPy library for the standard devi-
ation and mean evaluation. The ‘get similarity’ function was used to compare each data
frame by applying a cross-correlation technique. The correlation technique was used for
the observational relationship of the different sets in the data, based on their characteris-
tics [54]. Various correlations could also be used to do quantitative correlation. In this study,
we used a cross-correlation algorithm to measure the linear relationship in selected ROIs
using Python’s multiprocessing [55]. Cross-correlation is applied to measure the linear
relationship of a given input video. Cross-correlation gives a ratio of the covariance of two
features, and it only took the real value of the range as negative one to positive one (−1 to
+1). It was based on a positive linear relationship between the two variables. In order to
find the overlap signal values, the Find Peak function was applied first by converting the
values of the frame into matrices, which are known as signals (value) in the NumPy library.

The spline interpolation [53] was applied by using the SciPy library to regulate the
video frames with gradual transitions and generate raw signals. The purpose of using spline
interpolation is to establish special effects in cardiac rhythm detection. The consecutive
sequences of video frames continue to categorize the pixels into good- or low-quality videos.
Spline interpolation helps to control fade, dissolved, and wipe features in typical video
style [56]. In addition, to overcome brightness in the low-quality video, we dissolved the
fade scenes by assuming transitions to strict linear symmetric fashion. The two-blending
motion in the video as atrium and ventricle were stopped before selecting the ROI, and then
the total number of fps being extracted from the spline interpolation method. Later, data
were extracted to measure the heart rate for each cardiac chamber. Finally, we conducted
side-by-side data validation by comparing cardiac rhythm obtained from ImageJ and
OpenCV for a particular video.

2.6. Extraction of Video Signals from Bounding Box

The convolution process is achieved by taking two matrices of the same dimension
and multiplying the element with the element in the selected ROI. Paul Viola and Michael
Jones introduced the bounding box concept, which was firstly developed for a frontal
face detection system in 2001 [50]. In this study, we applied a comparable application of
the bounding box for selecting a specific position of the atrium and ventricle in zebrafish
based on expert opinion. The ROI is a subset of selected frame [57], and it has several
types as Polygon, Polyline, Point Rectangle, and Ellipse. A rectangular bounding box was
applied for the ROI selection as OpenCV has a powerful point-to-point boundary array
metrics feature that helps to extract the frame binarization. It is necessary to select the ROI
position accurately as it may affect the results due to a false position in the sliding motion
of the video.

Video signals were subjected to NumPy by extending in a matrix, which helps recover
and predict signals containing initial unknown information. Raw signal extraction was
done by the position of the ROI where video processed frame by frame and greyscale
values. Traditionally, color channels i € t [58], were extracted in series as t(i) for the time
interval in seconds. We processes the video from color to greyscale image so that pixels can
be computed more conveniently as dark and light in video frames. Pixel value computed
using correlation algorithm for the highest peak atrium that represented as atrium is

https://docs.python.org/3/library/mailbox.html
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pushing out blood to the ventricle. Similarly, the lowest peak showed when the atrium is
empty and simultaneously the values computed for ventricle heart chamber following the
same principle. The computed pixel values in greyscale were different from the rest of the
values that are out of the selected ROIs. A difference of −1 to 1 was applied to calculate
the rhythm in each cycle when blood-filled and empty in each heart chamber.

The position of selected ROIs in the video was based on the expert opinion for atrium
and ventricle; thus, the quality of video matters a lot in selecting ROIs. Carefully, ROIs
selection was performed and extracted raw signals as high peaks atrium and low peaks
atrium, high peaks ventricle and low peaks ventricle. The data of peaks was used and
saved in csv format for the analysis and validation of results. The heartbeat in a different
frames, 30 fps and 60 fps video, was further convolved to get a matrix of two input ROIs,
then generated an array of data. The data was then extracted to form signals that were
used to imitate the heartbeats of zebrafish. The signal was then plotted based on the data
showing a number of frames extracted to the csv file and cardiac rhythm calculated later
on as atrium and ventricle heart rate.

2.7. Heart Rate and Cardiac Rhythm Measurement

The heart rate measurement was performed by using the OpenCV library with op-
timization in selected ROI for the heartbeat. The frequency of the deflated image was
computed by multiplying the fps value to time in seconds (60) to get bpm. In order to main-
tain the differential between the next images, we fetched the average values and calculated
each interval by making an array of differentials in real-time with peaks. The conventional
methods showed limitations to detect a heartbeat from video. Some of the methods, such
as a high-speed confocal microscope, are used to detect the faster movement of heartbeat,
which could be expensive due to instrumental settings. Our novel method requires mp4
(MPEG-4) files that are widely used to store audio format videos and does not need to be
converted to the uncompressed AVI format [26,59].

