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Abstract: Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis that are
expressed in response to soluble mediators, such as cytokines and growth factors. Their physio-
logic functions include blood vessel formation, regulation of vascular permeability, stem cell and
monocyte/macrophage recruitment and maintenance of bone homeostasis and repair. In addition,
angiogenesis plays a pivotal role in chronic pathologic conditions, such as tumorigenesis, inflam-
matory immune diseases and bone loss. According to their prevalence, morbidity and mortality,
inflammatory diseases affecting periodontal tissues and oral cancer are relevant non-communicable
diseases. Whereas oral squamous cell carcinoma (OSCC) is considered one of the most common
cancers worldwide, destructive inflammatory periodontal diseases, on the other hand, are amongst
the most prevalent chronic inflammatory conditions affecting humans and also represent the main
cause of tooth loss in adults. In the recent years, while knowledge regarding the role of VEGF
signaling in common oral diseases is expanding, new potential translational applications emerge.
In the present narrative review we aim to explore the role of VEGF signaling in oral cancer and
destructive periodontal inflammatory diseases, with emphasis in its translational applications as
potential biomarkers and therapeutic targets.

Keywords: VEGF; VEGFR; angiogenesis; periodontitis; periimplantitis; apical periodontitis; oral
cancer; oral squamous cell carcinoma

1. Introduction

Vasculogenesis, the formation of blood vessels from de novo generation of endothelial
cells, and angiogenesis, the process of new blood vessel formation, are critical during
development and physiologic homeostasis, but can also mediate the pathogenesis of several
diseases. Vascular endothelial growth factors (VEGFs) are vital regulators of angiogenesis
and vasculogenesis that are expressed in response to soluble mediators, such as cytokines
and growth factors [1]. The physiologic functions of the VEGF signaling axis involve blood
vessel formation-endothelial cell proliferation, migration, and cell survival-, regulation
of vascular permeability and maintenance of bone homeostasis and repair, affecting the
differentiation and function of osteoblasts and osteoclasts [2]. VEGF is also required for
stem cell and monocyte/macrophage recruitment, maintenance of tissue barrier functions
and neuroprotection [3]. In addition to these physiologic processes, angiogenesis plays a
pivotal role in oral chronic pathologic conditions, such as tumorigenesis and inflammatory-
immune diseases with bone loss [3,4].

VEGF is a type of glycoprotein, which possesses angiogenic, mitogenic and vascu-
lar permeability regulating properties, thus enhancing the activity of endothelial cells.

Biomolecules 2021, 11, 85. https://doi.org/10.3390/biom11010085 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-1858-3091
https://doi.org/10.3390/biom11010085
https://doi.org/10.3390/biom11010085
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11010085
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/11/1/85?type=check_update&version=1


Biomolecules 2021, 11, 85 2 of 27

The VEGF family includes VEGF-A, -B, -C and -D, as well as placental growth factor,
which interact differently with cell-surface tyrosine kinase receptors, VEGFR 1–3. Over-
all, they regulate blood vessel morphogenesis and permeability, though VEGF-C and
VEGF-D are primarily implicated in regulation of lymphogenesis [2]. As the prototypical
VEGF, VEGF-A is considered the most potent stimulator of vasculogenesis and angiogen-
esis. In addition to increase vascular permeability, vasodilatation, and the recruitment
of inflammatory cells, VEGF triggers the inhibition of apoptosis and increases cellular
proliferation. Binding of VEGFR to its ligands, considered to be the “canonical signaling”,
induces receptor homodimerization or heterodimerization, leading to activation of the
tyrosine kinase and autophosphorylation of tyrosine residues in the receptor intracellu-
lar domains to initiate consecutive intracellular signaling pathways, including the PI3K
and p38 MAPK pathways. This represents most probably the prevailing mechanism by
which VEGF exerts its effects over proliferation, migration and vascular morphogenesis [5].
Alternatively, ligand-independent receptor activation or “non-canonical VEGF signaling”
might be initiated i.e., by Src-mediated activation and downstream ligand-mediated trans-
phosphorylation [1,6].

VEGF receptors are located in endothelial cells, but also in many non-endothelial cells,
and act through autocrine pathways to regulate cell survival and function. The VEGFR1
gene codifies for two variants of the VEGFR1 receptor: a full-length VEGFR1/Flt-1 receptor
with tyrosine kinase mRNA form; and a soluble form carrying only the ligand-binding
region (sFlt-1/soluble VEGFR1) that functions as a decoy receptor by trapping its ligands
VEGF-A, PlGF, and VEGF-B. This way gene expression is regulated through the balance
between its full-length and soluble forms. Downstream activation of diverse pathways
including phospholipase C-È, protein kinase C, Ca2+, extracellular-signal-regulated protein
kinase (ERK), Akt, Src, focal adhesion kinase and calcineurin have been implicated in
mediating the multiple VEGF functions [5]. Moreover, there is a strong crosstalk between
cell responses to hypoxia, cancer and inflammation. Both diseases create hypoxic conditions
at the local site due to increased metabolic activity outpacing the availability of oxygen.
Hypoxia inducible factor (HIF) is a pivotal transcription factor induced under hypoxia that
transactivates target genes, including VEGF, and has a direct effect on the master switch of
inflammation, nuclear factor (NF)-κB pathway.

Accordingly, the coordinated output from these signaling systems controls angiogene-
sis, blood flow, tissue perfusion, inflammatory cell extravasation, and bone remodeling
and repair [2,3]. Herein, we aim to explore the role of VEGF signaling in oral cancer and
destructive periodontal inflammatory diseases, with emphasis in its translational appli-
cations as potential biomarkers and therapeutic targets. For this purpose, we analyzed
the available literature using the following MESH terms: “VEGF”, “periodontitis”, “peri-
Implantitis”, “periapical periodontitis” and “mouth neoplasm”. The studies used for this
review included analytical and interventional original research articles and systematic
reviews with or without meta-analysis available in English with focus on the last 10 years.

2. Oral Cancer

Oral cancer is considered one of the most common cancers worldwide with a global
incidence of more than 350,000 new cases and 177,000 deaths every year, with consider-
able geographic variations [7]. Ninety percent of all oral cancers are oral squamous cell
carcinomas (OSCC), the most common form of oral cancer. The remaining 10% consist of
salivary gland cancers, lymphomas, sarcomas and metastasis [8]. The overall survival rate
of oral cancer is ≈50% during the first 5 years [9], mainly because most cases are diagnosed
at advanced stages of the disease (stages III or IV) [10]. Many OSCCs develop from oral
potentially malignant disorders (OPMDs) (lesions in which cancer is more likely to arise
that can have different degrees of dysplasia), but only 5% of all OPMDs undergo malignant
transformation [11].

Like normal tissues, tumors need nutrition, oxygenation and a system to evacuate
metabolic wastes and carbon dioxide, which is granted by the tumor-associated neovascu-



Biomolecules 2021, 11, 85 3 of 27

lature generated by the process of angiogenesis. Angiogenesis is considered a hallmark of
cancer, as is essential for the growth, invasion and metastasis of tumors [12]. Neoplastic
cells can only form a clinically observable tumor if the host is able to provide a vascular
network. Tumors will not grow more than 1–2 mm in size unless an intra-tumoral capillary
network is developed [13].

