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Abstract: Polymorphisms of group VIA calcium-independent phospholipase A2 (iPLA2β or PLA2G6)
are positively associated with adiposity, blood lipids, and Type-2 diabetes. The ubiquitously expressed
iPLA2β catalyzes the hydrolysis of phospholipids (PLs) to generate a fatty acid and a lysoPL.
We studied the role of iPLA2β on PL metabolism in non-alcoholic fatty liver disease (NAFLD).
By using global deletion iPLA2β-null mice, we investigated three NAFLD mouse models; genetic
Ob/Ob and long-term high-fat-diet (HFD) feeding (representing obese NAFLD) as well as feeding
with methionine- and choline-deficient (MCD) diet (representing non-obese NAFLD). A decrease of
hepatic PLs containing monounsaturated- and polyunsaturated fatty acids and a decrease of the ratio
between PLs and cholesterol esters were observed in all three NAFLD models. iPLA2β deficiency
rescued these decreases in obese, but not in non-obese, NAFLD models. iPLA2β deficiency elicited
protection against fatty liver and obesity in the order of Ob/Ob › HFD » MCD. Liver inflammation
was not protected in HFD NAFLD, and that liver fibrosis was even exaggerated in non-obese MCD
model. Thus, the rescue of hepatic PL remodeling defect observed in iPLA2β-null mice was critical
for the protection against NAFLD and obesity. However, iPLA2β deletion in specific cell types such
as macrophages may render liver inflammation and fibrosis, independent of steatosis protection.

Keywords: PLA2G6; fatty liver; phospholipid remodeling; diet-induced obesity; morbidly obesity;
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1. Obesity and NAFLD

Obesity is an epidemic with a prevalence rate of 13% of the world’s population [1] and has become
a major public health problem resulting in decreased quality of life, reduced working ability, and early
death. Obesity-associated co-morbidity and diseases include atherosclerosis, diabetes, non-alcoholic
fatty liver disease (NAFLD), and non-alcoholic steatohepatitis (NASH) [2]. A significant proportion
of the risk of obesity is due to genetic variance [3–5]. Demographics (ethnicity, age, and gender) and
behavior (eating behavior, physical activity, and smoking) are environmental factors contributing to
obesity as well [6–8]. Increased consumption of high-fat-diet (HFD) contributes in a major way to
obesity in a genetic variance-dependent manner [7,8]. One example is that C57BL/6J mice are more
vulnerable to diet-induced obesity compared to other genetic backgrounds [9–11]. The gene-by-diet
interactions may be highly heritable and they could significantly have a large impact on obesity in
human offspring [12].
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A study using more than 100 inbred strains of mice revealed that a high-fat/high-sucrose diet
promotes strain-specific changes in obesity that is not accounted for by food intake [13]. This provides
evidence for a genetically determined set-point for obesity at least for the case of high-fat/high-sucrose
feeding [13]. The genome-wide association studies (GWAS) of obesity data have been used to elucidate
the function of genetic variants. The GWAS analyses of knockout mouse phenotypes have provided
PLA2G6 association with body weights, lipids, energy, and nervous system [14]. In human studies,
the failure to explain a larger fraction of the genetic basis of obesity alone highlights the gene-by-diet
interactions, genetic determinants of habitual dietary intake, as well as the interplay between diet,
genes, and obesity [13,14].

Hepatic manifestation of obesity is NAFLD [15]. NAFLD is one of the most common causes of
chronic liver disease worldwide [16]. NAFLD pathogenesis has a spectrum covering from steatosis
through NASH to cirrhosis, which may progress to primary liver cancer [17]. NAFLD prevalence
is 27–34% of the general population in the USA, and 40–90% of global obese populations have this
disease [16,17]. Similar to obesity, genetic variances [18–20], hormones [20], sex [21,22], ethnicity [23]
combined with age [24], as well as dietary and physical activity habits [25] are important factors and
traits for NAFLD development.

While NAFLD is commonly seen in obese subjects, it is however not rare among non-obese and
lean individuals [26,27] particularly those with specific ethnic backgrounds, such as, Asia-Pacific [28,29].
Genetic predispositions, fructose- and cholesterol-rich diet, visceral adiposity, and dyslipidaemia
play an important role in the pathogenesis of lean NAFLD [26,27]. Lean-NAFLD patients show less
severe histological features as compared to overweight and obese NAFLD patients. For the latter,
a significant ~25% increment of mean fibrosis score is found suggesting that obesity could predict
a worse long-term prognosis [30]. Lean subjects with evidence of NAFLD have clinically relevant
impaired glucose tolerance, low adiponectin concentrations, and a distinct metabolite profile with
an increased rate of patatin-like phospholipase containing lipase 3 (PNPLA3) risk allele carriage [31].
Cardiovascular events are the main cause of mortality and morbidity in non-obese NAFLD [26,27];
which is similar to obese NAFLD [32]. As atherogenic dyslipidaemia arises from hepatic steatosis [32],
the metabolism of intrahepatic fat in NAFLD is also recognized to contribute to complications of
obesity [33]. While lifestyle changes that include physical activity and weight loss are the mainstay
of NAFLD treatment, the understanding of hepatic lipid metabolism may provide some clues for
specific interactions between nutrients and dietary needs [34]. Thus, the understanding of the balanced
biomolecules and nutrients in the diets would become important in providing insights for an alternative
strategy to treat and alleviate NAFLD and obesity [35].

