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Abstract: The human gastrointestinal tract contains the largest population of immune cells in the
body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and
bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could
potentially promote tissue damage, in normal conditions the mucosal immune response is tightly
controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and
tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple
lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell
types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or
signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in
the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7,
an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to
the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and
colon cancer.
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1. Introduction

The human gastrointestinal (GI) tract harbors the largest population of immune cells
in the body and this is the result of a continuous exposure of the gut immune system to a
complex and dynamic population of microorganisms (e.g., commensal bacterial, viral and
fungal species) and dietary antigens [1]. In order to keep a state of “physiological inflamma-
tion”, which contributes to deal with invading pathogens, while preserving barrier integrity
and allowing normal absorptive and digestive functions, many intestinal immune and
non-immune cells produce a large amount of counter-regulatory biomolecules, which con-
tribute to maintain gut homeostasis and tolerance [2]. Changes in the expression/function
of such molecules contribute to initiate and/or propagate detrimental signals, which can
eventually result in pathological conditions [2].

Among these molecules, a crucial enforcer is transforming growth factor (TGF)-β1,
a cytokine produced by multiple lineages of leukocytes, stromal and epithelial cells and
virtually targets all the gut mucosal cell types [3].

TGF-β1 is a member of the TGF-β superfamily, which includes also TGF-β2, TGF-β3,
bone morphogenetic proteins and several growth and differentiation factors [4]. TGF-β1
biological functions are initiated by two transmembrane receptors with serine/threonine ki-
nase activity, namely TGF-β1 type 1 receptor (TβR1) and TGF-β1 type 2 receptor (TβR2) [5].
Specifically, binding of TGF-β1 to TβR2 leads to auto-phosphorylation of the receptor and
subsequent recruitment of TβR1, to form a transmembrane heterodimer. Next, the kinase
activity of TβR2 determines the phosphorylation/activation of the regulatory domain of
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TβR1 which, in turn, propagates the signal to a family of intracellular signal mediators
known as Smads [6]. In detail, the activated TβR1-TβR2 complex promotes the phospho-
rylation/activation of Smad2 and Smad3 and their subsequent heterodimerization. Once
activated, the Smad2/3 complex binds to Smad4 and moves into the nucleus to regulate
the transcription of specific target genes [5,7]. The TGF-β1/Smad signaling is a strictly reg-
ulated phenomenon, and a protein belonging to Smad proteins, namely Smad7, represents
one of the main negative regulators of such a pathway, acting both in the nucleus and in
the cytoplasm through various mechanisms. In detail, Smad7 binds to TβR1 and competes
with Smad2/3 for the catalytic site of phosphorylation, thus preventing the phosphoryla-
tion of Smad2/3 [8,9]. In addition, Smad7 can promote dephosphorylation/inactivation
of TβR1 by recruiting phosphatases to the site [10]. Smad7 can also boost ubiquitination
and proteasome-mediated degradation of TβR1 in association with SMURF1/2, an E3
ubiquitin ligases [11,12]. Finally, at nuclear level, Smad7 can exert its inhibitory activity by
interfering with the formation of functional receptor-activated Smad/Smad4 complexes as
well as their binding to DNA [13].

Besides its inhibitory effect on TGF-β1 signaling, Smad7 can affect the expression and
function of several molecules involved in the control of both fibrotic and carcinogenetic
processes in a TGF-β1-independent manner. We here review and discuss the role of
TGF-β1/Smad7 axis in gut inflammation, fibrosis and cancer.