VEGF is probably the most essential angiogenic factor expressed in cancer, as it plays a
central role in regulating angiogenesis in solid tumors [1]. Animal models have shown that
rapid tumor growth and microvascular density (MVD) are directly associated with VEGF
expression [14], which is associated with the angiogenic switch. The angiogenic switch
reveals the capability of neoplastic and inflammatory cells to produce angiogenic factors
into the tumor microenvironment to stimulate proliferation and migration of endothelial
cells to form a newly vasculature that provides oxygen and nutrients to the tumor [15].
As mentioned early, VEGF also participates in the recruitment of inflammatory cells and
inhibits endothelial cell apoptosis [16] which are important features for the maintenance of
the tumor neovasculature. VEGF helps in the recruitment of different inflammatory cells by
inducing the activation of cyclooxygenase 2 (COX-2), which leads to NF-kB activation with
subsequent release of inflammatory cytokines such as IL-1 and TNF-α, among others [17]
(Figure 1). VEGF can inhibit endothelial cell apoptosis whether by inducing the expression
of anti-apoptotic proteins, such as Bcl-2, survivin and A1, or by activating thePI3K/Akt
pathway [18]. This promotes cell survival, by blocking the pro-apoptotic effects of BAD
and Bax, and by inducing the expression of pro-survival genes (e.g., NF-kB) [19].
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Originally it was thought that angiogenesis was only important for the rapid growth
of macroscopically detected tumors. Nevertheless, it was later demonstrated that angio-
genesis also contributes to the premalignant phase of neoplastic progression [12], which is
also the case in OPMDs. In normal oral mucosa (NOM) VEGF is not usually detected or ob-
served only in up to 30% of NOM samples with classical immunohistochemistry techniques,
usually confined to the basal and parabasal layers of the epithelium [20]. Sauter et al. were
the first to demonstrate a gradual and progressive increase of VEGF expression during
the whole process of oral carcinogenesis, with weak or absent staining in NOM, moderate
staining in moderate dysplasia, carcinoma in situ and early primary OSCC, and intense
staining in advanced primary and metastatic OSCC [14].

In OPMDs, VEGF is diffusely expressed across the epithelium in 63% to 100% of all
studied samples [21], whereas in OSCC it is usually expressed in 100% of the samples [22,23].
Mean MVD is also reported to be higher in OPMDs than in NOM [14,21] and has been pos-
itively correlated with the degree of dysplasia [15,21,24] and VEGF expression [20,25]. The
degree of dysplasia has also been significantly correlated with VEGF and mast cell density
(MCD) which are thought to be important for the initial stages of oral carcinogenesis as
they contribute to angiogenesis [24].

There is robust evidence showing VEGF upregulation in oral cancer [14,21,24,26,27].
In OSCC, VEGF expression has been associated with tumor differentiation [26,28], clinical
stage [29], nodal metastasis [21,30], distant metastasis [31] and overall survival [32]. Same
as with oral dysplasia, mean MVD and MCD increase significantly in OSCC compared
to NOM and have been associated with VEGF levels [24,25]. Mean MVD has also been
positively associated with tumor size [30]. All VEGF family members (A–D) are expressed
in OSCC. VEGF-A and VEGF-B are associated with angiogenesis, as their increase is
correlated with an increase in mean MVD, whereas VEGF-C and VEGF-D are associated
with lymph node involvement [33]. Expression of VEGF receptors (VEGFR1-3) has also
been recently studied in OSCC. Using immunohistochemistry, it was found that 88% (44 out
of 50 cases) of OSSCs overexpressed some form of VEGF-R. VEGFR-1 was overexpressed in
56% of the samples, VEGFR-2 in 42% and VEGFR-3 in 60%, but many samples expressed a
combination of more than one variant. More importantly, VEGFR expression was associated
with clinical parameters, such as neck node involvement, tumor size and tumor associated
death [34].

The VEGF gene is considered a highly polymorphic gene with multiple single nu-
cleotide polymorphisms (SNPs) which have been related with OSCC development and
progression. VEGF-C rs766413 and rs20446463 polymorphism have been linked with oral
cancer susceptibility in a Taiwanese population [35]. VEGF-A + 936 CC polymorphism has
been associated with advanced OSCC and VEGF-A -1154 GG genotype is considered as an
independent adverse factor for survival of OSCC patients [36]. A recent systematic review
concluded that VEGF + 936 CT or TT polymorphism may be associated with an increased
risk of oral cancer among caucasians [37].

It is well known that VEGF production and tumor angiogenesis are regulated by the
interaction of multiple molecules. The increase in VEGF expression in oral cancer might
be a response to tumor-associated hypoxia, as in vivo and in vitro studies have shown
VEGF upregulation in decreasing concentrations of oxygen [30,38]. Hypoxia-inducible
factor-1α (HIF-1α) is a transcription factor usually upregulated under hypoxic conditions
and cumulative genetic alterations. In OSCC cells, HIF-1α expression is also regulated by
the hepatoma-derived growth factor (HDGF), as its inhibition reduces HIF-1α and VEGF
expression [39]. HIF-1α binds to hypoxia response elements and regulates changes in
the expression of different factors, such as VEGF [40], plasminogen activator inhibitor-1
(PAI-1) and carbonic anhydrase 9 (CAIX) [28], promoting neovascularization and favoring
tumor spread [41]. HIF-1α and HIF-2α have shown positive correlation with clinical-
pathological parameters in OSCC, tumor size and MVD, and their knock down inhibited
tumor angiogenesis and tumor growth in a nude mice xenograft model [42].
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Although hypoxia contributes to the angiogenic switch, it is not the only mechanism
involved. Signal transducers and activators of transcription 3 (Stat3) are considered an im-
portant regulator of VEGF expression in cancer. Stat3 regulates VEGF production through a
putative Stat3 responsive element on the VEGF promoter, inducing VEGF mRNA transcrip-
tion [43]. Stat3 is constitutively expressed in OSCC and its phosphorylation is associated
with a more aggressive phenotype of the disease. An increase in its phosphorylated form
was significantly correlated with VEGF production and intratumoral MVD [44]. COX-2
is another important regulator of VEGF in OSCC. COX-2 was demonstrated to regulate
VEGF-C levels in OSCC in vitro [45] and in vivo [32,46]. More importantly, COX-2/VEGF-
C co-expression is correlated with lymphangiogenesis, lymph node metastasis, TNM
stage, lymphatic vessel density and is reported as an independent factor for survival [32].
A summary of the role of VEGF signaling in OSCC is presented in Figure 1.

2.1. Diagnostics

About one third of oral cancer patients develop a recurrent tumor after initial treatment.
There are several biomarkers that have been proposed to be used for early diagnosis or as
prognostic factors in OSCC, being VEGF one of them. Concomitant expression of VEGF
and matrix metalloproteinase (MMP)-11, a MMP related with cancer cell survival, has
been reported as a predictor for progression from precancerous stage to malignancy [25]
and serum VEGF-A levels are reported to be higher in patients with OPMDs than healthy
controls, with sensitivity and specificity values of 63% and 80% [21]. These data suggest
VEGF as a possible biomarker for OPMDs. Nevertheless, there are limited reports that have
investigated the potential of VEGF in predicting malignant transformation of OPMDs.

Serum VEGF levels are significantly higher in OSCC than in control patients [21,27,47]
and high VEGF levels have been associated with late stage, large tumors and lymph node
involvement [27]. According to this, Aggarwal et al. reported sensitivity and specificity
values of 65.71% and 66.67% for distinguishing OSCC patients from controls [27]. Specif-
ically, serum VEGF-A levels have also been found higher in patients with OSCC than
healthy controls. Sensitivity and specificity values were 73% and 100%, respectively [21].
A follow-up study of 144 patients with OSCC for 115 months showed a direct correla-
tion between VEGF levels and disease-free survival, concluding VEGF expression is an
adverse prognosticator for disease-free survival [25]. Similar results have been reported
by others [31,39,46,48,49]. VEGF expression has also been reported to improve accuracy
and efficacy of prognostic prediction of OSCC. A strong VEGF-A or VEGF-C expression
contributed to the histopathological diagnosis of vascular invasion, and histopathological
feature associated with poor prognosis [22]. Recently, a meta-analysis that evaluated more
than 180 biomarkers for oral tongue squamous cell carcinoma (OTSCC) concluded VEGF-A
to be a useful prognosticator. Nonetheless, the authors concluded that although VEGF
is a very promising biomarker, the utility of VEGF as a prognostic biomarker has to be
evaluated in multicentre studies using large cohort of OTSCC samples following REMARK
(Reporting Recommendations for Tumor Marker Prognostic Studies) criteria [50].