2. Animal Models of Obese and Non-Obese NAFLD/NASH

In order to identify important biomolecules and nutrients involved in NAFLD, we have used
mouse NAFLD models because mice have shorter lifespan and provide research results in a relatively
short period of time. We performed our studies using three different mouse models of NAFLD/NASH.
They included leptin-deficient Ob/Ob and long-term HFD-fed mice (representing obese NAFLD),
and mice fed with a methionine-choline deficient (MCD) diet (representing non-obese NAFLD). All of
these mice had C57BL/6 background which is prone for obesity [11]. Ob/Ob and HFD feeding represent
over-nutrition NAFLD model with metabolic perturbations, glucose intolerance, and insulin resistance
that are common in humans with mild NASH [36]. MCD diet feeding of mice causes no increase
in weight and obesity and no insulin resistance thus representing a non-obese NAFLD model with
pathological mechanisms that lead to NASH [37].

The induction of NAFLD/NASH by MCD diet is based on an impaired synthesis of
phosphatidylcholine (PC) and the subsequent reduced production of very low-density lipoproteins
(VLDLs), and this leads to accumulation of hepatic triglycerides (TGs) and hepatic steatosis
development [36,37]. Although histological features and inflammatory response of MCD model
reflect human NAFLD/NASH, this model does not however resemble human metabolic physiology;



Biomolecules 2020, 10, 1332 3 of 25

in that the levels of serum TGs, cholesterol, insulin, glucose, and leptin are not increased. As MCD-fed
mice lose their bodyweight and do not exhibit insulin resistance, these mice may represent a model of
non-obese NAFLD/NASH. Interestingly, non-obese NAFLD has also been described in mice deficient
with phosphatidylethanolamine N-methyltransferase (PEMT), which is the enzyme that converts
phosphatidylethanolamine (PE) to PC [38]. This bolsters the notion that altered phospholipid (PL)
metabolism and changes in the composition of PC and PE are linked to NAFLD pathogenesis.

In this review, we investigated the extent of hepatic fatty acid (FA) and PL metabolism in livers of
male Ob/Ob mice at six months old [39], male C57BL/6 mice at six months old fed with HFD (60 kcal %
fat, Research Diet, USA) for six months [40], and female C57BL/6 mice at 12 months old fed with MCD
diet (ssniff GmbH, Germany) for four weeks [41].

3. Phospholipids in NAFLD/NASH

In NAFLD, hepatic TG contents are the bulk vesicular fat stored in lipid droplets, thus the
alteration in TG metabolism has been a focus for NAFLD prevention [42]. However, hepatic PLs
could also play a role in NAFLD by three major mechanisms because PLs and their metabolism are
important for (1) the formation of lipid droplets [43,44], (2) the regulation of de novo lipogenesis
via sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription
factors that regulate synthesis of cholesterol and unsaturated FAs [45,46], and (3) the metabolism and
secretion of VLDLs [36,37].

In (1), cytosolic lipid droplets are the sites for storage of neutral lipids including TGs, which are
surrounded by a monolayer of PLs [43]. It is known that relative abundance of PC and PE on the
surface of lipid droplets is important for their dynamics [44]. An inhibition of PC biosynthesis during
conditions that promote TG storage increases the size of the lipid droplets [44].

For (2), the disturbance of PC [47] or PE [48] synthesis by respective genetic deletion of C. elegans
and Drosophila leads to an activation of SREBPs. Thus, decreased PL mass due to suppressed synthesis
could lead to a compensatory upregulation of SREBPs eventually resulting in an increase in de novo
lipogenic lipid synthesis, steatohepatitis, and metabolic syndrome. This notion could be supported
by the data using transgenic mice with deletion of PC [47] and PE [48] in the liver; whereby these
knockout mice exhibit propensity to develop NAFLD.

For the last (3) case, it has been long known that PLs are required for the formation and stability
of lipoproteins [49]. Depletion of PC can affect the endoplasmic reticulum (ER) and protein trafficking
in the Golgi [50]. Moreover, a block of the ER-to-Golgi trafficking associated with a decrease in PC
synthesis is shown to induce TG accumulation and subsequent lipoprotein secretion [51]. Consistently,
ω-3 FA-induced PL remodeling can alter the utilization of TGs in the form of TG-rich lipoproteins [52].
While the ratio of PC/PE that influence hepatocyte membrane integrity can regulate NAFLD [53],
hepatocellular PC is shown to exhibit protective effects on hepatic steatosis, however this PC does
not protect liver inflammation in NASH [54]. This may indicate a differential role of PC and perhaps
other PLs in hepatocytes versus in immune cells. Thus, the alteration of hepatic PL metabolism during
NAFLD in mice is linked to the syntheses and trafficking of TGs and FAs, as well as the synthesis and
secretion of TG-rich lipoproteins.

Accordingly, patients with NAFLD contain a decrease in liver total PC and PE levels, and the
contents of arachidonate (20:4)-containing PC and docosahexaenate (22:6)-containing TG are also
decreased in livers of NASH patients [55]. The decrease of polyunsaturated fatty acid (PUFA)-
containing lipids in NASH livers indicates that there is an impairment of PL remodeling, which could
be due to the down-regulation of PL synthesis genes by pro-inflammatory cytokines, such as tumor
necrosis factor-α [56]. It is therefore essential to determine PL profiles as a function of unsaturation of not
only PC and PE, but also other lipids including sphingomyelin (SM), ceramides (Cer), and cholesteryl
esters (CEs). These results will help identify the relative significance of these types of biomolecules
and their different roles in obese and non-obese NAFLD.
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4. Phospholipid-Metabolizing Genes and Phospholipases A2 (PLA2) in Obesity and NAFLD

Since hepatocellular phospholipids play important role in NAFLD/NASH, phospholipid-
metabolizing genes have thus been inherently subjected to research investigations. These genes
may include phospholipase A2 (PLA2) such as group IVA PLA2 (or cytosolic PLA2α), group IIA PLA2