2. TGF-β1 Signaling and Intestinal Homeostasis

The intestinal lamina propria (LP) is a loosely organized lymphoid compartment
regarded as the major effector site for intestinal immune responses, with various kinds of
immune cells communicating with one another through cell-cell contact and/or cytokine
production [14]. The immune cell infiltrate within the LP is substantial, encompassing
both innate immune cells, such as dendritic cells (DCs), macrophages and innate lymphoid
cells (ILCs), and adoptive immune cells, such as T lymphocytes—of which the majority are
CD4+ T helper (Th) and T regulatory (Treg) lymphocytes—plasma cells (mainly IgA+ and
to a lesser extent IgG+ and IgM+), and B lymphocytes [14]. The function of many mucosal
cell types is regulated by TGF-β1 signaling via autocrine and paracrine effects (Figure 1).
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TGF-β1 markedly restrains both activation and proliferation of Th lymphocytes,
thereby limiting effector functions that could lead to tissue destructive responses, such as
those seen in autoimmune pathologies [15]. Consistently, genetically modified mice, which
bear a dominant-negative TβR2 and are unresponsive to TGF-β1, as well as mice with
T-cell targeted deletion of TβR2, develop systemic autoimmunity ultimately resulting in a
severe colitis [16]. In both mouse strains, histopathology of tissues taken from multiple
organs, including the gut, showed heavy lymphocyte infiltration and the presence of
activated T cells, suggesting that the regulatory effects of TGF-β1 on T cells contribute
to maintain intestinal immune homeostasis. Th lymphocytes present a high level of
plasticity and are able to differentiate in various subsets depending on the specific cytokine
milieu at induction and effector sites [17]. For instance, TGF-β1 markedly restrains the
commitment of naïve T cells along the Th1 and Th2 lineages, which are important for
responses against intracellular microbes and parasites, respectively, and whose aberrant
activation in involved in the pathogenesis of inflammatory bowel diseases (IBD) [18].
In particular, the TGF-β1-induced inhibition of Th1 cell differentiation relies on the direct
down-regulation of T-bet, a transcription factor described as the master regulator of Th1 cell
commitment [19]. Moreover, TGF-β1 prevents the expansion of Th1 responses mediated by
interleukin (IL)-12, the major driver of human Th1-type immune response [20], by reducing
the expression of IL-12Rβ2 [21]. Concerning the TGF-β1-mediated inhibition of Th2
cell commitment, this relies on the direct down-regulation of GATA3, a transcription
factor taking part in Th2 cell differentiation [22,23]. Notably, TGF-β1 can also promote
the polarization of T cells towards a regulatory phenotype, namely T regulatory cells,
both directly and indirectly [24]. Tregs, which are characterized by the expression of
the transcription factor Forkhead box p3 (Foxp3) [25], play a key role in modulating the
immune response, thereby maintaining homeostasis and self-tolerance, mainly acting on
effector T cells [26]. Mice with non-functional TGF-β1 signaling caused either by TGF-β1
deficiency or T cell-specific deletion of TβRII showed a pronounced decrease in peripheral
CD4+Foxp3+Tregs, suggesting that TGF-β1 may contribute to the gut homeostasis in
part by triggering Treg differentiation [27,28]. This assumption is reinforced by evidence
indicating that TGF-β1 promotes the formation of naturally occurring Tregs, a Treg subset
present in the thymus early after birth, as well as of peripherally induced Tregs, which
differentiate from naïve T cells in peripheral organs [29–31]. Of note, TGF-β1-deficient
mice, but not mice with a targeted TGF-β1 deletion on CD4+ T cells, present a diminished
fraction of CD4+Foxp3+Tregs [28], thus indicating that TGF-β1 released by other cell
populations is pivotal in peripheral Treg differentiation. CD103-expressing DCs, a subset
of DCs primarily involved in cross-presentation of self or foreign antigens, induction of
gut-homing molecules on effector T cells as well as in the generation of Tregs [32], are a
major source of TGF-β1 in the gut [33]. In addition, CD103+ DCs synthesize high levels of
retinoic acid (RA), which potentiates TGF-β1-induced Treg expansion via a direct action on
Foxp3 promoter [34]. Besides the above-mentioned effects, TGF-β1 and RA cooperate to
the in vitro differentiation of naïve T cells into another subset of Foxp3-expressing Tregs,
termed induced Tregs [33].