From all VEGF variants, VEGF-C and VEGF-D seem to be of particular importance for
the development of lymph node metastasis. Upregulation of VEGF-C promotes peritumoral
lymphangiogenesis and is associated with lymph node metastasis and poor 5-years disease-
free survival [46]. High VEGF-C expression in primary tumors has been associated with
a greater probability for the occurrence of micrometastases and isolated tumor cells in
pathological staged N0 OSCC [51]. Also, VEGF-C is reported as an independent prognostic
factor for lymph node metastases in early tongue cancer [52] and of OSCC survival [32].
In T2 or T3 cN0 OSCC patients, VEGF-D expression has also been associated with the
presence of lymph node metastasis [53]. Because of the aforementioned, the expression of
VEGF-C and VEGF-D are proposed as potential biomarkers for detecting and predicting
lymph node metastases in OSCC. Nevertheless, other studies have failed in showing
independent prognostic utility of VEGF-C for predicting risk of lymph node metastases,
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although they did find a significant association [54,55]. A synthesis of the studies conducted
in diagnostics of oral cancer is presented in Table 1.

Table 1. VEGF in oral diagnostics of oral non-communicable diseases.

Author, Year Study Design Groups, n Technique VEGF Levels p

Oral Cancer

Sauter et al.,
1999. [14]

Retrospective
without follow-up

FFPE patient tissue
samples from NOM
(n = 10), MOD (n = 9), CIS
(n = 6), stage I and II
OSCCs (n = 9), stage III
and IV OSCCs (n = 10).

NB, WB, IHC

VEGF is overexpressed at
both protein and gene
levels in OSCC cells lines
and FFPE tissue samples
compared to normal oral
keratinocyte cell lines and
NOM respectively.

<0.05

In vitro OSCC and other cell lines
(n = 7).

Nayak et al.,
2012. [21]

Prospective with
follow-up

Tissue biopsies and blood
samples from PMOLs
(n = 60), OSCC (n = 60)
and healthy controls
(n = 20).

IHC, qPCR, ELISA,

VEGF-A protein and gene
expression were higher in
PMOLs and OSCC
compared to controls and
higher in OSCC with node
involvement than without.

<0.05

Seki et al.,
2011. [22]

Retrospective with
follow-up

FFPE patient tissue
samples from well
differentiated OSCCs
(n = 72), moderately
differentiated OSCCs
(n = 12) and poorly
differentiated OSCCs
(n = 6).

IHC

Strong expression of
VEGF-A or VEGF-C were
effective prognostic
predictors of
OSCC survival.

N/A

Gandolfo et al.,
2011. [20]

Retrospective
without follow-up

FPPE patient tissue
samples from OL with
dysplasia (n = 18), OL
without dysplasia (n = 11),
OSCC (n = 40) and NOM
(n = 20).

IHC

VEGF expression was
higher in OL and OSCC
than NOM and in OL with
dysplasia than OL
without dysplasia.

<0.05

López de Cicco
et al., 2004. [24]

Retrospective
without follow-up
In vitro

FFPE patient tissue
samples from ODs
(n = 21), OSCCs, (n = 44),
NOM (n = 46).
Three SCC cell lines
(SCC9, SCC15, SCC71).

IHC

All NOM samples
presented with low or
mild expression of
VEGF-C, whereas strong
expression was detected in
40% of ODs and 100%
of OSCCs.

N/A

Aggarwal et al.,
2014. [27]

Prospective
without follow-up
In vitro

Peripheral venous blood
from patients with OSCC
(n = 70) and healthy
subjects (n = 30).
Fresh OSCC biopsies
(n = 17).
OSCC cell lines (n = 4).

qPCR, WB, ELISA

VEGF expression was
significantly upregulated
in OSCC patients
compared to
healthy controls.

<0.05

Serum VEGF levels were
also higher in late stage
tumors, large tumors and
tumors with regional
lymph node involvement.
Treatment of OSCC cell
lines with exogenous
VEGF enhanced
cell proliferation.

<0.05
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Table 1. Cont.

Author, Year Study Design Groups, n Technique VEGF Levels p

Peterle et al.,
2018. [28]

Retrospective with
follow-up

FFPE patient tissue
samples from OSCCs
(n = 52).

IHC

Positive VEGF-A
cytoplasmic expression
was significantly
associated with less
differentiation
tumor grade.

0.035

Faratzis et al.,
2009. [29]

Retrospective with
follow-up

FFPE patient tissue
samples from TSCC
(n = 87).

IHC

VEGF was overexpressed
in 27.5% of all TSCC and
correlated to the stage of
the disease.

<0.05

No prognostic significance
of VEGF protein
expression to survival
status was found.

0.77

Shang et al.,
2006. [30]

Retrospective
without follow-up

FFPE patient tissue
samples from OSCC
(n = 40) and healthy
controls (n = 20).

IHC, ELISA

VEGF positivity was
correlated with regional
lymph node involvement
and tumor size.

0.004

Shao et al.,
2008. [31]

Retrospective with
follow-up

FFPE patient tissue
samples from TSCCs
(n = 59) and tumor
free-oral mucosa (n = 10).

IHC

Higher expression of
VEGF in TSCC compared
to NOM.

0.01

VEGF expression was an
independent prognostic
factor of overall survival
was correlated with tumor
size, clinical stage, lymph
node invasion, recurrence
and distant metastasis.

<0.05

VEGF expression was an
independent prognostic
factor of overall survival.

<0.05

Morita et al.,
2014. [32]

Retrospective with
follow-up

FFPE patient tissue
samples form TSCC (n =
40).

IHC

VEGF-C expression
correlated with gender,
tumor size, lymph node
metastases, TNM and
lymphatic vessel density.

<0.05

Significant correlation
between COX-2 and
VEGF-C expression which
was identified as an
independent prognostic
factor of overall survival.

<0.01

Arora et al.,
2005. [25]

Retrospective with
follow-up

FFPE patient tissue
samples from OSCCs (n =
220), PL (hyperplasias =
59, dysplasias = 31) and
matched normal oral
tissues (n = 81).

IHC

VEGF was expressed in
76% of OSCCs, in 66% of
PLs and in 25% of NOM.
VEGF expression
independently correlated
with increased
intratumoral microvessel
density in PLs and OSCC.
Increased VEGF
expression was the most
significant adverse
prognosticator in OSCC
patients.

N/A
<0.05
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Table 1. Cont.

Author, Year Study Design Groups, n Technique VEGF Levels p

Shintani et al.,
2004. [33]

Retrospective
without follow-up

FFPE patient tissue
samples from OSCC
(n = 98) and fresh OSCC
specimens (n = 12).

IHC, WB, qPCR

60.2% of cases were
positive for VEGF-A,
62.2% for VEGF-B, 67.3%
for VEGF-C and 55.1%
for VEGF-D

N/A

VEGF-A and VEGF-B
positively correlated with
MVD and VEGF-C and
VEGF-D expression were
significantly associated
with lymph
node involvement.

<0.05

Lee et al.,
2018. [38]

Retrospective with
follow-up

FFPE patient tissue
samples from
hyperkeratosis (n = 8) and
OSCCs (n = 30).

IHC

High VEGF expression in
upper and lower epithelial
layers had significant
association in tumor
metastasis and recurrence.