(or PLA2G2A or secretory PLA2), as well as lipid hydrolases with specificities for diverse substrates
such as TGs, PLs, and retinol esters. These lipid hydrolases include PNPLA family consisting of
six enzymes, namely PNPLA2 (ATGL or iPLA2ξ), PNPLA3 (adiponutrin or iPLA2ε), PNPLA4 (iPLA2η),
PNPLA6 (iPLA2δ), PNPLA8 (group VIB iPLA2 or iPLA2γ), and PNPLA9 (group VIA iPLA2 or PLA2G6
or iPLA2β) [57]. An ablation of group IVA PLA2 [58] or or iPLA2γ [59,60] in mice leads to strong
and partial protection against diet-induced obesity, respectively. The attenuation of obesity by group
IVA PLA2 deficiency could likely be due to the reduction of adipocyte differentiation [61], as well as
attenuation of neutrophil infiltration and hepatic insulin resistance [62]. BL/6 mice expressing the
human PLA2G2A gene when fed with a fat diet showed more insulin sensitivity and glucose tolerance
with a mechanism of mitochondrial uncoupling activation in brown adipose tissues [63]. Inhibitor of
secretory PLA2 reduces obesity-induced inflammation in Beagle dogs [64], and protects diet-induced
metabolic syndrome in rats [65]. Inactivation of the group 1B PLA2 (PLA2G1B), a gut digestive
enzyme, suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in
C57BL/6 mice [66,67] and attenuates atherosclerosis and metabolic diseases in LDL receptor-deficient
mice [68]. Conversely, transgenic mice with pancreatic acinar cell-specific overexpression of the
human PLA2G1B gene gain more weight and display elevated insulin resistance when challenged
with a high-fat/carbohydrate diet [69]. Moreover, two secreted PLA2s, PLA2G5 and PLA2G2E
capable of hydrolysis of lipoproteins, are robustly induced in adipocytes of obese mice, and PLA2G5
prevents palmitate-induced M1 macrophage polarization and PLA2G2E moderately facilitates lipid
accumulation in adipose tissue and liver [70]. On the contrary to previously mentioned PLA2s, mice
deficient with ATGL, iPLA2ξ, or PNPLA2 when fed with MCD diet show exacerbated hepatic steatosis
and inflammation [71]. Interestingly, mice deficient with adiponutrin or PNPLA3 show no protection
against HFD or Ob/Ob background [72], but on the other hand show protection under ER stress [73].
Taken together, these publications show a growing list of lipolytic enzymes that act as metabolic
coordinators of obesity and NALFD in mice.

Consistent with mouse data, obese human subjects with or without Type-2 diabetes show
high activities of total PLA2 and of Ca2+-dependent and Ca2+-independent enzymes; and that
Ca2+-dependent secretory sPLA2 are the main enzyme responsible of obesity-associated high
activity [74]. Moreover, sPLA2 activity is increased with high correlation with sensitive C-reactive
proteins in morbidly obese patients [75]. Lastly, plasma PLA2 activity is increased in asthma patients
and associated with high plasma cholesterol and body mass index [76].

Genome-wide (GWAS) and candidate gene association studies have identified several variants
that predispose individuals to developing NAFLD. A study in mouse GWAS has identified
11 genome-wide significant loci to be associated with obesity traits, and a PL-metabolizing enzyme
lysophospholipase-like 1 (LYPLAL1) was among these loci identified in the epididymal adipose
tissues of diet-induced obese mice [13]. These results are consistent with association of this gene with
human NAFLD [77]. When NASH/fibrosis was assessed histologically and non-invasive computed
tomography (CT) was used for hepatic steatosis, it is reported that three variants near PNPLA3 are
associated with CT hepatic steatosis, and variants in or near LYPLAL1 and adiponutrin or PNPLA3
are associated with histologic lobular inflammation/fibrosis [77]. NAFLD progression has a strong
genetic component, and the most robust contributor is PNPLA3 rs738409 encoding the 148M protein
sequence variant [78]. Moreover, antisense oligonucleotides-mediated silencing of Pnpla3 reduces
liver steatosis in homozygous Pnpla3 148M/M knock-in mutant mice, but not in wild-type littermates
fed a steatogenic high-sucrose diet [79]. As the variation in PNPLA3 contributes to ancestry-related
differences in hepatic fat content and susceptibility to NAFLD, consistently the weight loss is effective
in decreasing liver fat in subjects who are homozygous for the rs738409 PNPLA3 G or C allele [80].
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Hence, current data bolster the notion that PL-metabolizing enzymes, particularly PNPLA3, may be
involved in NAFLD development and thus may be used as targets for development of drugs for
NAFLD/NASH treatment and prevention.

5. iPLA2β in Obesity and NAFLD and Use of iPLA2β-Null Mice

GWAS in >100,000 individuals of primarily European ancestry have identified group VIA
calcium-independent PLA2 (iPLA2β, PLA2G6, or PNPLA9) as one of the 12 loci to be associated with
human body fat percentage (BFP) [81]. This is consistent with PLA2G6 association with bodyweight
in mice [14]. Further extended GWAS also identified a strong association of PLA2G6 to BFP in
metabolically healthy obesity [82]. In this study, the BFP-increasing allele in the locus near PLA2G6
is associated with lower plasma TG levels in men and women, with lower insulin levels and risk of
Type-2 diabetes particularly in men, and higher visceral adipose tissue in men [82]. Another GWAS for
plasma lipids in >100,000 individuals also identified SNP rs5756931 of PLA2G6 as one of the 95 loci to
be associated with plasma TGs [83]. These results were also recently reviewed [84]. While PLA2G6
association with plasma TG is shown to have no effects on cardiovascular disease (CAD) risk [85],
PLA2G6 together with PLA2G2 and PLA2G5 levels are however increased in subgroups of patients
with CAD [86]. Furthermore, genetic variants at or near PLA2G6 are associated with Type-2 diabetes in
European-Americans [87], European-American women [88], and a Chinese population [89]. This is in
line with the reported suppressed insulin secretion by islets in response to glucose and forskolin upon
global iPLA2β deletion in mice [90]. Hence, iPLA2β or PLA2G6 may represent a key PL-metabolizing
enzyme being critical in the development of obesity and Type-2 diabetes.