Our program benefits from facilitating AI-based collection from selected ROI in either
ventricle or atrium positions. Next, video information was automatically detected via
the OpenCV tracking algorithm. If the ROI was away from the selecting cycle, the signal
detection time interval was from 10 s was recorded on 200 fps for 10 s and 60 fps for
10 s, respectively. The video frame rate was reduced to 30 fps to make it compatible
with the analysis. By dividing 1 over 200, we get the rate of 0.005, while processing for
60 fps, we must divide 1 over 60, 0.016 value assigned to satisfy the fps range. The total
number of frames in peaks obtained 200 × 10 = 2000 (where 200 fps recording for 10 s)
and 60 × 10 = 600 (where 60 fps recording performed for 10 s). It is independent of the
duration of the video that plays in the system and the number of frames computed above
2000 and less than 10, which were excluded for accurate peaks detection followed by
the principle [26]. The ratio was compared between each video dataset as 30 fps, 60 fps,
and 200 fps to get accurate heartbeat values the message box created for each video type
depending on the scale of the input dataset. For bpm evaluation, we used the following
Equation (1):

60

∑i=n−1
i=0 0.005 ∗ (invpeaksi+1 − invpeaksi)/n

(1)

where 60 is the total number of seconds in one minute, n = number of frames, and for
200 fps 1 frame = 0.005 and loop of inverse peaks (invpeaks) iteration calculated with n.
Similarly, for 60 fps, 1 frame is equal to 0.016, and by using the above equation, bpm
was calculated for a given video dataset. We preliminarily focused on tracking, which
can achieve high accuracy with vigorous and illustrative processing. After obtaining raw
signals, two signal waveforms obtained from either atrium or ventricle were merged into
one panel. Later the original signal waveforms were filtered using bandpass [60] filter
to get smoother waveforms and extracted the maxima and minima peak using NumPy
and SciPy [61]. Finally, the raw signals over time information can be output in csv format
by using the Fast Fourier Transform (FFT) [62] discrete method. Finally, we conducted a
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mathematical calculation to extract the atrium to atrium (A-A), ventricle to ventricle (V-V),
atrium to ventricle (A-V), and ventricle to atrium (V-A) interval endpoints.

2.8. Cross-Correlation Algorithm

Heart rate and cardiac rhythm measurement performed using time series cross-
correlation standard method [63] followed by the Equation (2) [64]:

r = ∑1[x(i)− mx) ∗ (y(i − d)− my)]√
∑1(x(i)− mx2

√
∑1(y(i − d)− my)2

(2)

Considering the series, it has been covered that x(i) and y(i) are the two-time series
and i = 0, 1, 2, . . . , N-1. The cross-correlation r and delay d expressed. Where mx and
my are defined as means of corresponding series and all the computed differences in
frame-by-frame duration d = 0, 1, 2, . . . , N-1, the results showed the twice length from the
original series.

The basic principle implemented in the study to recognize the deflated frames from
the ROI and average heart rate during the time of video comprised upon the frequency
with the physiology of zebrafish cardiac rhythm. In order to resolve the delays in time as
the video being initialized to select ROI, the index in series is considered to be less than 0 or
greater than or equal to the number of points wrapped in the motion of frames. The signal
processing practices depicted [65] ignoring the points or assuming the series as x and y is
zero. We used the following Equation (3) [64] to compute the index points to satisfy the
correlation equation:

r(d) = ∑1[x(i)− mx) ∗ (y(i − d)− my)]√
∑1(x(i)− mx2

√
∑1(y(i − d)− my)2

(3)

where d represents the range of delays, the length of cross-correlation series was considered
less than N (number) when short delays must compute in frames. The −1 to +1 is the
typical range that shows maximum correlation and 0 indices as no correlation in each
frame. The correlation used to detect the frame recording based on the number of fps as
data included in this study have 200 fps and 60 fps. Thus, the duration of high-speed
recording video was 10 s. To ensure the pixel-to-pixel ratio in each grayscale frame of
selected ROI, the total duration of video was multiplied by 10 to handle the motion of video
frames. As frame defined on two-dimensional function f (x,y) as x and y are the spatial
plane coordinates, and the amplitude at respective point shows the grey intensity.

2.9. Smoothing of Raw Data Using Spline Interpolation

We used the spline interpolation method [66] to conduct peak smoothening due to
the low error rate between the couple data points. Cubic spline approximate data was
defined as piecewise polynomials so that low-order polynomials can be joined together.
Knots were defined as points where spline must pass, and the total number of points on
the curve exist in knots and are determined by the polynomial [67]. The cubic splines
are generally preferred due to their low error rate compared to other polynomial splines,
which can effectively minimize the root-mean-squared-error (RMSE) between polynomial
and data points [58]. We used univariate spline interpolators to smooth the peaks from raw
data. While the SciPy library was based on numerical routines in Python programming,
it enables the users to perform modeling and solving scientific problems. It includes
algorithms for optimization, interpolation, algebraic equations, etc. [68]. SciPy is built
with NumPy [69] that contains array data structures with related fast numerical routines.
The UnivariateSpline module is available with API for best interaction with SciPy and
FITPACK [70]. The shape was confined in a layer of polynomial classes, and the CubicSpline
module was constructed to regulate the interpolator in preserved shape [46]. Later, time
interval refers to a simple function represented in the graph (Figure 2C) as the number of
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frames extracted (Figure 2D) on which video was being recorded [71]. Finally, the OpenCV
script for zebrafish cardiac rhythm measurement can be found in File S1.