Concerning the cross-talk between gut microbiota and the intestinal immune system,
TGF-β1 produced by colonic lamina propria DCs fosters the generation of Tregs following
Clostridium butyricum infection [35]. Moreover, together with IL-6, IL-21 and IL-1β, TGF-
β1 contributes to the differentiation of Th17 cells, a Th cell subset characterized by the
expression of the master regulator retinoid acid-related orphan receptor (ROR)-γt and
producing a wide range of cytokines, including IL-17A, IL-17F, IL-21 and IL-22 [36]. Of
note, the commitment of naïve CD4+ T cells toward a Th17 or Treg phenotype has been
seen to rely on TGF-β1 concentration [37]. Indeed, low TGF-β1 concentration induce Treg
differentiation via the down-regulation of IL-23 receptor, whereas high concentration of
TGF-β1, simultaneously with IL-6 and IL-21, up-regulates IL-23 receptor thus promoting
Th17 polarization [38].
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The tissue specificity of lymphocyte homing, a process that facilitates the access of
such immune cells to specific tissues and organs, is tightly controlled by the interaction
between the homing molecules (e.g., selectins, integrins) on lymphocytes and their specific
ligands on the vascular endothelial cells of different tissues [39]. TGF-β1 dampens the
gut homing capacity of effector CD8+ T cells from the secondary lymphoid organs to
the intestine by inhibiting the expression of integrin α4β7. Consistently, transgenic mice
bearing TβR2 deficient T cells showed decreased retention of antigen-specific memory
CD8+ T cells in the intestinal tissues partly due to the defective expression of αEβ7 and α1
integrins, as well as CD69 [40].

TGF-β1 also plays a key role in the regulation of B cell and plasma cell biology. In
B cells, TGF-β1 mediates IgA class switching and promotes IgA synthesis [41,42]. Although
mice with non-functional TGF-β1 signaling in B cells do not develop intestinal inflamma-
tion, the deletion of TβR2 in CD19-expressing B cells associates with B cell hyperplasia
in the isolated or aggregated lymphoid follicles forming Peyer’s patches and hampered
B cell responsiveness resulting in a complete serum IgA deficiency [41,43]. Secretory
IgAs are critical for the control of the intestinal microbiota. For instance, they can protect
against luminal bacteria via direct neutralization and by enhancing DC phagocytosis and
antigen presentation. In addition, secretory IgAs can impede the adhesion of bacteria to
the epithelium by blocking their surface expressed epitopes [44]. In Peyer’s patches, IgA
production increases following interaction between B cells and DCs via TGF-β1-activated
integrin αvβ8 [45]. Of note, TGF-β1 controls IgA production via the canonical Smad-
mediated cascade. In particular, Smad2 deficiency results in a lack of IgAs, whereas ectopic
overexpression of Smad3 and Smad4 results in an augmented IgA production [46,47].

Innate lymphoid cells (ILCs) are a family of innate immune cells involved in immune
homeostasis, tissue remodeling and host defense (contributing to the front line against
pathogens) [48]. These cells mirror the phenotypes and functions of T cells and are abun-
dantly present at mucosal sites [48]. Although there is no clear evidence that TGF-β1
controls the function of ILCs in the gut, recent studies indicate that TGF-β1 may regulate
the differentiation/development of such cells in other districts [49,50].