iPLA2s are lipolytic enzymes not requiring calcium for catalysis in hydrolyzing ester bond of
PL at sn-2 position to release a 2-lysoPL and a free FA [91–93]. iPLA2β is a prototypic iPLA2 that is
ubiquitously expressed and plays a house-keeping role in PL metabolism and PL remodeling [91–93].
iPLA2β mediates PL remodeling by regulating the composition of PUFA in PL pools, for example,
an increase of PUFA-containing PLs was observed upon treatment of cultured cells with an iPLA2β

inhibitor [94–96].
In 2011, we obtained global-deficient iPLA2β-null (KO) mice with exon 9 deletion [90,97] from

Dr. John Turk, Washington University School of Medicine, St. Louis, MO, USA. Our first publication
in 2016 revealed the functional role of iPLA2β inactivation in morbidly obese NAFLD [39]. Male
Ob/Ob mice were cross-bred with KO mice. Compared to Ob/Ob mice, the double Ob/Ob-iPLA2β

KO mice showed protection with significant reduction of body and liver weights, improved glucose
tolerance, and reduction in islet hyperplasia [39]. The improvement in hepatic steatosis was also seen
by attenuation of liver TG, FA, and CE contents in double Ob/Ob-iPLA2β KO mice.

Work from Dr. Turk’s laboratory showed that HFD feeding of iPLA2β-null mice for six months
did not improve, but rather further impaired glucose intolerance likely due to an impairment of insulin
secretion by pancreatic islets [90]. Moreover, the global deletion of exon 2 in the iPLA2β gene in
mice fed with HFD for eight weeks also did not show any improvement in serum and liver TGs [98].
The lack of effects could be due to relative short HFD feeding such that hepatic PLs were not yet
affected. We therefore attempted to define the conditions among the three NAFLD models that an
inactivation of iPLA2β is effective in alleviating obesity and NAFLD. We were particularly interested
in comparing hepatic PL profiles in iPLA2β-null mice in obese and non-obese NAFLD. We considered
that hepatic PLs and TGs may be affected by the metabolism in adipose tissues of iPLA2β-null mice,
since iPLA2β is shown to regulate adipocyte differentiation [99]. Interestingly unlike PLA2G6, group
IVA PLA2 or group VIB iPLA2 (iPLA2γ) are not included in human GWAS data on obesity/adiposity
and blood lipids as discussed above [14,81–89]. Thus, PLA2G6 or iPLA2βmay exhibit a unique activity
with a preference toward obesity and hence obese NAFLD [39].

We performed HFD feeding of WT and iPLA2β KO mice for six months as another model of obese
NAFLD [40]. We showed that protection was observed in iPLA2β KO mice with an attenuation of
HFD-induced body and liver-weight gains, liver enzymes, serum-free FAs, as well as hepatic TGs and
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steatosis scores. However, this deficiency did not attenuate hepatic ER stress, fibrosis, and inflammation
markers. No protection was observed after short-term 3–5 week HFD feeding when hepatic PL contents
were not yet depleted.

Since PL syntheses are disturbed by MCD feeding of mice [36,37], we tested whether iPLA2β

KO mice could still be protected from fatty liver in this non-obese NAFLD model. MCD feeding of
female wild-type (WT) for four weeks induced hepatic steatosis with a severe reduction of body and
visceral fat weights, which were not altered in MCD-fed iPLA2β-KO mice [41]. However, iPLA2β

deficiency attenuated MCD-induced elevation of serum transaminase activities and hepatic expression
of FA translocase Cd36, fatty-acid binding protein-4, peroxisome-proliferator activated receptorγ,
and HDL-uptake gene scavenger receptor B type 1 (SR-B1). The reduction of lipid uptake genes was
consistent with a decrease of hepatic esterified and un-esterified FAs and CEs [41]. On the contrary,
iPLA2β deficiency under MCD did not have any effects on inflammasomes and pro-inflammatory
markers but rather exacerbated hepatic expression of myofibroblast α-smooth muscle actin and
vimentin [41].

Taken together, iPLA2β deficiency elicited protection against hepatic steatosis in an order
of Ob/Ob › HFD » MCD; or that protection was better in obese NAFLD compared to non-obese
NAFLD model.

6. Metabolic Lipid Changes in Ob/Ob Mice and Modulation by iPLA2β Deficiency

Because the liver does not serve as a storage depot for fat, the steady-state concentration of hepatic
TGs is low under physiological conditions. There is nevertheless a considerable trafficking of both
TGs and FAs into and out of the liver during NAFLD development induced by genetic alterations,
increased fat intake, and/or alteration in hepatic metabolism [34,42]. Hepatic steatosis in NAFLD
develops when the rate of FA input is greater than that of FA output. Thus, the mechanisms for
gene-to-diet interactions on the extent of steatosis are very complex since many genes are involved in
the regulation of TG, FA, and lipoprotein syntheses; and that some of these lipids have been identified
as obese [19] and non-obese [100] NAFLD modifier genes.

We first compared hepatic steatosis among WT and Ob/Ob mice. Liver TG and total FA contents
were increased in Ob/Ob mice (Figure 1A). Metabolomic profiling has been used to study hepatic
lipid metabolism [39–41]. Gas chromatography mass spectrometry (GC/MS) method was used to
measure un-esterified and esterified FA species present in all lipids [101]. Regarding FA composition
(% Mol), Ob/Ob mice showed an increase of hepatic FAs containing monounsaturated FAs (MUFA) but
a decrease in those containing di- and >2 unsaturated FAs (Figure 1B).