Figure 2. (A) ROI selection for ventricle and atrium in zebrafish heart video. The amplitude on the y-axis and the number
of frames on the x-axis against the ROI in the selected video were presented. The division algorithm was to find the peaks
based on each frequency of selected frames. (B) Raw heartbeat signals obtained from OpenCV. Blue peaks showing atrium
heart rate, and red peaks presented ventricle heart rate. The X-axis contains the number of frames, and the y-axis shown
amplitude based on pixels intensity. Overlay graph having atrium and ventricle beat per minute results. (C) The filtered
heartbeat waveforms for both the atrium (blue color) and ventricle (red color). (D) Output data format in excel showing
some important measurements.

3. Results
3.1. Overview of Heart Rate and Rhythm Analysis Pipeline by OpenCV

In previous studies, our team has developed several simple and cost-effective ImageJ-
based methods to conduct cardiac rhythm detection in zebrafish and Daphnia [21,26,72].
In order to effectively reduce the relative complexity for manual or semi-automated opera-
tion, in this study, we aimed to develop an automated tool for cardiac rhythm detection
in zebrafish by using OpenCV. As shown in Figure 1, we first recorded high-resolution
video with a high frame rate from high-speed CCD mounted on an inverted microscope.
The traditional approach in image data recording adopts 24-bit RGB three-color space.
In order to get a better image resolution (signal-to-noise ratio), the heart area was recorded
in grayscale through the frame recognition method in this study. Later, videos in mp4
format were opened in OpenCV software which is implemented in a Python environment.
ROI positions at either atrium or ventricle were selected. The recognition algorithm was
applied based on a typical rectangular zone representing the heart chamber feature when
the heart rate was detected. The detailed standard operational protocol for the tool was
available in Video S1 and File S2.

In order to verify the accuracy of heart rate detection, the vertical axis in the frames
of ROI indicated the beat per minute with the selected position. The video recording was
recorded for 10 s at a frame rate of 200 fps. Later, the original videos were rendered to frame
rate at 30 fps to make a slow-motion video with a 6.6-fold slowdown effect. Each interval
value in the beat cycle was then multiplied with the 6.6 due to the 10 s interval conversion
to 66 s to satisfy the original 200 fps rate. In order to calculate atrium and ventricle heart
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rate multiprocessing in Python [73], we applied a separate ROI option to select the atrium
and ventricle parts in the video (Figure 2A). This setting allows us to simultaneously extract
two signals from both the atrium and ventricle heartbeat (Figure 2A).

The Channel and Spatial Reliability algorithm has been considered one of the most
accurate in tracking objects globally [32]. OpenCV 3.4.2 version was installed through
Python [74]. Since high-speed CCD was used for image capture, we could obtain cardiac
rhythm signals with a high sampling rate over time (Figure 2B). Later, the original wave-
form signals were filtered, and curve smoothening were performed to obtain maxima and
minima peak search (Figure 2C). The periodic motion of the heartbeat performs a function,
and because of this heart rate signal reaches the maximum in power. Finally, the raw
cardiac rhythm data can be output in csv format for information extraction (Figure 2D).
The results performing spline interpolation were reproducible (Figure 2C), and it was
readily implemented to apply in UnivariateSpline function in Python.

3.2. Cardiac Rhythm Comparison with ImageJ Method in Control Zebrafish Embryos

The basic principle for heart rate and rhythm measurement by OpenCV is different
from ImageJ dynamic pixel change or kymograph-based method. In order to know whether
data consistency was obtained from OpenCV and ImageJ methods, we compared heart
rate from either ventricle or atrium in control zebrafish embryos aged at 72 hpf by using
both OpenCV (this study) and ImageJ TSA methods [26]. In Figure 3A, we define some
important endpoints to evaluate cardiac rhythm regularity, including atrium to atrium
(A-A), ventricle to ventricle (V-V), atrium to ventricle (A-V), and ventricle to atrium (V-A)
intervals. Results showed that heart rate was measured by using either OpenCV or ImageJ
method displayed a similar level with no significant difference (Figure 3B). The average
heart rate in the ventricle was 117 ± 30 for OpenCV and 117 ± 30 for ImageJ (p = 0.299);
heart rate in the atrium was 118 ± 30 for OpenCV and 116 ± 30 for ImageJ (p = 0.316).
By Pearson correlation test, the heart rate obtained by both methods displayed a high
positive correlation in either ventricle (r = 0.945) or atrium (r = 0.941). Taken together, those
pieces of evidence supported our hypothesis that OpenCV can be used to detect zebrafish
larvae heart rate in high precision and unbiased manner.