<0.001

Shang et al.,
2007. [47]

Prospective
without follow up

FFPE patient tissue
samples from OSCCs
(n = 31) and healthy
controls (n = 10).
Peripheral venous blood
from OSCCs (n = 31) and
healthy controls (n = 10).

ELISA, IHC

Mean VEGF level in
OSCC patients
(567.97 ± 338.17 pg.ml)
was significantly higher
than in normal controls
(148.80 ± 64.17 pg.ml) and
were positively correlated
with metastasis and
clinical stage.

<0.001

Kono et al.,
2013. [46]

Retrospective with
follow-up

FFPE patient tissue
samples from OSCCs
(n = 60).

IHC

VEGF-C levels were
higher in metastatic
tumors than
non-metastatic and patient
with high VEGF-C
expression showed a
shorter DSS tan patient
with low expression.

<0.05

Patel et al.,
2015. [49]

Prospective with
follow-up

FFPE patient tissue
samples from OSCCs (n =
109) and healthy controls
(n = 50).
Peripheral venous blood
from OSCCs (n = 109) and
healthy controls (n = 50).

ELISA, qPCR

Serum VEGF levels were
significantly higher in
patients with well
differentiated recurrencies,
large and advanced stage
tumors. Patients having
lower VEGF serum levels
had significantly higher
OS compared to patients
with higher serum VEGF
levels.

<0.05

Tse et al.,
2007. [48]

Retrospective with
follow-up

FFPE patient tissue
samples from HNSCCs (n
= 186).

IHC

Strong VEGF intensity
was an independent
adverse predictor for OS
and DFS.

<0.05

Kazakydasan
et al., 2017. [51]

Retrospective
without follow-up

FFPE patient tissue
samples from N0 OSCCs
(n = 34).

IHC

High expression of
VEGF-C in the primary
tumor was associated with
a greater probability for
the occurrence of
micrometastasis and
isolated tumor cells in the
lymph nodes.

0.011
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Table 1. Cont.

Author, Year Study Design Groups, n Technique VEGF Levels p

Matsui et al.,
2015. [52]

Retrospective with
follow-up

FFPE patient tissue
samples from TSCC
(n = 90).

IHC

VEGF-C expression was
associated with lymph
node metastases and was
a prognostic factor
for DSS.

<0.05

Wakisaka et al.,
2015. [53]

Retrospective with
follow-up

FFPE patient tissue
samples from OSCCs
(n = 57).

IHC

Tumors with high VEGF-A
and VEGF-D expression
had significantly higher
lymph vessel density than
low expressing tumors.

<0.003

VEGF-D expression was
significantly higher in
tumors with lymph node
metastasis than in
tumor without

<0.001

Al-Shareef et al.,
2016. [55]

Retrospective with
follow-up

FFPE patient tissue
samples from TSCCs
(n = 80).

IHC

VEGF-C and VEGFR-3
were not found
independent predictor
factors for lymph node
metastasis of TSCCs.

>0.05

Naruse et al.,
2015. [54]

Retrospective with
follow-up

FFPE patient tissue
samples from TSCCs
(n = 65).

IHC

VEGF-C expression was
associated with growth
pattern and deep of
invasion and VEGFR-3
expression was associated
with growth pattern,
pattern of invasion, deep
of invasion and regional
recurrences.

<0.05

VEGF-C/VEGFR-3
expression was associated
with regional recurrence,
but was not identified as
an independent factor for
recurrence.

<0.05
>0.05

Inflammatory (periodontitis, periimplantitis, apical periodontitis)

Booth et al.,
1998. [56] Cross-sectional

Gingival tissue, GCF and
saliva from patients with
periodontitis (n = 32) and
healthy controls (n = 12).

IHC, ELISA

VEGF was detected in
junctional, sulcular and
gingival epithelium,
neutrophils, macrophages
and vascular endothelial
cells. Some fibroblast
was positive.
No difference between
VEGF levels in GCF
between both groups.
Higher levels of VEGF in
saliva of patients with
periodontitis in relation
to controls.

<0.05
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Table 1. Cont.

Author, Year Study Design Groups, n Technique VEGF Levels p

Inflammatory (periodontitis, periimplantitis, apical periodontitis)

Afacan et al.,
2019. [57] Cross-sectional

GCF and saliva from
G-AgP (n = 20), CP
(n = 20), gingivitis
individuals (n = 26) and
healthy periodontal
patients (n = 21).

ELISA

Higher total amounts of
VEGF in GCF from G-AgP
and CP groups than
gingivitis and healthy
groups, without difference
between G-AgP and CP,
whereas in saliva VEGF
presented higher
concentrations in
gingivitis than healthy, CP
and AgP groups.

<0.05

Sosnin et al.,
2019. [58] Cross-sectional

GCF and plasma from
patients with generalized
periodontitis (n = 42) and
control healthy group
(n = 36).

ELISA
No differences in the
concentration of saliva
and serum VEGF.

0.77

Şaştım et al.,
2020. [59]

Cross-sectional

Saliva and serum from
patients with periodontitis
(20 smokers and 20
nonsmokers) and
periodontally healthy
controls (20 smokers and
18 nonsmokers).

Luminex

Higher concentrations of
VEGF in saliva and serum
in patients with
periodontitis than
periodontally healthy
controls.

<0.001

No difference in the
concentrations of VEGF in
saliva and serum between
smokers and no smokers.

0.26

Romano et al.,
2017. [60] Cross-sectional

GCF from GAgP patients
(n = 26) and healthy
controls (n = 22).

Multiplex bead
immunoassay

Higher concentrations of
VEGF in from GAgP
patients than healthy
controls. Significant
reduction of VEGF total
amount after therapy in
GAgP patients.

<0.01

A. Zekeridou
et al., 2017. [61] Cross-sectional

GCF from patients with
chronic periodontitis
(n = 24) and healthy
controls (n = 20).

Bio-Plex
suspension array
system

No difference levels of
VEGF among
periodontitis site and
healthy sites from
periodontitis individuals
and healthy sites from
healthy control.

>0.05

Tayman et al.,
2019. [62] Cross-sectional

GCF from patients with
generalized chronic
periodontitis (n = 21),
generalized aggressive
periodontitis (n = 20) and
healthy (n = 20).

ELISA

Highest total
concentration of VEGF,
followed by chronic
periodontitis groups and
lowest concentration in
healthy controls.

<0.05

Wang et al.,
2016. [63] Cross-sectional

PICF from patients with
peri-implantitis affected
implant (n = 34) and
healthy implant control
(n = 34).

Human
Quantibody arrays

Higher levels of VEGF in
the peri-implantitis
patients in relation to
healthy implant control.

0.012
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Table 1. Cont.

Author, Year Study Design Groups, n Technique VEGF Levels p

Inflammatory (periodontitis, periimplantitis, apical periodontitis)

Graziani et al.,
2006. [64] Cross-sectional RC (n = 24). IHC

VEGF was detected in
epithelial and connective
tissues of RCs. Stromal
cells showed higher levels
of VEGF expression when
compared with epithelial
cells.

>0.05

Fonseca-Silva
et al., 2012. [65] Cross-sectional RC (n = 40), PG (n = 28). IHC VEGF expression were

similar in RC and PG. >0.05

Virtej et al.,
2013. [66] Cross-sectional

ALEOs (n = 14) after
endodontic surgery in
patients diagnosed with
CAP and PDL control
samples (n = 4).

qPCR

Higher gene expression of
VEGF-A and VEGFR-3 in
ALEOS in comparison
with PDL group.