PC and PE metabolism is important in pathogenesis of fatty liver owing to disrupted membrane
integrity and suppressed PC syntheses as well as altered PC and PE composition [102]. Hepatic
steatosis is associated with the reduction of hepatic PC or PLs as demonstrated in experiments in
transgenic mice with a deletion of a PC synthesis gene [47,48,53]. Here, an electrospray ionization
tandem mass spectrometry (ESI-MS/MS) method was utilized to profile PL species including PC, SM,
lysoPC (LPC), LPE, PE, phosphatidylserine (PS), phosphatidylinositol (PI), plasmalogens (Pla), Cer,
CE, and free cholesterol (FC) [103–106]. The composition among these PL subclasses (% Mol) showed
a decrease of PC, PE, and PI, but an increase of CE in genetic Ob/Ob mice (Figure 1C). This indicates a
shift from polar PLs to neutral lipids, namely, TGs and CEs (Figure 1A,C). The increase of CEs in Ob/Ob
livers may reflect diabetes and hyperinsulinemia in these mice. Genetically obese Ob/Ob livers showed
a significant increase in MUFA-containing CEs concomitant with a decrease of PUFA-containing PC,
PE, PS, and PI as well as SM contents (Figure 1D–F).

PL contents and composition in livers of WT, Ob/Ob, and Ob/Ob-iPLA2βKO mice were determined
by ESI-MS/MS. Liver histology showed marked steatosis attenuation in Ob/Ob-iPLA2β KO mice
(Figure 2A). Here, PL composition (% Mol) (Figure 2B), MUFA-PL (Figure 2C), and PUFA-PL (Figure 2D)
contents were analyzed showing the suppression of PUFA-PC, PUFA-PE, and PUFA-PS contents in
Ob/Ob livers. This suppression was reversed in Ob/Ob-iPLA2β KO mice. Moreover, the elevation of
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MUFA-CEs and PUFA-CEs in Ob/Ob livers was also attenuated in Ob/Ob-iPLA2βKO mice (Figure 2C,D).
These changes were associated with an attenuation of bodyweight gains, hepatic steatosis, as well as the
reduction of hepatic and plasma TGs [39]. These results showed that iPLA2β has a pathophysiological
function by depleting PUFA concentrations in Ob/Ob liver PLs. iPLA2β inactivation re-establishes PL
remodeling to return to normal homeostasis.
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Figure 1. Lipid contents and composition show a defect of hepatic PL remodeling in Ob/Ob mice. Male
wild-type (WT) and Ob/Ob mice at six months old were used. (A) The contents of hepatic triglycerides
(TG), total fatty acids (FAs). (B) FA composition of saturated, monounsaturated fatty acids (MUFA),
di unsaturated, and > 2 unsaturated FA. (C) The composition of phospholipids (PLs) and cholesterol
esters (CEs). (D) The contents of PLs and CEs containing monounsaturated fatty acids (MUFA).
(E) The contents of PLs and CEs containing polyunsaturated fatty acids (PUFA). (F) The contents of
sphingolipids. Data are mean ± SEM, N = 5–7; *, p < 0.05 versus WT.
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Ob/Ob, and double knockout Ob/Ob-iPLA2β KO at six months old were used. (A) Representative
photographs of hematoxylin- and eosin-stained livers of Ob/Ob mice and Ob/Ob-iPLA2β KO.
(B) The composition of PLs and CEs. (C) The contents of PLs and CEs containing MUFA. (D) The contents
of PLs and CEs containing PUFA. Data are mean ± SEM, N = 5–7; #, p < 0.05, versus WT; *, p < 0.05,
Ob/Ob versus Ob/Ob-iPLA2β KO.

7. Metabolic Lipid Changes in HFD-Fed Mice and Modulation by iPLA2β Deficiency

Livers of WT mice fed with HFD showed a significant increase of TGs and FAs (Figure 3A) [40].
On the contrary to Ob/Ob mice (Figure 1B), hepatic FA composition showed an increase of di-unsaturated
FAs by HFD feeding (Figure 3B). For HFD-fed mice, PL composition plot (% Mol) showed a weaker shift
from PC to CEs (Figure 3C) when compared with Ob/Ob mice (Figure 1C). There was a decrease in liver
MUFA-PC (Figure 3D) concomitant with an increase in SM (Figure 3F). Hence, hepatic PC particularly
PUFA-PC was the key PL that was suppressed in HFD obese NAFLD model. This suppression indicated
a defect in hepatic fatty-acyl PC remodeling. It appears that PUFA-PE contents were modulated
differently between Ob/Ob (Figure 1E) and HFD (Figure 3E) obese NAFLD.
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Figure 3. Lipid contents and composition show a defect of hepatic PL remodeling of WT mice fed with
high-fat diet (HFD) for six months. Male WT mice at six months old were used. (A) The contents of
hepatic triglycerides (TG), total fatty acids (FA). (B) FA composition of saturated, MUFA, di unsaturated,
and > 2 unsaturated FA. (C) The composition of PLs and CEs. (D) The contents of PLs and CEs
containing MUFA. (E) The contents (nmol/mg liver) of PLs and CEs containing PUFA. (F) The contents
of sphingolipids SMs and Cers. Data are mean ± SEM, N = 5–12; *, p < 0.05, versus WT.

PL contents and composition in livers of WT, HFD-fed WT, and HFD-fed iPLA2β KO mice were
determined by ESI-MS/MS. Liver histology showed marked steatosis attenuation in HFD-fed iPLA2β

KO mice (Figure 4A). Analyses of hepatic PL composition showed that the elevation of liver CEs in
HFD-fed WT mice was attenuated by iPLA2β deficiency (Figure 4B). In HFD model, iPLA2β deficiency
was rescued by loss of PUFA-PC and PUFA-PE (Figure 4D) and only a trend rescue of MUFA-PE and
MUFA-PS (Figure 4C). Hence, similar to Ob/Ob mice (Figure 2D), the loss of PUFA-PC and PUFA-PE
was rescued by iPLA2β deficiency in HFD obese model (Figure 4D).