Next, we validated data consistency for cardiac rhythm measurement by OpenCV
and ImageJ TSA methods [26]. For A-A (p = 0.891) and V-V (p = 0.947) intervals, there
are no significant differences be detected between OpenCV and ImageJ TSA methods
(Figure 3C). A-V interval was 0.119 ± 30 for OpenCV and 0.152 ± 30 for ImageJ (p = 0.324).
V-A interval was 0.386 ± 30 for OpenCV and 0.361 ± 30 for ImageJ (p = 0.445). For the
A-A interval (Figure 3E) and V-V interval (Figure 3F) regularity test, we found OpenCV
can detect more uniform heartbeat regularity by showing significantly less sd1 and sd2
values than those conducted by the ImageJ TSA method. Taken together, this evidence
supported our hypothesis that OpenCV can be used to detect zebrafish cardiac rhythm in
high precision and unbiased manner. The comparison results also support that the current
OpenCV approach has consistent results with the ImageJ TSA method.

3.3. Cardiac Rhythm Comparison between OpenCV and ImageJ Methods with Different ROI
Selected Positions

Next, we tested the potential effects of ROI position in both atrium and ventricle
for cardiac rhythm measurement. Three different locations within the heart chamber,
bottom, middle, and top positions, were selected for comparison (Figure 4C). Afterward,
we tested the difference of ROI location selection by comparing the atrium-ventricle (A-
V) and ventricle to atrium (V-A) intervals from three different ROI location sets, which
were middle atrium-middle ventricle, bottom atrium-top ventricle, and top atrium-bottom
ventricle. The result showed there were no significant difference in A-V intervals using
ImageJ on Middle (0.1666 ± 0.1387), Bottom A-Top V (0.1250 ± 0.07164), and Top A-
Bottom V (0.1756 ± 0.1161) and OpenCV on Middle (0.1614 ± 0.1369), Bottom A-Top V
(0.1453 ± 0.1209), and Top A-Bottom V (0.1192 ± 0.06383) (Figure 4A). The result on V-A
intervals also showed no significant difference between ImageJ on Middle (0.3346 ± 0.1359),
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Bottom A-Top V (0.3788 ± 0.0644), and Top A-Bottom V (0.3284 ± 0.1215) and OpenCV
on Middle (0.3402 ± 0.1386), Bottom A-Top V (0.3590 ± 0.1183), and Top A-Bottom V
(0.3854 ± 0.06457) (Figure 4B). Therefore, OpenCV method established in this study is
insensitive to the ROI position and can get consistent results comparable to the ImageJ
TSA method.

Figure 3. Comparison of heart rate and cardiac rhythm measurement in control zebrafish embryos aged at 72 hpf using
either OpenCV or ImageJ methods. (A) Schematic diagram showing the basic definition for atrium and ventricle signals.
(B) Comparison of heart rate obtained from either atrium (left panel) or ventricle (right panel) chambers using either
ImageJ or OpenCV methods. (C) Comparison of the atrium to atrium (A-A) and ventricle to ventricle (V-V) intervals using
either ImageJ or OpenCV methods. (D) Comparison of atrium-ventricle (A-V) and ventricle to atrium (V-A) intervals
using either ImageJ or OpenCV methods. Comparison of atrium-atrium (A-A) (E) and ventricle-ventricle (V-V) (F) interval
regularity using either ImageJ or OpenCV methods. Data was processed using unpaired t-test (B–D) as it follows the
normal distribution. Pearson correlation (B) and Wilcoxon test (E,F) were conducted because the data does not obey normal
distribution (*** p < 0.001, **** p < 0.0001).
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Figure 4. Comparison of Atrium-Ventricle (A) and Ventricle-Atrium (B) heartbeat interval using ImageJ and OpenCV
method. (C) Schematic diagram showing the position for ROI selection. Data was processed using Two-Way ANOVA with
Tukey comparison method and presented as Mean ± SEM; n = 10.