>0.05

Fernandez et al.,
2020. [67] Cross-sectional Symtomatic AP (n = 17),

asymptomatic AP (n = 17). qPCR No difference in levels of
VEGF-A mRNA. >0.05

NOM: Normal oral mucosa, MOD: moderate oral displasia, CIS: carcinoma in situ, OSCC: Oral squamous cell carcinoma, HNSCC: head
and neck squamous cel carcinoma, SCC: squamous cell carcinoma, OD: oral dysplasia, OL: oral leukoplakia, TSCC: tongue squamous cell
carcinoma, NB: northern blot, WB: western blot, IHC: Immunohistochemistry, PMOL: potentially malignant oral lesion, PL: precancerous
lesion, MVD: microvessel density, qPCR: quantitative PCR, N/A: not available., OS: overall survival, DFS: disease-free survival, DSS:
disease-specific survival, GCF: gingival crevicular fluid, G-AgP: Generalized aggressive periodontitis, CP: chronic periodontitis, PICF:
peri-implant crevicular fluid, PG: Periapical granulomas, RC: Radicular cysts, RRC: Residual radicular cysts, AP: Apical periodontitis,
ALEO: Apical lesion of endodontic origin, CAP: apical periodontitis, PDL: periodontal ligament.

2.2. Therapy and Projections

In comparison to normal tissues, tumor vasculature presents atypical morphological
features, such as dilated, tortuous and disorganized blood vessels. This leads to excessive
permeability, poor perfusion, hypoxia, decreased immune cell infiltration and predispo-
sition to metastatic dissemination [68], features that can impact negatively on clinical
outcome. The development of an abnormal tumor vasculature is associated with an in-
crease in different growth factors, of which VEGF is a key player [69]. VEGF mRNA is
overexpressed in the majority of human tumors and correlates with invasiveness, vas-
cular density, metastasis, recurrences, and prognosis. Thus, different strategies to inhibit
the VEGF/VEGFR signaling pathway have been developed [1]. Angiogenesis inhibition
by targeting VEGF has shown to be an effective treatment of OSCC in in vivo animal
models [70–72] and in vitro [73]. There are several anti-VEGF family agents, which in-
clude bevacizumab, sorafenib, vandetanib, among others [74], that have been tested for
OSCC treatment.

Bevacizumab, a humanized monoclonal antibody against VEGF-A, is one of the most
commonly used drugs in oncology. It has FDA approval for the treatment of colorectal
cancer, renal cell carcinoma, non-small-cell lung carcinoma, glioblastoma multiforme,
ovarian cancer and cervical cancer [75]. Different phase II clinical trials have reported
the utility of bevacizumab for treatment of squamous cell carcinoma of the head and
neck (SSCHN)—which includes OSCC—as part of combinatorial treatments. This includes
the use of bevacizumab in combination with: erlotinib [76], pemetrexed [77], cetuximab,
cisplatin and concurrent intensity modulated radiation therapy [78]. A recent phase III
clinical trial which evaluated the addition of bevacizumab to platinum-based chemotherapy
in recurrent or metastatic SCCHN, showed that the addition of bevacizumab did not
improve overall survival but did improve response rate and progression-free survival.
Nevertheless, there was a significant increase in toxicity, including bleeding events and
treatment related deaths [79].
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Sorafenib and vandetanib are multi-kinases inhibitors that among their different
targets, they also inhibit VEGFR. Sorafenib has FDA approval for the treatment of hepato-
cellular carcinoma [74] and in vitro studies have suggested promising effects of sorafenib
as treatment agent for SCCHN [80,81]. Nonetheless, phase II clinical trials have shown
modest [82,83] or none [84] anti-tumor activity of sorafenib for the treatment of recurrent
or metastatic SCCHN. Vandetanib has also shown promising results in animal models for
OSCC treatment. In a mouse 4-NQO model of oral carcinogenesis, vandetanib decreased
the occurrence of tumors and dysplasia by reducing angiogenesis and proliferation, proba-
bly by inhibiting VEGFR and epidermal growth factor receptor (EGFR) [85]. Nevertheless,
a phase II clinical trial that evaluated vandetanib in combination with docetaxel for the
treatment of recurrent or metastatic SCCHNC showed limited utility of the proposed
treatment regimen [86]. A synthesis of the studies conducted in therapeutics of oral cancer
is presented in Table 2.

Table 2. VEGF pathway therapeutics in oral non-communicable diseases.

Author, Year
Study Design

(RCT/Preclinical-Animal
Model)

Intervention Function Outcome p

Cancer

Cohen et al.,
2009. [76]

Phase I and phase II trials in
patients with recurrent or
metastatic HNSCC

Bevacizumab (15 mg/kg
every 3 weeks) + erlotinib
(150 mg/day)

Bvacizumab: anti-VEGF
monoclonal antibody
Erlotinib: EGFR inhibitor.

Response rate was of 15%
with 4 complete
responses (associated
with expression of
putative targets in
pre-treatment
tumor tissue).

N/A

Argiris et al.,
2011. [77]

Phase II trial in patients with
recurrent or
metastatic HNSCC

Bevacizumab (15 mg/kg
every 21 days) +
Pemetrexed (500 mg/m2)
every 21 days.

Bvacizumab: anti-VEGF
monoclonal antibody
Pemetrexed:
multitargeted antifolate
agent.

Overall response rate was
of 30% (90% CI, 17–42%),
disease control rate of
86% (90% CI, 77–96%)
and there were 2
complete responses (5%).

N/A

Fury et al.,
2016. [78]

Phase II trial in patients with
stage III/IVB HNSCC

Bevacizumab (15 mg/kg)
on day 1 and 22 +
Cetuximab (400 mg/m2

on day minus 7 followed
by weekly dosing of
250 mg/m2) + Cisplatin
(two cycles of 50 mg/m2)
with concurrent IMRT.

Bvacizumab: anti-VEGF
monoclonal antibody
Cetuximab: anti-EGFR
chimeric monoclonal
antibody.

The 2-year progression
free survival was of 88.5%
(95% CI, 68.1–96.1) and
the 2-year overall
survival of 92.8% (95% CI,
74.2–98.1%).

N/A

Argiris et al.,
2019. [79]

Phase III RCT in patients with
recurrent or
metastatic HNSCC

Platinum based
chemotherapy doublet
with or without
Bevacizumab (15 mg/kg
every 3 weeks).

Cetuximab: anti-EGFR
chimeric monoclonal
antibody.

Median overall survival
was 12.6 months for the
group of chemotherapy +
bevacizumab (BC) and of
11 months for
chemotherapy alone.

0.22

Median progression-free
survival with BC was 6.0
months v 4.3 months
with chemotherapy.

0.0014

Overall response rates
were of 35.5% with BC
and 24.5%
with chemotherapy.

0.016
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Table 2. Cont.

Author, Year
Study Design

(RCT/Preclinical-Animal
Model)

Intervention Function Outcome p

Lalami et al.,
2016. [83]

Phase II trial in recurrent or
metastatic HNSCC

Sorafenib (1 cycle: 400 mg
twice daily for 28 days).

Sorafenib: Multitarget
small molecule inhibitor
of wild-type and mutant
B-Raf and c-Raf kinases,
and tyrosine kinase
domain of VEGFR-2,3
among others.

Only 1 patient had partial
response (5%), 12 patients
(55%) had stable disease
and 9 patients (40%) had
progressive disease. Early
metabolic response rate
was 38%.

N/A

Gilbert et al.,
2015. [84]

Randomized phase II trial in
recurrent or
metastatic HNSCC

Cetuximab (400 mg/m2)
on day 1 followed by
250 mg/m2 weekly) with
or without Sorafenib
(400 mg twice daily).

Cetuximab: anti-EGFR
chimeric monoclonal
antibody
Sorafenib: Multitarget
small molecule inhibitor
of wild-type and mutant
B-Raf and c-Raf kinases,
and tyrosine kinase
domain of VEGFR-2,3
among others.