Biomolecules 2020, 10, 1332 9 of 25Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 26 

 

Figure 4. Inactivation in HFD-fed mice rescues the defect of hepatic PL remodeling. Male WT and 
iPLA2β KO mice at six months old were fed with HFD for six months. (A) Representative photographs 
of hematoxylin- and eosin-stained livers of HFD-fed WT and iPLA2β KO mice. (B) The composition 
of PLs and CEs. (C) The contents of PLs and CEs containing MUFA. (D) The contents of PLs and CEs 
containing PUFA. Data are mean ± SEM, N = 5–12; #, p < 0.05, versus WT; *, p < 0.05, WT/HFD versus 
iPLA2β KO/HFD. 

8. Metabolic Lipid Changes in MCD-Fed Mice and Modulation by iPLA2β Deficiency 

Unlike Ob/Ob and HFD obese models, hepatic steatosis was not protected by iPLA2β deficiency 
in non-obese mice fed with MCD diet [41] (Figure 5A). There was a decrease in composition of liver 
PC but an increase of CEs by MCD feeding (Figure 5B). iPLA2β deficiency attenuated the elevation of 
CEs in composition plot (Figure 5B) and CE contents (Figure 5C) associated with attenuation of SR-
B1 by iPLA2β deficiency [41]. MCD feeding of WT mice decreased the contents of MUFA-PC, MUFA-
PE (Figure 5C), and PUFA-PC (Figure 5D) concomitant with a significant increase in total Cer (Figure 
5E), and all these changes were not altered by iPLA2β deficiency. 

 

Figure 4. Inactivation in HFD-fed mice rescues the defect of hepatic PL remodeling. Male WT and
iPLA2β KO mice at six months old were fed with HFD for six months. (A) Representative photographs
of hematoxylin- and eosin-stained livers of HFD-fed WT and iPLA2β KO mice. (B) The composition of
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8. Metabolic Lipid Changes in MCD-Fed Mice and Modulation by iPLA2β Deficiency

Unlike Ob/Ob and HFD obese models, hepatic steatosis was not protected by iPLA2β deficiency
in non-obese mice fed with MCD diet [41] (Figure 5A). There was a decrease in composition of liver PC
but an increase of CEs by MCD feeding (Figure 5B). iPLA2β deficiency attenuated the elevation of CEs
in composition plot (Figure 5B) and CE contents (Figure 5C) associated with attenuation of SR-B1 by
iPLA2β deficiency [41]. MCD feeding of WT mice decreased the contents of MUFA-PC, MUFA-PE
(Figure 5C), and PUFA-PC (Figure 5D) concomitant with a significant increase in total Cer (Figure 5E),
and all these changes were not altered by iPLA2β deficiency.
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and choline-deficient (MCD) diet-fed mice. Female WT and iPLA2β KO mice at 12 months old were
fed with MCD diet for four weeks. (A) Representative photographs of hematoxylin- and eosin-stained
livers of MCD-fed WT and iPLA2β KO mice. (B) The composition of hepatic PLs, CEs, and free
cholesterol (FC). (C) The contents of PLs and CEs containing MUFA. (D) The contents of PLs and CEs
containing PUFA. (E) The contents of sphingolipids SMs and Cers. Data are mean ± SEM, N = 5–6;
#, p < 0.05, versus WT; *, p < 0.05, WT/MCD versus iPLA2β KO/MCD.

9. PL in Liver Endoplasmic Reticulum of HFD- or MCD-Fed Mice and Modulation by
iPLA2β Deficiency

Because iPLA2β is localized in the ER [107] where PL syntheses take place [102], we surmise
that PLs in the ER membrane during obese and non-obese NAFLD could be modulated by iPLA2β

inactivation. In support of this notion, NAFLD induced by HFD feeding of PEMT-knockout mice [108]
and genetic obese Ob/Ob mice [109] are associated with changes of PC and PE in liver ER fractions.
We determined whether PL contents in the ER could be affected by HFD [40] or MCD diet [110] feeding
and in combination with iPLA2β deficiency. Our ER preparations from livers led to an enrichment of a
resident ER protein calnexin in ER fractions (but not in liver homogenates) [110]; thus confirming the
purity of ER membranes for lipidomic measurements.

PL profiles of liver ER fractions of HFD-fed mice were analyzed as PL subclasses (Figure 6A).
HFD feeding of WT mice depleted ER PC contents and iPLA2β deficiency showed a rescue trend.
A similar pattern of a rescue-trend effect of iPLA2β deficiency could be observed for ER PE and ER PS.
Due to substrate depletion of PC synthesis [37], MCD feeding of WT mice caused a strong reduction of
ER PC and ER PE (Figure 6B) [110]. iPLA2β deficiency under MCD further suppressed ER PE contents,
particularly, those containing PUFA. This deficiency did not, however, have any effects on ER PC
contents suggesting specificity iPLA2β towards PE in the ER. Hence, MCD-induced defect of ER PL
remodeling became more severe by iPLA2β deficiency [110].
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Figure 6. iPLA2β inactivation on PL profiles of liver ER fractions of HFD- and MCD-fed mice. Feeding
with HFD or MCD diet was described in Figures 4 and 5, respectively. ER fractions were isolated
from mouse livers and ER proteins subjected to PL profiling by LC-MS/MS. (A) The contents of PC,
PE, PI, and PS in the ER of WT, iPLA2β-KO, WT/HFD, and iPLA2β-KO/HFD livers. (B) Saturated,
MUFA, PUFA, and total contents of PC and PE in liver ER fractions of WT, iPLA2β-KO, WT/MCD,
and iPLA2β-KO/MCD livers. Data are mean ± SEM, N = 5–12 for (A) and 5–6 for (B); *, p < 0.05,
between indicated pairs.