3.4. Use of the OpenCV Method to Detect Heart Rate Alterations after IBMX Treatment

Next, we examined the performance of OpenCV to measure tachycardia (heart-
beat faster) events. IBMX (3-Isobutyl-1-methylxanthine) was used to induce tachycardia,
according to our previous published literature reported by Santoso et al. [75]. For IBMX,
we found a significant increase in heart rate and decrease in heartbeat interval in both
atrium and ventricle chambers compared to the control fish (Figure 5A,B). The decrease
in heartbeat intervals (Figure 5C,D) detected by either OpenCV approach or ImageJ TSA
method display no significant difference (for atrium, 0.2432 ± 0.0791 for OpenCV and
0.2436 ± 0.0791 for ImageJ, p = 0.3750; and for ventricle, 0.2435 ± 0.0795 for OpenCV and
0.2435 ± 0.794 for ImageJ, p = 0.9102). In addition, the decrease in A-V or V-A intervals
detected by either OpenCV, or ImageJ TSA method display consistent results (for A-V
intervals, 0.1066 ± 0.0337 for OpenCV and 0.0974 ± 0.0256 for ImageJ, p = 0.5837; and for
V-A intervals, 0.1739 ± 0.0300 for OpenCV and 0.1834 ± 0.0294 for ImageJ, p = 0.5677).

To detect cardiac rhythm alteration, we performed the Poincare plot method to mea-
sure sd1 and sd2 values (Figure 5E,F). Zebrafish embryos display less cardiac rhythm
regularity if they have higher sd1 and sd2 values. For A-A interval, we found sd1 was
0.0221 ± 0.0094 for OpenCV and 0.0421 ± 0.0119 for ImageJ (p = 0.0195, *), and sd2 was
0.0188 ± 0.0167 for OpenCV and 0.0294 ± 0.0114 for ImageJ (p = 0.0195, *). For V-V in-
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terval, we found sd1 was 0.0138 ± 0.0066 for OpenCV and 0.0236 ± 0.0074 for ImageJ
(p = 0.0020, **), and sd2 was 0.0135 ± 0.0160 for OpenCV and 0.0202 ± 0.0145 for ImageJ
(p = 0.0039, **). Taking together, these pieces of evidence showed the capability of OpenCV
in obtaining tachycardia heartbeat data on IBMX exposed zebrafish, which are comparable
to the previously published method [75]. Moreover, by using OpenCV, obtained heart rate
variability is more uniform compared to ImageJ.

Figure 5. Comparison of heart rate regularity and cardiac rhythm measurement in IBMX treated zebrafish embryos aged at
72 hpf using either OpenCV (red color) or ImageJ (blue color) methods. Comparison of atrium to atrium (A-A) (A) and
ventricle to ventricle (V-V) (B) intervals using either ImageJ or OpenCV methods. Comparison of atrium-ventricle (A-V)
(C) and ventricle to atrium (V-A) (D) intervals using either ImageJ or OpenCV methods. Comparison of heartbeat regularity
in either atrium (E) or ventricle (F) using either ImageJ or OpenCV methods, red dotted line signified the normal level of
each parameter obtained from control group. Data was calculated using t-test (A,B) and Wilcoxon test (C–F), and presented
as Mean ± SD, n = 10 (* p < 0.05; ** p < 0.01).

3.5. Use of OpenCV Method to Detect Cardiac Rhythm Dysregulation after Camphor Treatment

Furthermore, we hypothesized that our program was capable of detecting bradycardia
(heartbeat slow down) and cardiac dysregulation (arrhythmia). In order to validate our
hypothesis, we used a previously published dataset showing heart rate slow down and
cardiac rhythm dysregulation after 500 ppm Camphor exposure reported by Du et al. [76].
After 500 ppm Camphor exposure, we found a significant slowdown in the heart rate
in both atrium and ventricle chambers compared to control fish (Figure 6A,B). Impor-
tantly, the slower heartbeat detected by either OpenCV or ImageJ TSA method display
no significant difference for either atrium (88.51 ± 16.88 for OpenCV, and 100.5 ± 29.52
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for ImageJ, p = 0.2778) or ventricle (84.83 ± 9.505 for OpenCV and 79.44 ± 13.55 for Im-
ageJ, p = 0.0571). The heartbeat intervals (Figure 6C,D), on the contrary, are significantly
longer than those in control fish after 500 ppm Camphor treatment. The heartbeat interval
detected by either OpenCV or ImageJ TSA method showed a comparable result to heart
rate. There is no significant difference for A-A intervals which has, 0.6162 ± 0.0789 for
OpenCV and 0.6381 ± 0.1604 for ImageJ, p = 0.3543; and for V-V intervals, 0.6010 ± 0.0975
for OpenCV and 0.7752 ± 0.1316 for ImageJ, p = 0.068. For cardiac rhythm regularity,
we performed the Poincare plot method to measure sd1 and sd2 values. Zebrafish embryos
display less cardiac rhythm regularity if they have higher sd1 and sd2 values (Figure 6E,F).
For A-A interval, we found sd1 was 0.0984 ± 0.0540 for OpenCV and 0.0505 ± 0.0660
for ImageJ (p = 0.0371), and sd2 was 0.0980 ± 0.0623 for OpenCV and 0.0338 ± 0.0265
for ImageJ (p = 0.0137). For V-V interval, we found sd1 was 0.0864 ± 0.0714 for OpenCV
and 0.0205 ± 0.0167 for ImageJ (p = 0.0098), and sd2 was 0.0958 ± 0.0738 for OpenCV and
0.0254 ± 0.0159 for ImageJ (p = 0.0273). Taken together, these pieces of evidence support
our hypothesis that OpenCV can be used to detect zebrafish cardiac rhythm dysregulation
in high precision and unbiased manner and suggest that OpenCV is more sensitive than
the ImageJ TSA method on detecting cardiac rhythm regularity in zebrafish.