Response rate was of 8%
and clinical benefit of 12%
for both groups.
Median overall survival
was 9 months in the
cetuximab only group
and 5.7 months in the
combined group.

0.41

Zhou et al.,
2010. [85]

Mouse 4-NQO model of oral
carcinogenesis

Vandetanib
(25 mg/Kg/day for
24 weeks) or nothing.

Vandetanib: Tyrosine
kinase inhibitor with
direct activity against
multiple. Signal
transduction pathways
including VEGF-R2
and EGFR.

The use on Vandetanib
reduced the occurrence of
OSCC from 71% to 12%
and of OD from 96%
to 28%.

<0.001

Limaye et al.,
2013. [86]

Randomized phase II trial in
recurrent or
metastatic HNSCC

Docetaxel (75 mg/m2

every 21 days) with or
without vandetanib (100
mg, once a day).

Docetaxel: antimitotic
chemotherapeutic
Vandetanib: Tyrosine
kinase inhibitor with
direct activity against
multiple signal
transduction pathways
including VEGF-R2
and EGFR.

Partial response was
observed in 1 patient (n =
14) of the docetaxel only
group and 2 patients (n =
15) of the combined
group.
Response rate and
median overall survival
were of 7% (95% CI,
0.2–33.8%) and 26.8 (95%
CI, 17.7–100.7+) weeks in
the single group and 13%
(95% CI, 1.6–40.4%) and
24.1 (95% CI, 16.4–171.1+)
weeks in the combined
group.

N/A

Inflammatory (periodontitis, periimplantitis, apical periodontitis)

Messer et al.,
2020. [87] Animal model

Anti-VEGF bvacizumab
(5 mg B20-4.1.1/kg body
weight, twice weekly.

Bvacizumab: anti-VEGF
monoclonal antibody.

Rats developed mild to
severe mandibular
periodontitis.

N/A

Al Subaie et al.,
2015. [88] Animal model

Anti-VEGF, 4 ug diluted
in 1.5 mL of saline, three
times per week.

Anti-vascular endothelial
growth factor
neutralizing antibody:
the blockage of VEGF-A.

Larger volume of the
bone defects in the
anti-VEGF rats in relation
to controls.

0.026

HNSCC: head and neck squamous cell carcinoma, VEGF: vascular endothelial growth factor, EGFR: epithelial growth factor receptor, N/A:
not available, CI: confidence interval, IMRT: intensity modulated radiation therapy, 4-NQO: 4-nitroquinolile 1-oxide, OSCC: oral squamous
cell carcinoma, OD: oral dysplasia.

3. Inflammatory Diseases Affecting Periodontal Tissues

Inflammatory conditions affecting periodontal tissues include periodontitis, peri-
implantitis and apical periodontitis (AP). They share common etiopathogenic mechanisms
that lead to the development of inflammatory periodontal lesions in response to oral
bacterial consortia with alveolar bone loss as their main hallmark. While periodontal
lesions in periodontitis and peri-implantitis comprise the marginal periodontal supporting
tissues, the target of apical periodontitis are the peri-radicular periodontal tissues [89–91].
In this context, the striking role of VEGF in angiogenesis might relate to the formation of
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granulation tissue in destructive periodontal lesions [92], nutrient level restoration and
immune cell migration [71]. Moreover, an intimate connection between immune cells and
the endothelium occurs during inflammation. Immune cells induce the activation of the
inflammasome and the NFκB signaling pathway, which in turn activates the VEGF/VEGFR
axis in endothelial cells, inducing vasodilatation (edema) and increasing vascular per-
meability [21,22]. The activation of the endothelium permits leukocytes to transmigrate
from the blood to the site of injury [40]. VEGF is the main soluble factor that modifies the
endothelial barrier [41–43] and secreted by neutrophils, platelets, macrophages, activated-T
cells, dendritic cells, pericytes, and the endothelial cells themselves [44].

3.1. Periodontitis and Peri-Implantitis

Periodontitis is a chronic immune-inflammatory disease that develops from the com-
bination of a dysbiotic polymicrobial community and a susceptible host [93,94] resulting in
the loss of periodontal supporting tissues. Its features include gingival inflammation and
bleeding, pocket formation (pathologically deepened gingival sulcus), attachment loss and
alveolar bone resorption [89,95]. Periodontitis is highly prevalent in adults and a primary
cause of tooth loss. In addition, emerging evidence associates periodontitis with higher
morbidity and mortality of systemic non-communicable diseases, such as cardiovascular
diseases [94,96]. On the other hand, peri-implantitis is the inflammation of the adjacent soft
and hard tissues surrounding a dental implant. In a similar manner to periodontitis, it is
clinically characterized by bleeding, increased pocket formation and suppuration, resulting
from polymicrobial anaerobic infection that leads to rapid bone resorption and implant
failure [91,97,98].

Periodontitis is characterized by angiogenic changes within the periodontal tissues.
These include the neoformation of loop-like blood vessels in association with increased
vascular permeability. These changes appear to facilitate the arrival of proinflammatory
cells, chemical mediators, and growth factors to the periodontal tissues, which ultimately
exacerbate periodontal inflammation and destruction [99–101]. VEGF has been highly
expressed in gingival tissue samples from periodontitis patients in relation to gingivitis
and healthy gingiva [102,103]. VEGF has been detected in the depths of the gingival stroma,
particularly within smooth muscle cells of vascular structures, macrophages, mast cells,
fibroblast-like cells, neutrophils and plasma cells in addition to endothelial cells [93,103].
Up to now, few reports have explored an association between VEGF and SNPs in periodon-
titis. Specifically, the position-936 has been previously associated with periodontitis [104]
whereas 2578 C/A, rs699947 polymorphism remains controversial [105]. In the same line,
higher VEGF immunohistochemical expression in the mucosa of peri-implantitis patients
was reported in comparison to peri-implant healthy mucosa and peri-implant mucositis, in
which no hard tissue loss occurs [106]. In contrast, lower expression of VEGF was observed
in soft tissues surrounding failing implants than in normal gingiva [107]. These findings
suggest that VEGF may play a role in the pathogenesis and/or progression of periodontitis
and peri-implantitis.

Also, overexpression of VEGF-C in transgenic keratin 14 (K14)-VEGFC mice has been
reported, which was followed by lymphatic vessel hyperplasia in normal gingival tissues,
without changes in the blood vessels. In normal conditions, K14-VEGFC mice showed
increased recruitment of immune cells and higher alveolar bone in relation to their wild-
type littermates. Nevertheless, after induction of periodontitis, K14-VEGFC and wild-type
mice showed no significant differences in bone resorption, angiogenesis, recruitment of
immune cells, levels of MMPs, proinflammatory cytokines, and bone-related proteins in
gingival tissue samples. Therefore, VEGF-C may participate in lymphatic endothelial
cell proliferation with no impact in periodontitis development [108]. VEGF-C, -D, and
VEGFR-3 have been detected in endothelial cells and keratinocytes in healthy gingiva.
VEGF-C and VEGFR-3 were also detected in fibroblast-like cells and lymphatic vessels,
respectively. After challenging with lipopolysaccharide (LPS) or IL-6/sIL-6R complex, gin-
gival fibroblasts increased the secretion and gene expression of VEGF-A and -C compared
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to non-induced controls, while VEGF-D was not detected. Altogether, VEGF-A and -C
contributes to both the angiogenesis and lymphangiogenesis processes in the pathogenesis
of periodontitis [109].