10. Hepatic PL Ratio among Obese and Non-Obese NAFLD and Modulation by
iPLA2β Deficiency

The importance of maintaining an appropriate hepatic PC/PE ratio has been extensively studied
by D. Vance’s research group using PEMT-knockout mice [53,54,102,108]. The clinical relevance of
this ratio has been shown that the proportion of patients with NASH have a lower hepatic PC/PE
ratio compared to healthy subjects [53]. Interestingly, both low and high hepatic PC/PE ratios in
different NAFLD models are associated with an increase in NAFLD scores [102]. The lower PC/PE
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ratio seen with a deficiency of PEMT, betaine:homocysteine methyltransferase, or CPT:phosphocholine
cytidyltransferaseα, correlates with increased NAFLD severity [102]. In contrast, mice with the
deficiency of glycine N-methyltransferase [102], Ob/Ob mice [109], and mice fed with high fat/high
cholesterol/cholate diet [111] show a higher hepatic PC/PE ratio. Hence, hepatic changes in PL
composition and PC/PE ratio may be dependent on the experimental models distinguishing between
genetic versus diet or obese versus non-obese NAFLD.

To this end, we investigated whether the ratios among PL subclasses and CEs would indicate
hepatic steatosis among our three NAFLD mouse models. The ratios were calculated and separated
into groups with the indicated PL subclasses used in the calculation including total PLs, saturated (sat)
PLs, MUFA-PLs, and PUFA-PLs (Figure 7). Consistent with previous report in Ob/Ob mice [109], PC/PE
ratio among total PLs in our Ob/Ob livers was increased from 1.5 to 2.3; and this increase was seen
among sat and PUFA-PLs (Figure 7A). With a significant increase in CEs in Ob/Ob livers (Figure 1D),
PC/CE and PE/CE ratios were therefore decreased with genetic obesity (Figure 7A). For HFD-fed
WT mice, PC/PE was decreased among total and sat PLs, but a marked decrease was observed in
PC/CE and PE/CE among MUFA-PLs and PUFA-PLs (Figure 7B). For MCD-fed WT mice, PC/PE was
decreased from 1.5 to 0.5 among total and PUFA-PLs (Figure 7C). MCD feeding caused a marked
decrease in PC/PS and PC/PI seen in MUFA-PLs. With a significant decrease in CEs in MCD-fed livers
(Figure 5C), PC/CE and PE/CE ratios were therefore decreased in sat- and PUFA PLs (Figure 7C).
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Figure 7. Alters the ratios among phospholipid subclasses in 3 NAFLD models: Ob/Ob mice, HFD-,
and MCD-fed mice. Ob/Ob mice, HFD-, and MCD-fed mice are described in Figures 1, 3 and 5,
respectively. The ratio among PLs in livers of (A) Ob/Ob, (B) HFD-fed mice, and (C) MCD-fed mice.
Data are mean ± SEM, N = 5–7 for (A); N = 4–5 for (B), and N = 5–6 for (C). #, p < 0.05, versus WT;
*, p < 0.05, Ob/Ob versus Ob/Ob-iPLA2β KO or WT/HFD versus iPLA2β KO/HFD.

Our data showed PC/PE among total PLs increased in Ob/Ob, but on the other hand, decreased in
MCD livers. Thus, PC/PE ratios are changed in a U-shape curve from genetic obesity to non-obese
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NAFLD/NASH [102]. In addition to PC/PE, ratios among other PLs were also altered with fatty
liver. A weak decrease in PE/PI was observed in Ob/Ob livers (Figure 7A). A decrease in PE/PI was
observed in HFD-fed WT mice (Figure 7B). A weak decrease of PC/PS and PC/PI ratios was observed
in MCD-induced NAFLD (Figure 7C). Such changes during NAFLD can support the changes in
electrostatics of PL bilayers and the existence of asymmetric lipid membranes due to charged anionic
PLs, such as PS and PE relative to PC [112]. This may correlate with the least extent of hepatic
inflammatory status in Ob/Ob mice as compared with HFD- and MCD-fed mice [39–41].

iPLA2β deficiency did not alter PC/PE ratio in Ob/Ob (Figure 7A) and MCD-fed mice (Figure 7C).
This deficiency however reversed the suppression of PC/PE and PE/PI in HFD-fed mice (Figure 7B).
Since marked exacerbation of cholesterol metabolism is reported in Ob/Ob [113] and diabetic mice [114],
the elevation of CEs caused a decrease of PC/CE and PE/CE in all three NAFLD models. iPLA2β

deficiency reversed the suppression of PC/CE and PE/CE ratios in Ob/Ob and HFD-fed mice, but not in
MCD-fed mice (Figure 7A–C). This may suggest that the remodeling with a shuttling of PUFA and
MUFA could occur between PC, PE, and CEs via acylation and transacylation in choline/methionine-rich
Ob/Ob and HFD livers [115]. Taken together, we have demonstrated a difference between genetic and
diet (HFD and MCD) NAFLD regarding the ratios among PL subclasses, a contribution of PS and PI
relative to PC and PE, as well as CE metabolism.