Figure 6. Comparison of heart rate and cardiac rhythm measurement in 500 ppm Camphor-treated zebrafish embryos aged
at 72 hpf using either OpenCV or ImageJ methods. Comparison of heart rate obtained from either atrium (A) or ventricle
(B) chambers using ImageJ TSA and OpenCV methods. Comparison of atrium to atrium (A-A) (C) and ventricle to ventricle (V-V)
(D) intervals using ImageJ and OpenCV methods. Comparison of heartbeat regularity in either atrium (E) or ventricle (F) using
either ImageJ or OpenCV methods, red dotted line signified normal value of each parameter obtained from control group. Data
was calculated using t-test (A,B) and Wilcoxon test (C–F), and presented as Mean ± SD, n = 10 (* p < 0.05; ** p < 0.01).
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3.6. Use of OpenCV Method to Detect an Ultrafast Heartbeat in Daphnia Magna

The success of detecting cardiac rhythm in zebrafish by the OpenCV method promotes
us to test whether our approach is also functional when applied to ultrafast heartbeat
events in water fleas. We analyzed heartbeat data for Daphnia magna reported by San-
toso et al. [72]. The control peaks for Daphnia magna heartbeat analyzed by OpenCV
method can be found in Figure S1, with a good signal-to-noise ratio. The heart rate in
Daphnia magna was temperature-dependent, which was detected 354.2 ± 41.70 bpm by
using ImageJ and 354.3 ± 41.94 bpm by using OpenCV at 15 ◦C (p = 0.475, Figure 7A).
The heart rate of Daphnia increased after being exposed to a higher temperature at 35 ◦C,
reaching 630.8 ± 99.77 bpm using ImageJ and 631.5 ± 99.81 bpm using OpenCV (p = 0.241,
Figure 7B). Observation on Daphnia heartbeat intervals at 15 ◦C showed average interval
of 0.1716 ± 0.01951 s of ImageJ compared to 0.1715 ± 0.01971 s of OpenCV (p = 0.504,
Figure 7C), while 35 ◦C showed average interval of 0.09773 ± 0.01769 s of ImageJ com-
pared to 0.09762 ± 0.01766 s of OpenCV (p = 0.165, Figure 7D). Both methods showed a
comparable interval result with good consistency. Afterward, heartbeat regularity be-
tween both methods was compared by using a Poincare plot. sd1 result showed no
significant difference between ImageJ and OpenCV method (0.01488 ± 0.00901 s and
0.01018 ± 0.007254 s, p = 0.058, respectively) and significant difference on the sd2 result
(0.01033 ± 0.01059 s and 0.005825 ± 0.00519 s, respectively) for Daphnia magna exposed to
15 ◦C water temperature. The difference in heartbeat regularity between both methods
became more pronounced at 35 ◦C. ImageJ showed sd1 regularity of 0.007185 ± 0.005131 s,
while OpenCV showed a more regular result at 0.004775 ± 0.003995 s. ImageJ showed
sd2 regularity of 0.004225 ± 0.002868 s compared to OpenCV of 0.002740 ± 0.001894 s
(Figure 7D,E). The sd1 and sd2 values obtained from OpenCV display more uniform than
the ImageJ method, which is consistent with previous tests done in zebrafish embryos.

Figure 7. Cont.
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Figure 7. OpenCV can be used to detect an ultrafast heartbeat in Daphnia magna. Comparison of heart rate obtained from at
either 15 ◦C (A) or 35 ◦C (B) using ImageJ TSA and OpenCV methods. Comparison of heartbeat intervals at either 15 ◦C (C) or
35 ◦C (D) using ImageJ and OpenCV methods. Comparison of heartbeat regularity at either 15 ◦C (E) or 35 ◦C (F) using ImageJ
TSA and OpenCV methods. Data was calculated using Wilcoxon test and presented as Mean ± SD, n = 20 (* p < 0.05; ** p < 0.01;
*** p < 0.001).