TGF-β1 plays a pivotal role in modulating both expansion and function of intestinal
DCs thus preventing immune defects that may result in inflammatory bowel diseases
and autoimmunity. Indeed, mice bearing a specific TβR2 deletion in DCs spontaneously
developed systemic autoimmunity and colitis, with the latter characterized by goblet cell
depletion, marked mucosal lymphocytic infiltration, hampered expansion/functionality of
Tregs, presence of activated T cells and B cells, and increased secretion of inflammatory
cytokines [51,52]. In addition to TGF-β1 production, DCs contribute to TGF-β1 activation.
Travis and colleagues elegantly showed that TGF-β1 activation by DCs is essential for
preventing immune dysfunctions leading to pathologic conditions [53]. In particular,
conditional loss of the TGF-β1-activating integrin αvβ8 on leukocytes caused severe colitis
and age-related autoimmunity in mice. This phenotype was largely due to lack of αvβ8
on DCs, as mice lacking αvβ8 mainly on DCs developed immunological abnormalities
identical to those seen in mice lacking αvβ8 on all leukocytes, whereas mice lacking αvβ8
on T cells alone were phenotypically normal. Mechanistically, DCs lacking αvβ8 failed
to induce Tregs, an effect that relied on reduced TGF-β1 activity [53]. Interestingly, TGF-
β1 can control the mucosal accumulation of specific inflammatory DC subtypes. In this
regard, Siddiqui et al. demonstrated that monocyte-derived inflammatory DCs expressing
E-cadherin, the receptor for CD103, promoted intestinal inflammation. In a T cell transfer
model of colitis, E-cadherin-positive DCs accumulated in the inflamed mesenteric lymph
nodes and colon, had high expression of toll-like receptors, and produced colitogenic
cytokines (e.g., IL-6, IL-23), after activation. Importantly, the presence of TGF-β1 led
to a marked downregulation of E-cadherin expression by bone marrow-derived DCs
in vitro and limited the accumulation of E-cadherin-positive DCs in vivo [54]. TGF-β1
regulates also monocyte/macrophage function. For instance, intestinal epithelial cell-
produced TGF-β1 can behave as a chemokine and promote the recruitment of blood
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monocytes to the intestinal mucosa [55]. In addition, TGF-β1 stimulates the differentiation
of type 2 macrophages, an immune cell subset with anti-inflammatory properties, and
diminishes the responsiveness of macrophages to bacterial products, which is crucial in the
maintenance of intestinal homeostasis [56]. Mice with TβR2 deficiency in macrophages
do not develop a spontaneous colonic inflammation [57]. However, such animals exhibit
increased susceptibility to dextran sodium sulphate (DSS)-induced colitis as well as reduced
IL-10 levels, further pinpointing the ability of the cytokine to promote counter-regulatory
signals in macrophages [57].

Finally, it is worth underlining the ability of TGF-β1 to target non-immune cells, such
as epithelial cells and stromal cells, which are known to produce high amounts of the
cytokine. TGF-β1 fosters the expression of claudin-1, a tight junction protein, as well as
adhesion molecules (e.g., E-cadherin, vinculin), with the ultimate result to reinforce the
epithelial barrier integrity [58]. Along the same line is the capacity of the cytokine to
potently induce the margination of intestinal epithelial cells, a phenomenon that speeds-up
the wound healing [59].

Selective suppression of TGF-β1 signaling in mouse intestinal epithelium does not
result in a macroscopic inflammation. However, mice with such a defect are more prone to
DSS-colitis as compared with sham [60].

3. TGF-β1/Smad Signaling and Intestinal Fibrosis

Fibrosis is a wound-healing response to either acute or chronic cellular injury that
is characterized by the accumulation of extracellular matrix (ECM) [61]. Several condi-
tions are involved in the initiation and development of fibrotic diseases such as chronic
inflammation, oxidative stress, shear stress, hypoxia, as well as specific stimuli (e.g., basic
fibroblast growth factor, Wnt family growth factors) [61]. TGF-β1 is a key regulator of
ECM deposition and plays an important role in physiological repair processes [62]. Indeed,
TGF-β1 was found to increase the expression of the major ECM proteins, fibronectin and
collagen, in cultured mesenchymal and epithelial cells [63]. In vivo, when injected subcu-
taneously in newborn mice, TGF-β1 induced collagen accumulation and a fibrotic tissue
response at the site of injection [64]. Subsequent studies of fibrotic disease pathogenesis in
several organs, such as liver, lung, kidney and skin, indicated that TGF-β1 as well as its
intracellular mediators (i.e., Smad proteins) are among the main factors promoting tissue fi-
brosis [65–67]. Indeed, TGF-β1 signaling is considered the key fibrogenic pathway, and thus
a valuable therapeutic target, in both liver and pulmonary fibrosis [68,69]. In the former
disease, TGF-β1—produced by hepatic stellate cells (HSCs), immune (e.g., macrophages,
platelets), and non-immune cells (e.g., hepatocytes)—triggers fibrosis by driving HSC
activation and trans-differentiation to myofibroblasts, which are the main producers of col-
lagen and other ECM proteins in the liver [68]. Interestingly, different functions have been
attributed to the Smad proteins (e.g., Smad2, Smad3 and Smad7) in liver fibro-proliferative
disorders depending on cell types [68]. In the lungs, TGF-β1 produced by a variety of
cell types, such as alveolar macrophages, activated alveolar epithelial cells and fibrob-
lasts, induces monocyte and fibroblast recruitment as well as fibroblast proliferation via
platelet-derived growth factor (PDGF). In these cells, TGF-β1 also promotes the synthesis
of inflammatory/fibrogenic cytokines, including PDGF, tumor necrosis factor (TNF)-α
and IL-1β, further enhancing and perpetuating the fibrotic response [69]. Other pathways
proposed as pathogenic mechanisms of lung fibrosis include TGF-β1 activation mediated
by proteases, in particular secretory leukocyte protein [70,71]. For detailed information on
the mechanisms underlying TGF-β1 signaling-mediated fibrogenesis in organs other than
the gastrointestinal tract, we refer the reader to other more specific reviews [72–74].