During periodontal inflammation, tissue damage increases oxygen consumption
resulting in a hypoxic microenvironment. In this context, in vitro studies support the
involvement of the HIF-1α. In line with this, a hypoxic microenvironment combined with
the presence of lipopolysaccharide (LPS) from P. gingivalis -a keystone periodontopathogen
in periodontitis- induce the translocation of HIF-1α into the nucleus, which then dimerizes
with HIF-1β, up-regulating the transcription of VEGF in human periodontal ligament and
gingival fibroblast cells [110–112]. In addition, IL-1 upregulated the transcriptional levels
of HIF-1α in human gingival fibroblasts [113], which is the most abundant cell type in
gingival connective tissues [114]. Accordingly, higher HIF-1α and VEGF concentrations
have been found in gingival biopsies from periodontal pockets compared to gingivitis and
healthy gingiva sites [115]. Likewise, other studies have shown that VEGF concentrations
correlate positively with saliva and GCF HIF-1α concentrations in periodontal patients [57].

It is known that redox balance can modify periodontal tissue responses [113,116].
Recently, our research group showed that hydrogen peroxide treatment increased the
levels of gelatinolytic MMPs activity in human periodontal ligament fibroblasts, through
the activation of the NF-κB pathway and intracellular calcium signaling [117]. Hydro-
gen peroxide also upregulated VEGF and cytokine levels (including IL-6 and CXCL12),
while MMP inhibition reduced the bioavailability of VEGF and CXCL12, also decreas-
ing fibroblast migration and wound healing [117]. These results might be explained by
atypical activation of the NF-κB pathway in response to the phosphorylation of IκBα and
p65 caused by hydrogen peroxide [118,119]. The redox-MMP interaction highlights the
complexity of the networks involving VEGF during periodontal inflammation. Arguably,
VEGF bioavailability might result from proteolytic cleavage and release from its cryptic
form from the extracellular matrix [117].

Evidence has shown the link between periodontitis and systemic diseases, includ-
ing diabetes, cardiovascular disease, rheumatoid arthritis, and adverse pregnancy out-
comes [94,120–123]. VEGF expression has been analyzed in both, periodontal tissue sam-
ples and oral gingival crevicular fluid (GCF) of diabetic patients to explore the plausibility
of this association [124–128]. A recent review described higher VEGF expression and con-
centrations in periodontal tissue and GCF samples, respectively of diabetic patients with
periodontitis compared to nondiabetic controls [128]. These outcomes suggest that diabetes
might influence the expression of VEGF in periodontal tissues. It is theorized that this
may be a consequence of insulin resistance and endothelial dysfunction, both frequently
observed in patients with diabetes. In contrast, similar studies exploring cardiovascular dis-
ease show that the concentrations of VEGF in the serum and GCF of patients are unrelated
to periodontitis [129,130].

3.2. Apical Periodontitis

Apical periodontitis (AP) is an immune-inflammatory pathology that involves the
destruction of peri-radicular periodontal tissues as consequence of the persistent micro-
bial infection of the root canal system and the host immune responses against it [131].
As periodontitis, AP is also a determinant cause of tooth loss and has been associated
with low-grade systemic inflammation and the development of several non-communicable
diseases, especially cardiovascular diseases [132]. The hallmark of this pathology is the for-
mation of an osteolytic apical lesion of endodontic origin [56,90]. From a histopathological
point of view, ALEOs will correspond either to periapical granulomas (PGs) or radicular
cysts (RCs). The former consists of granulation tissue, which is highly rich in neo forming
blood vessels [133].

Persistent root canal infection causes the release of pathogenic bacteria and/or their
bioproducts into the periradicular tissues where periodontal ligament cells regulate the
chemotaxis of infiltrating leukocytes [134], activating humoral and cellular responses. As a
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reaction to harmful exogenous elements, inflammation presents typical signs that include
vasodilatation, uprising cellular metabolism, cellular influx, alteration of blood flow and
extravasation of fluids [135].

VEGF has been detected in human PGs and RCs [65,136] at the connective tissue of
both PGs and RCs and the epithelial lining of RCs [64,136]. This pattern of expression
can be linked to wound healing, which coexists with inflammatory destruction during AP
development. Furthermore, VEGF is also expressed in residual RC [136], defined as a RC
which was not removed after the extraction of the causal infected tooth [137]. In fact, VEGF
expression in residual RCs is lower compared to RC and PG [136], presumably because of
the lack of remnant bacterial toxin stimulation. VEGF expression has also been associated
with high MVD areas of both PGs and RCs [64], which reinforces its participation in
neo vessel formation in AP. In ALEOs, VEGF could also contribute to the survival and
maintenance of the capillary networks, as in vitro studies have determined that this growth
factor prevents apoptosis of microvascular endothelial cells [138–140].

The activity and progression in AP are represented in two clinical stages of the
disease; symptomatic AP and asymptomatic AP. The immune response is exacerbated in
symptomatic AP, due to a loss of balance between the immune response and the bacterial
infection of the root canal system [141]. Our study group has previously demonstrated that
the expression of toll-like receptors (TLR)-2 and -4, which are involved in the recognition
of damage and pathogen molecular patterns, were positively correlated with VEGF-A
in human ALEOs. In the same study, mRNA levels of VEGF-A were detected in both,
asymptomatic and symptomatic AP [67]. The detection of VEGF-A in both clinical entities
is related to its role in endothelial cell proliferation associated with chronic inflammation,
apparently without participation in the clinical exacerbation of the disease. Instead, the
symptoms might be mediated by other cytokines and angiogenic factors, like IL-6, TNF-α
and CDH5, which were significantly higher in symptomatic compared to asymptomatic
AP [67].

Besides the above-mentioned in vitro study, in which VEGF soluble levels were signif-
icantly augmented by peroxide exposure and reduced by MMPs inhibition in hydrogen
peroxide-stimulated human periodontal ligament fibroblasts [117], the relationship be-
tween MMP-9 and VEGF is further observed in human ALEOs. A strong expression
of MMP-9 in human ALEOs has been previously associated with a significantly higher
number of immunopositive cells for VEGF [142]. It has also been suggested that some
inflammatory cells might be responsible for the synthesis and release of VEGF-A in early
phases of AP [143], upregulating their multiple functions in inflamed tissues.

The signaling pathways of VEGF in human ALEOs have also been studied [66]. VEGF-
A-dependent pathologic angiogenic signaling pathways appear through the activation of
protein kinase C-γ (PKC-γ) via Scr-dependent phospholipase D1 (PLD1) [144]. The ac-
tivation of PKC-γ induces the proliferation and migration of microvascular endothelial
cells and promotes the tube formation [144]. The PKC gene is upregulated in human
ALEOs in comparison to healthy periodontal ligament (PDL), which indicates a higher
endothelial activity among periapical inflammation [66]. In this study, a higher expres-
sion of phospholipase A (PLA2G6) and phosphoinositide 3-kinase (PIK3) genes were also
demonstrated [66]. These genes are involved in pathologic angiogenesis and endothelial
migration, respectively [145–147]. Other genes involved in endothelial cell interactions
and activity are down regulated in human ALEOs. SHC adaptor protein 2 (SHC2), which
is commonly expressed in endothelial cells and participates in VEGFR-2 activation, was
down regulated in AP in comparison with healthy PDL samples [66]. Also, VEGFR-2 and
RAC1 expression, involved in pathologic and physiologic angiogenesis [148], were lower
in the ALEOs group [66]. Overall, in inflamed periapical tissues there is an alteration in the
expression of several genes which may contribute to changes in endothelial cell activity
and/or interactions.

During inflammation lymphocytes, macrophages [149] and dendritic cells [150] exhibit
the expression of VEGF-A, -C, -D and their receptors. This pattern is reproduced in immune
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cells and blood vessel endothelium in rat and human ALEOs [66,151]. The detection of
VEGF and VEGFR in these cellular components of the immune system and their localization
suggests that VEGFs may participate in the pathogenesis of ALEOs [66]. In vitro studies
have demonstrated that VEGF promotes chemotaxis of immune cells [152,153], contributing
to the extravasation of them to locally inflamed tissues. According to the localization of
the receptors of VEGF in ALEOs it is also possible that immune cells functions take place
through autocrine regulation of VEGFR-2 and -3 [66].