Figure 8. OpenCV can be used to detect heartbeat irregularity in Daphnia magna. Comparison of heart rate (A) and heartbeat
interval (B) obtained using ImageJ TSA and OpenCV methods. Comparison of heartbeat regularity using ImageJ and OpenCV
methods (C), red dotted line signifies normal value of each parameter obtained from control group. Poincare plots were used
to measure heartbeat regularity for either ImageJ (D) or OpenCV (E) methods. Data was calculated using Wilcoxon test and
presented as Mean ± SD, n = 14 (** p < 0.01; *** p < 0.001).
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3.7. Use of OpenCV Method to Detect Heartbeat Irregularity in Daphnia Magna

Afterward, we further validated the result obtained in Daphnia magna by exposing
the model to the pesticide in order to induce heartbeat irregularity. We used a dataset
collected from imidacloprid (IMI) exposed Daphnia magna, which was reported by Santoso
et al. [72]. Compared to the control group (357.7 ± 86.6 bpm), we found IMI exposure
at 100 ppb can reduce Daphnia magna heartbeat to a level of 315.1 ± 116.7 by ImageJ
and 309.4 ± 124.2 bpm by OpenCV, which showed no significant difference between both
methods (p = 0.855, Figure 8A). For heart rate interval, compared to the control group
(0.1779 ± 0.04596 s), IMI exposure at 100 ppb can prolong Daphnia heartbeat interval
to a level of 0.2447 ± 0.1674 by ImageJ and 0.2631 ± 0.1919 by OpenCV with no signif-
icant difference between both methods (p = 0.7609, Figure 8B). Next, we used sd1 and
sd2 values from the Poincare plot to conduct the heartbeat regularity test. Results show
IMI exposure can significantly elevate sd1 and sd2 levels in Daphnia magna, and OpenCV
can generate more uniform results (sd1 = 0.03349 ± 0.04744, sd2 = 0.04110 ± 0.06569) than
ImageJ (sd1 = 0.07052 ± 0.1164, sd2 = 0.07349 ± 0.1124) for heartbeat regularity measure-
ment (Figure 8C–E).

4. Discussion

The most important findings for this study are that we adopted a Computer Vision-
based OpenCV approach for conducting cardiac rhythm detection in zebrafish for the first
time. Compared to previous manual or semi-automated ImageJ-based methods introduced
by Sampurna et al. [26] and Kurnia et al. [21], this new OpenCV-based method has several
advantages of high accuracy, easy operation, and automated data process pipeline. Previous
literature has conducted a good comparison between OpenCV and ImageJ methods [77,78].
ImageJ is a Java-based tool originally developed by the National Institute of Health (NIH) to
analyze images or videos and successfully contribute to many fields [79]. The major reasons
for its success are an easy-to-use interface, easy-to-get plugins, and a macro system that
allows users to capture and get interactions by automatically reproduce workflows. ImageJ
has featured mainly focused on image processing. It lacks instrumental tool perspectives
to compete with the broad spectrum of advanced positioning in computer vision and
machine learning methods. However, there is also a limitation that each plugin requires to
get other algorithms either from scratch or must implement the method with connections
of other external libraries. The ImageJ-based method that we developed previously for
cardiac rhythm measurement is based on manual or semi-automated calculation [21,26].
The user must convert mp4 into AVI uncompressed format and open a number of excel
software sheets to compute heart rate, cardiac endpoints (AV-VA), and cardiac rhythm
regularity. In the current OpenCV approach, all essential tools have already been installed
in the same python platform. Therefore, there is no need to use external software such as
VirtualDub, Adobe Premiere CC, and Microsoft excel used in the previous ImageJ-based
methods [21,26] to perform cardiac rhythm analysis.

OpenCV, on the contrary, has numerous libraries established for image processing
and object tracking purposes. The architecture is made for systematic analysis in various
computational metrics as widths and spacing to work in a bounding box to track the
ROI. This concept is common in practice in machine learning approaches. The power of
OpenCV relies on image processing, feature detection, object tracking, machine learning,
and video analysis. The parameters in tracking as bars, also, subsequently the name
with rectangular regions were framed by a various blend of uncommon characters like
colons or spots. The library has been developing continuously since its introduction to the
world, attempting to use widely in biomedicine and image processing. It provides a wide
spectrum to implement code based on the requirement of the user to solve the problem.
OpenCV displays more flexibility for accepting multiple video input formats than ImageJ
and can skip the tedious and time-consuming video format conversion step. Video frame
rates set at either 30, 60, or 200 fps are acceptable and can be automatically handled with
each input video recording frame size.
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ImageJ is used to detect pixels in an image, while the OpenCV-based tool tends to
perform computation in ROIs within video files as the video has much more efficiency to
get good results compared to a single image. Python multiprocessing tool allows users to
simultaneously conduct atrium and ventricle heart rate measurements using multiple ROI
selection functions. In contrast, ImageJ only allows selecting a single ROI each time for
either atrium or ventricle heart chambers selection and extracting the data from peaks for
only one ROI at each time. Finally, we also provide standard operating protocols (SOP) as
Supplementary Materials that allow users to conduct cardiac rhythm measurements with-
out any training on Python scripting. The user can operate our developed OpenCV tool in
a simple way just conduct copy and paste commands in the Python operation environment.