As pointed-out above, TGF-β1 stimulates stromal cells to produce fibrogenic media-
tors and regulators of ECM deposition. In addition, TGF-β1 promotes the differentiation of
mesenchymal cells in myofibroblasts, which display contractile activity and produce colla-
gen and fibronectin, thereby facilitating wound repair [75,76]. For these reasons, TGF-β1 is
considered as a major fibrogenic cytokine and a poorly controlled TGF-β1 activity has been
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involved in the development of intestinal fibrosis and strictures, which may complicate the
natural history of Crohn’s disease (CD) [77]. Intestinal strictures in CD patients were associ-
ated with an increased TGF-β1 transcript level and excessive accumulation of extracellular
matrix proteins, such as collagens and fibronectin [78,79]. Myofibroblasts isolated from
intestinal strictures of CD patients overexpress collagen III, and TGF-β1 promotes collagen
III production by myofibroblasts [79]. There is also evidence that anti-fibrogenic drugs
used for the treatment of fibrotic diseases (i.e., pirfenidone) suppress intestinal fibrosis in a
DSS-induced colitis model by inhibiting TGF-β signaling [80,81].

In line with the fibrogenic role of TGF-β1 in the human gut, TGF-β1 overexpression
in the intestine of mice resulted in the development of intestinal fibrosis [82]. More re-
cently, Flier et al. showed that TGF-β1-driven epithelial-mesenchymal transition (EMT)
contributed to intestinal fibrosis in a rodent model of CD and that inhibition of TGF-β1
prevented this process as well as fibrosis [83].

Although the fibrogenic role of TGF-β1 in the gut is well accepted [62,78], it is worth
underlining that additional factors/cytokines, which are highly produced in the inflamed
tissue of CD patients (e.g., TNF–α), can stimulate stromal cells to synthesize elevated
amounts of collagen, thus contributing to the pathogenesis of CD strictures [84,85]. In this
context, defective TGF-β1 signaling, resulting in an impaired activity of the key transduc-
tion protein Smad3 and associated with elevated levels of the inhibitory protein Smad7,
was seen in the mucosa of CD patients [86]. Knockdown of Smad7 with a specific antisense
oligonucleotide (ASO) restored the ability of TGF-β1 to hamper the production of inflam-
matory cytokines in CD mucosal cells [86] and attenuated 2,4,6-trinitrobenzene sulfonic
acid (TNBS)-driven experimental colitis (mimicking human CD) in mice [87]. Consistently,
a phase 1 study showed that oral administration of a Smad7 ASO-containing drug, de-
nominated GED-0301 and, later on, Mongersen, in patients with active, non-stricturing,
non-perforating CD, was safe and associated with clinical benefit [88]. Subsequently, two
independent phase 2 studies showed that Mongersen induced clinical and endoscopic
improvement in steroid-dependent and/or resistant CD patients [89,90], although a phase
three trial was discontinued in October 2017 due to an interim analysis that documented
an apparent lack of efficacy of the drug [91]. Interestingly, in a follow-up study of the
phase one trial of GED-0301, no strictures were observed, by small intestine contrast ul-
trasonography, in CD patients treated with the drug for up to six months [92]. Moreover,
at day 180, no patients had a change in the serum levels of the tissue inhibitor of matrix
metalloproteinases-1, basic fibroblast growth factor and YKL-40 [92], which have been
proposed as serum biomarkers for intestinal fibrosis [93]. In line with these findings was
the observation that Mongersen hampered the fibrogenic process in a mouse model of
TNBS-mediated colitis-driven intestinal fibrosis [94].Taken together, these findings high-
light the complexity of TGF-β1 signaling in modulating the pathologic processes that may
lead to intestinal fibrosis. Given such a complexity and the ability of TGF-β1 and Smad
proteins to modulate key processes involved in gut carcinogenesis (reported and discussed
in the next chapter), therapeutic options aimed at targeting TGF-β1 signaling components
to treat intestinal fibrosis should be carefully weighted up to avoid the risks of enhancing
colorectal cancer (CRC) development.