The expression of the VEGF family of cytokines and their receptors in osteoblasts
and osteoclasts have been described, linking vascular growth and bone turnover [154,155].
Up to now their presence has been reported in experimentally-induced ALEOs in rats,
particularly in osteoclasts where VEGFR-2 and -3 were also detected [151]. The signaling
mechanisms of VEGF-A through VEGFR-1 are regarded to promote osteoclast differentia-
tion [156]; whereas VEGFR-2 activation is associated with osteoclastic bone resorption [157].
The positive localization of VEGFR-2 in AP might explain one of the pathways responsible
for loss of peri-radicular bone.

A summary of the role of VEGF signaling in inflammatory periodontal diseases is
presented in Figure 2.
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3.3. Diagnostics

Nowadays, the diagnosis of periodontitis, peri-implantitis and AP are mainly based
on the clinical history, signs, symptoms and imaging exams. Nevertheless, these mostly
reflect the history of past disease, but show important pitfalls to reflect present disease,
early diagnosis and predict future disease progression [158,159]. Thereby, biomarker
identification in oral fluids represents a future goal to aid clinical diagnosis.

Saliva and GCF are both oral fluids acknowledged to harvest biological markers from
periodontal/peri-implant tissues with high potential for biomarker-based diagnostics. Nev-
ertheless, VEGF studies in saliva of periodontitis patients are still controversial, possibly
because of the complex nature of saliva [57,58]. Noticeably, a recent study evaluated the
VEGF levels in whole saliva and serum samples from periodontitis and healthy individuals,
considering the smoking habit. In general, higher levels of VEGF were found in saliva and
serum levels of periodontitis group, but when stratified, this difference was confirmed only
for smokers. The authors reported a diagnostic precision of 0.88 for VEGF to discriminate
periodontitis individuals from healthy controls, supporting its diagnostic potential [59].

GCF is a physiologic transudate or inflammatory exudate that reflects health and dis-
eased periodontal status, respectively. Several studies have reported higher levels of VEGF
in GCF from periodontitis patients in relation to healthy individuals [56,57,60,62,160,161]
and reduction of its levels after conservative/non-surgical periodontal therapy [60,160,161].
However, no differences in its levels were found between periodontitis and healthy sites
within the same periodontitis patients [61]. In an analogous manner to GCF, peri-implant
crevicular fluid (PICF) reflects healthy and peri-implantitis tissues. Higher VEGF concen-
trations were detected in PICF from individuals with PI compared with clinically healthy
implants, showing a strong correlation with pocket depth, suggesting that VEGF might
participate in the progression of peri-implantitis [98]. In the same line, the combined
detection of Treponema denticola together with IL-1β, TIMP-2 and VEGF were reported to
strengthen the ability to diagnose peri-implantitis sites and also to have the potential to
predict disease outcome [63]. Another multi-biomarker study reported that VEGF, IL-17
and TNF alpha in PICF were able to differentiate healthy sites of healthy implants from
peri-implantitis sites from diseased implants with a diagnostic precision of 0.90. These
outcomes propose that VEGF alone or combined with other biomarkers in GCF/PICF may
aid to differentiate diseased sites [162].

Even though some investigations have proposed the analysis of the composition of
GCF as a measurable method reflecting the presence and activity of ALEOs [163], up to
now there is no available literature exploring whether oral fluids VEGF might serve as a
biomarker in the diagnosis and prognosis of AP. A synthesis of the studies conducted in
diagnostics of OSCC and inflammatory diseases affecting periodontal tissues is presented
in Table 1.

3.4. Therapy and Projections

Given that periodontitis and peri-implantitis are chronic inflammatory pathologies
characterized by bacterial triggering and the subsequent loss of attachment [164,165],
mechanical debridement on the root or implant surface is the gold standard of periodontal
and peri-implantitis therapies, respectively. This intervention is successful for the majority
of patients; nevertheless, some patients with severe periodontitis do not respond well
enough. Patients with refractory disease, characterized by low plaque scores and poor
response to therapy [166], might be candidates for immune modulation therapy. In a similar
manner to periodontitis and peri-implantitis, the main goal of AP therapy is to eradicate
the infection and prevent microorganisms from infecting or re-infecting the perirradicular
tissues [167]. Given its high success rate (~80%) [168], immunomodulatory therapy might
be useful only in a small number of cases with persistent AP.

An in vitro study comparing periodontitis associated fibroblasts (PAF) with normal
gingival fibroblasts demonstrated that VEGFR-1 mRNA was highly expressed in the for-
mer [169]. In the same study, the use of a specific VEGFR-1 inhibitor or its down regulation
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via RNAi, resulted in significantly increased tissue metalloproteinase inhibitors (TIMP)-1
and -2, and the subsequent decrease in the collagen breakdown [169]. These results suggest
VEGFR-1 as a novel target to treat individuals with severe or refractory periodontitis [169].
Conversely, in vivo evidence suggests that anti-VEGF-A modulation has not favorable
outcomes for periodontitis or peri-implantitis. A recent study in a rice rat model, which
tends to naturally develop localized periodontitis without external intervention, demon-
strated that the use of anti-VEGF-A monotherapy resulted in an extensive inflammatory
response, distinguished by extreme alveolar bone loss and fibrosis in comparison with
the non-monotherapy group [87]. Similarly, rat-specific anti-VEGF—mostly useful for the
blockage of VEGF-A—hindered bone healing and implant osseointegration [88].

The blockage of VEGF receptors in AP has been explored in an experimental rat [170].
In this study, the use of antibodies against VEGFR-2 and -3 and the combination of them,
demonstrated an anti-inflammatory effect of VEGFR-2 and a pro-inflammatory response to
combined signaling of VEGFR-2 and -3 [170]. In humans, suppressors of cytokine signaling
(SOCS) attenuate the gene expression of inflammatory and bone resorptive cytokines in
periapical diseases, acting as natural blockers of particular inflammatory pathways [171].
Higher levels of SOC-1 and SOC-3 in human ALEOs showed a tendency to negatively
correlate with their size [171]. SOC-3 has been associated with the blockage of Stat3 in the
regulation pathway of VEGF [172].

Overall, VEGF might represent a therapeutic target candidate to interfere with the bone
resorptive process, angiogenesis and immune response in periodontitis, peri-implantitis
and AP. Nevertheless, based on its homeostatic and healing roles, which are also mediated
by angiogenesis and migration/differentiation of osteoblastic progenitor cells [173,174],
further studies are necessary to assess the plausibility and clinical outcomes of anti-VEGF
therapy in these family of pathologies. A synthesis of the studies conducted in the ther-
apeutics of OSCC inflammatory diseases affecting periodontal tissues is presented in
Table 2.

4. Conclusions

It can be concluded that the VEGF/VEGFR pathway is an important angiogenic
mechanism commonly overexpressed in oral cancer and inflammatory periodontal diseases.
In oral malignancies, VEGF overexpression is associated with the development of nodal
and distant metastases and poor outcome. In periodontitis, in addition of being associated
with angiogenesis, it is also involved in the inflammatory and bone resorptive responses.
VEGF has great potential to be used as diagnostic and prognostic biomarker, especially
in oral cancer. However, more prospective multicenter studies are needed in order to
validate its utility for these purposes. Finally, targeting angiogenesis as part of OSCC and
periodontal inflammatory treatment might be a useful strategy, but more preclinic and
clinical studies are needed before this can be translated into patient’s care.
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