In order to validate our result, we compared the result of our OpenCV method to a
previously published method using a time series analyzer in ImageJ [26]. First, we com-
pared three different ROI locations using both methods. This comparison resulted in no
significant difference between different ROIs. The result means both methods are not
affected by different area selection, which means they will reduce the possible error during
the ROI selection process. We also validated that OpenCV was able to detect tachycardia,
bradycardia as well as arrhythmia events for zebrafish larvae with high precision compa-
rable to ImageJ TSA method. Therefore, this new, innovated OpenCV tool can provide
the research community with a convenient and low-cost tool to conduct cardiotoxicity or
cardio-pharmacological assay. Table 1 Presented recent studies on automated and manual
methods to measure heart rate and cardiac rhythm in zebrafish.

5. Potential Limitations and Future Work

This study successfully developed an OpenCV-based cardiac rhythm detection tool
for zebrafish and other aquatic invertebrates (like water flea). The good utilization of this
OpenCV tool has been extensively validated by a side-by-side comparison to previously
ImageJ-based methods [26]. The proper ROI selection has been reported to play a crucial
role in a kymography-based method for cardiac rhythm detection [21]. ROIs defined in the
current work are following the mounting so broadly to target the atrium and ventricle to
avoid the motion sliding in video frames. Each video frame was read to cover ideal spatial
differences for handling the enormous ROI selections, and calculations are wise as they
can be used to plot cardiac rhythm data. The key computational significances are dynamic,
measuring beat per minute containing deflated accessible data with spline interpolation
plots. The current OpenCV-based method required a minimal video length for at least 10 s
but no limitation for longer videos. For ultrafast heartbeat detection in Daphnia magna,
we found that separate scales are required based on the different ratios for reading frames.
This is because the ratio of scale setting for zebrafish does not work for Daphnia magna
cardiac rhythm analysis.

Finally, the quality of input video sequences plays an important role in rhythm
detection. Poor recording practices with low image contrast will reduce the accuracy of
cardiac rhythm detection. In our OpenCV tool, we found although this method is not
sensitive to ROI position selection in the heart chamber; however, the user still needs to
conduct ROI manual selection step. Since the ROI selection in each video was different
and should be manually selected, the current version does not support batch conduction.
The future study by machine learning to conduct automated ROI selection might overcome
this limitation [81]. Furthermore, in the future, the addition of Graphical User Interface
(GUI) could benefit a lot of people who use this tool, as the addition of GUI will improve
the usability of the tool, especially for researchers without a computer science background.

6. Conclusions

In this study, we developed an OpenCV-based tool that can perform automated cardiac
rhythm measurement of both atrium and ventricle chambers in zebrafish larvae and the
ultrafast heartbeat in Daphnia magna video datasets. The program can examine the ROI
with spatial deflated frame scale and provide results in a flexible manner to analyze further
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for cardiac endpoints as heartbeat regularity. This tool also provides one more scope to get
enough information to perform multiple analyses such as non-contact monitoring, image
processing, and ambulatory cardiac activity with attractive potential for pharmacological
and toxicological screening application.

Table 1. Comparison of OpenCV and other methods for heart rate and cardiac rhythm measurement in zebrafish.

Software Video Format Environment/
Platform

Selecting
ROI

Automated
Operation?

Endpoints Can be
Measured References

OpenCV MP4 Python Video Yes

Heart rate, atrium-atrium,
ventricle-ventricle,

atrium-ventricle, and
ventricle-atrium intervals,

heart rate variability

This study

ImageJ TSA AVI ImageJ Image No

Heart rate, atrium-atrium,
ventricle-ventricle,

atrium-ventricle, and
ventricle-atrium intervals,

heart rate variability

[26,80]

Kymograph AVI ImageJ Image No

Heart rate, atrium-atrium,
ventricle-ventricle,

atrium-ventricle, and
ventricle-atrium intervals,

heart rate variability

[21]

ZACAF
(Zebrafish
Automatic

Cardiovascular
Assessment
Framework)

Not
mentioned

Python (U-net
deep learning

model)

Video,
Selected by

deep learning
tool

Yes Heart rate only [81]

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11101476/s1, Video S1: Tutorial video for introducing zebrafish cardiac rhythm mea-
surement by OpenCV (https://www.youtube.com/watch?v=LAIG3Xb_fFQ&t=1381s) (accessed
on 5 September 2021), Figure S1: Optimized heart rate peak waveforms for Daphnia magna after
performing smoothing by spline interpolation, File S1: OpenCV script for zebrafish cardiac rhythm
measurement, File S2: Standard operation protocol for zebrafish cardiac rhythm measurement by
using OpenCV.
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