4. Role of TGF-β1/Smad Signaling in Colorectal Cancer

Altered expression/function of TGF-β1 and/or Smad proteins is commonly observed
in cancers [95]. Interestingly, TGF-β1/Smad signaling has dual roles in cancer progres-
sion [96,97]. Indeed, while TGF-β may induce cell cycle arrest and apoptosis in transformed
cells during tumor initiation, in the later stages of tumor development TGF-β1 signaling
has been shown to promote processes that cancer cells may exploit to their advantage, such
as dysregulated cell proliferation, stem-like behavior, EMT and angiogenesis. Similarly,
accumulation of mutations in TGF-β1 pathway components during tumor progression may
contribute to convert TGF-β1 behave from tumor-suppressive to tumor-promoting [96,97].
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Such heterogeneity makes the output of the TGF-β1 response in cancer dependent on the
stage and context of the disease.

Colorectal cancer, defined as a cancer arising in the human colon and/or rectum, is the
third most frequently diagnosed cancer (with more than 1.8 million cases) and the second in
terms of mortality, accounting for almost 900,000 deaths worldwide [98]. While the 5-year
survival rate of CRC patients with nonmetastatic disease is more than 70%, it dramatically
decreases to less than 20% in the presence of metastatic disease [99]. CRC arises as sporadic
disease in approximately 70% of cases, with multiple genetic and environmental factors
(most of which are still unknown) involved in the pathogenesis [86]. Instead, in 2% of
cases, CRC can complicate the natural history of patients with colonic inflammatory bowel
diseases (colitis-associated cancer (CAC)) [100,101], mainly of those with long standing ul-
cerative colitis (UC), with a cumulative risk that that is related to the extension/duration of
the disease as well as to the severity of inflammation [102,103]. TGF-β1 signaling plays both
carcinogenic and anti-carcinogenic roles in CRC depending on the stage and type of disease,
likely reflecting the complexity of TGF-β1-affected processes. Increased TGF-β1 expression
was seen in CRC compared to benign adenoma and noncancerous tissue [104]. While TGF-
β1 induced growth arrest in well differentiated to moderate differentiated, localized CRCs,
this did not happen in more aggressive cancers and metastatic carcinoma cells even these
cells responded to TGF-β1 treatment by increasing their proliferation [105,106]. High TGF-
β1 levels were observed in primary tumor specimens as well as in plasma taken from
CRC patients and were correlated with metastatic disease and poor prognosis [105,107].
In this regard, TGF-β1 was broadly detected in human CRC liver metastases [108] and
circulating TGF-β1 was indicated as a predictor of metastatic disease in patients who
underwent resection for CRC [109]. Notably, Tauriello et al. recently showed that TGF-β1
inhibition prevented CRC metastasis by unleashing a cytotoxic T-cell response against
cancer cells [110]. Mutations of TGF-β receptor and/or Smad genes have been observed
in nearly 50% of CRCs and supposed to play a key role in colon carcinogenesis [111,112].
Mutations in TβRII, abrogating TGF-β signaling, occur late in the adenoma to carcinoma
sequence [113] and have been detected in about 30% of all CRCs [114], and in more than
80% of CRCs presenting microsatellite instability (MSI-H) [115,116]. As MSI-H tumors,
TβRII mutations mainly occur in the right colon rather than in other parts of the large
intestine [117]. In this context, de Miranda and colleagues showed that TGF-β signaling
may still remain active in some CRCs with a high level of MSI-H despite TβRII frameshift
mutations [118]. The exact mechanism/s by which TβRII mutations contribute to CRC
development are still unknown. However, some studies have suggested that inactivation
of TβRII may induce (along with KRAS mutations) intestinal neoplasms in mice in a
β-catenin-independent pathway [119] and enhance the expression of vascular epithelial
growth factor-A, thereby increasing the metastatic potential of CRC cells [120]. Although
less frequent, mutations in TβRI have also been detected in CRC [121]. In particular, dele-
tion of three alanine residues from a nine alanine stretch in the N-terminal region of TβRI
(TβRI*6A) was associated with an increased risk of CRC [122]. Despite these results have
not been confirmed [123], a recent paper highlighted a role for TβRI*6A in promoting the
migration and invasion of CRC cells [124]. Mutations of the downstream components of
the TGF-β1 signaling pathway can also modulate colon carcinogenesis. Smad4 mutations
have been detected in 8.6% of sporadic CRCs and commonly in the later stages of the
disease [125]. Indeed, Smad4 mutations or loss of expression of Smad4 occur in up to
one third of metastatic CRCs and are associated with poor prognosis [125], in contrast
with the notion of a metastatic role of TGF-β1 signaling. The reason for such an apparent
discrepancy may rely on the fact that, other than playing a pivotal role in the canonical
TGF-β1 cascade, Smad4 is a central component of other signaling pathways [126]. In this
context, Voorneveld and co-workers demonstrated that loss of Smad4 altered bone mor-
phogenetic protein (BMP) signaling to promote CRC metastasis via activation of Rho and
Rho-associated protein kinase (Rock) [127]. More recently, by investigating the specific role
of Smad4 in colitis-associated CRC, Means et al. reported a loss of Smad4 protein in 48% of
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samples taken from patients with UC-associated carcinomas [128]. The authors showed
that mice with deletion of Smad4 in the intestinal epithelium presented macroscopic in-
vasive adenocarcinomas of the distal colon and rectum following chronic DSS-induced
experimental colitis. Interestingly, the histopathologic analysis of the tumors showed a
strong similarity with those occurring in human CAC. Mechanistically, the carcinogenic
effect of Smad4 epithelial deletion resulted in a strong inflammatory signature caused by
the increased expression of numerous chemokines—in particular C-C motif chemokine
20 (CCL20)—leading to an excessive recruitment of immune-inflammatory cells [128].

Smad2 mutations occur in approximately 3%–6% of CRCs, more frequently in the
early-stage of disease [125,129]. Both the Smad2 and Smad4 genes are located on a region of
the chromosome 18q which is commonly deleted in CRC owing to a loss of the long arm of
chromosome 18 (loss of heterozygosity) [130]. Mutations in Smad3 were also identified at a
similar frequency of the Smad2 mutations in sporadic CRCs [125]. In addition to the somatic
mutations described above, germline mutations in Smad4 and other components of the TGF-
β signaling, such as BMPR1A, have been documented in patients with juvenile polyposis
syndrome [131,132], which can develop into CRC [133]. Smad7 gene variations have been
extensively investigated in CRC patients. Boulay and colleagues analyzed the presence of
Smad7 variants in 264 CRC specimens and found that patients with Smad7 deletion had a
favorable clinical outcome compared with patients with Smad7 amplification [134]. Genetic
variants within Smad7 gene have been linked to CRC development in two genome-wide
association studies (GWAS) [135,136]. In both studies, a highly significant association with
CRC was found for two single nucleotide polymorphisms (SNPs) in Smad7 (i.e., rs4939827,
rs12953717). The association of these SNPs with CRC was thereafter proved by two other
GWAS [137,138]. In 2016, a large-scale meta-analysis confirmed that several SNPs in Smad7
were associated with the risk of developing CRC [139]. More recently, a low-frequency
coding variant in Smad7 (i.e., rs3764482), was associated with the risk of CRC in a Chinese
population [140]. Finally, Campbell and co-workers reported an association whereby the
common Smad7 variant rs4939827 and body mass index may jointly influence the risk of
developing CRC in women [141].

To address the role of Smad7 in colon carcinogenesis, Halder and co-workers stably
over-expressed Smad7 in a TGF-β-sensitive, well-differentiated, and non-tumorigenic
colonic cell line (termed FET). Ectopic Smad7 in FET cells increased their resistance against
apoptosis and favored anchorage-independent cell growth as well as colony formation
via a mechanism dependent on suppression of TGF-β signaling. Smad7-overexpressing
FET cells also presented increased tumorigenicity compared to control cells in a xenograft
mouse model [142]. In a following study, the same group showed that injection of Smad7-
overexpressing FET cells in the spleen of athymic nude mice promoted the formation of liver
metastasis [143]. The pro-metastatic role of Smad7 was associated with augmented level of
junctional proteins, such as E-cadherin, claudin-1 and claudin-4, at distant sites [143].

Our studies indicated a link between Smad7 expression in immune cells and CAC.
Specifically, we detected a reduced number of Smad7-expressing CD4+T lymphocytes in
the colonic mucosa of inflammatory bowel disease patients who developed CAC compared
to patients with uncomplicated disease [144]. In line with this finding, transgenic mice
over-expressing Smad7 in T cells (Smad7 Tg mice) developed a more severe colitis, marked
by an abundant infiltrate of cytotoxic CD8+ T cells and natural killer T cells, compared to
control mice. Smad7 Tg mice were largely protected from tumors compared to sham, thus
highlighting the opposing role of Smad7 in the control of sporadic and colitis-associated
CRC [144]. The negative effect on colon carcinogenesis of Smad7 over-expression in T cells
seemed to rely on the action of interferon-γ, as genetic ablation of such a cytokine in
Smad7 Tg mice abolished the protective action of Smad7 [144]. Consistently with these
observations, Smad7 Tg mice were less susceptible to graft tumors, produced by the
subcutaneous injection of syngeneic colon adenocarcinoma cells (i.e., MC38), compared
to wild-type littermates [145]. However, consistently with the genetic studies mentioned
above, Smad7 showed a carcinogenic role in sporadic CRC. Indeed, we detected high Smad7
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levels in CRC cells and Smad7 abrogation by a specific ASO hampered CRC cell growth
both in vitro and in experimental models [146]. These effects relied on the modulation
of cell cycle-related proteins, ultimately resulting in S phase arrest and cell death [146].
Our following studies revealed that Smad7 knockdown activated the eukaryotic translation
initiation factor 2 α (eIF2α), a transcription factor involved in the regulation of cell cycle
machinery, in a protein kinase RNA-dependent fashion, leading to CRC cell death [147].
More recently, Wang et al. reported that nuclear reporter subfamily 2, group F and member
2 (NR2F2), a protein involved in the development of several cancers [148], inhibited Smad7
expression and induced a TGF-β-dependent EMT of CRC cells [149], further underlining
the dual role of Smad7 in the early and late stages of CRC development [96]. Altogether,
these data highlight the complex role of TGF-β1/Smad7 signaling in colon carcinogenesis.

5. Conclusions

The findings discussed in this article underline the crucial role of TGF-β1/Smad cas-
cade in the maintenance of intestinal homeostasis and indicate that defective function of this
signaling pathway, due to gain/loss of function defects in the extracellular/intracellular
signal transduction components (e.g., TβR2, Smad7), contribute to trigger and/or am-
plify detrimental signals in the gut, which may ultimately lead to intestinal inflammation,
fibrosis as well as cancer. TGF-β1 signaling may exert opposite actions on both fibro-
genic and carcinogenic processes in the gastrointestinal tract, depending on the location
(i.e., upper and lower gastrointestinal tract) and stage of disease (i.e., early versus advanced).
These apparently contradictory functions are not surprising given the complexity of this
pathway, characterized by the interaction of its components, in diverse cell types, with a
vast array of functionally heterogeneous molecules that may be differently expressed during
such pathogenic processes. To clarify the role of TGF-β1 signaling/components in specific
pathogenic contexts is an exciting challenge of future studies that may pave the way for the
development of strategies aimed at attenuating/halting the course of these diseases.
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