11. iPLA2β and De Novo Lipogenesis Gene Expression in Livers of Mice in 3 NAFLD Models

Associated with hepatic steatosis protection in obese but in non-obese NAFLD models [39–41],
we further compared expression of iPLA2β protein and de novo lipogenesis in livers of Ob/Ob, HFD-
and MCD-fed WT mice. Rather than an increase, a slight decrease in iPLA2β protein expression was
observed in fatty livers of obese models (Figure 8A,B) and a strong decrease in MCD model (Figure 8C).
iPLA2β mRNA expression was not markedly altered (not shown) [39–41]. These data imply that
iPLA2β protein may be subjected to degradation at post translational levels during NASH. It is shown
that iPLA2 expression is decreased in rat cirrhotic livers [116], and may support iPLA2β as a target for
degradation during severe liver injury. Currently, no published data on iPLA2β or PLA2G6 expression
in livers of NAFLD/NASH patients are available. We could not correlate iPLA2β protein expression
observed in our results with human data.
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Figure 8. Expression of iPLA2β protein and de novo lipogenesis mRNA in livers of WT, Ob/Ob mice,
HFD-, and MCD-fed mice. Ob/Ob mice, HFD-, and MCD-fed mice are described in Figures 1, 3 and 5,
respectively. Expression of (A) iPLA2β protein, (B) HFD-fed mice, and (C) MCD-fed mice. Data are
mean ± SEM, N = 5–7 for PCR data; #, p < 0.05; §, p < 0.05, KO versus KO/MCD; *, p < 0.05 between
indicated groups.

With obesity and fatty liver, livers of Ob/Ob and HFD-fed mice showed marked elevation of
de novo lipogenesis genes including fatty acid synthase (FAS) and transcription factor SREBP1c
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(Figure 8A,B). It was shown that the transcription of iPLA2β is regulated by SREBP-1 [117], consistently
attenuated expression of FAS and SREBP1c was observed in livers of iPLA2β-deficient obese mice.
This attenuation was in indeed correlated with hepatic steatosis protection. On the other hand, MCD
feeding of WT mice caused suppressed expression of these genes, which was not altered by iPLA2β

deficiency (Figure 8C). This was associated with no steatosis protection by iPLA2β deficiency in this
non-obese model.

12. Summarized PL Characteristics in Ob/Ob, HFD-, and MCD-Fed Mice and Effects of
iPLA2β Deficiency

Because PC and PE are the two major zwitterionic PLs in cells and their metabolism has been a
focus as a key mechanistic base for healthy liver, the alterations in PC and PE are critical in liver disease
development and NAFLD [53,54,102,108]. iPLA2β deficiency protects obesity and NAFLD with an
order of - Ob/Ob [39] › HFD [40] » MCD [41]; and the latter showed no steatosis protection (Figure 9).

Biomolecules 2020, 10, x FOR PEER REVIEW 13 of 26 

With obesity and fatty liver, livers of Ob/Ob and HFD-fed mice showed marked elevation of de 
novo lipogenesis genes including fatty acid synthase (FAS) and transcription factor SREBP1c (Figures 
8A,B). It was shown that the transcription of iPLA2β is regulated by SREBP-1 [117], consistently 
attenuated expression of FAS and SREBP1c was observed in livers of iPLA2β-deficient obese mice. 
This attenuation was in indeed correlated with hepatic steatosis protection. On the other hand, MCD 
feeding of WT mice caused suppressed expression of these genes, which was not altered by iPLA2β 
deficiency (Figure 8C). This was associated with no steatosis protection by iPLA2β deficiency in this 
non-obese model. 

12. Summarized PL Characteristics in Ob/Ob, HFD-, and MCD-Fed Mice and Effects of iPLA2β 
Deficiency 

Because PC and PE are the two major zwitterionic PLs in cells and their metabolism has been a 
focus as a key mechanistic base for healthy liver, the alterations in PC and PE are critical in liver 
disease development and NAFLD [53,54,102,108]. iPLA2β deficiency protects obesity and NAFLD 
with an order of - Ob/Ob [39] › HFD [40] » MCD [41]; and the latter showed no steatosis protection 
(Figure 9). 

 

Figure 9. Role of iPLA2β deficiency in obese and non-obese NAFLD/NASH mouse models. (A) Livers 
of genetic Ob/Ob and chronic HFD-fed mice exhibited a defect in PL remodeling with suppressed 
contents of PUFA PLs. PC/PE ratio was increased in Ob/Ob mice while that of HFD-fed mice was 
decreased. iPLA2β inactivation replenished PLs associated with fatty liver protection. (B) Livers of 
MCD-fed mice exhibited a defect in PL remodeling with suppressed PUFA PLs as well as PC/PE ratio. 
iPLA2β inactivation in MCD-fed mice did not rescue this defect with no protection. We propose that 

Figure 9. Role of iPLA2β deficiency in obese and non-obese NAFLD/NASH mouse models. (A) Livers
of genetic Ob/Ob and chronic HFD-fed mice exhibited a defect in PL remodeling with suppressed
contents of PUFA PLs. PC/PE ratio was increased in Ob/Ob mice while that of HFD-fed mice was
decreased. iPLA2β inactivation replenished PLs associated with fatty liver protection. (B) Livers of
MCD-fed mice exhibited a defect in PL remodeling with suppressed PUFA PLs as well as PC/PE ratio.
iPLA2β inactivation in MCD-fed mice did not rescue this defect with no protection. We propose that
iPLA2β deficiency in specific cell types may lead to no protection in liver inflammation and liver
fibrosis in HFD and MCD NAFLD model, respectively (marked in red).

Human NAFLD and NASH are associated with numerous changes in the lipid composition of
the liver. A decrease of the total PC and a decrease of arachidonic acid (20:4n-6) in FFA, TGs, and PC



Biomolecules 2020, 10, 1332 14 of 25

are reported in both NAFLD and NASH [55]. The contents of eicosapentanoic acid (20:5n-3) and
docosahexanoic acid (22:6n-3) are decreased in NASH livers. In another study, PUFA-PLs are decreased
in NASH livers compared to normal livers, and liver CEs are increased in NAFLD and NASH livers
compared to normal livers [118]. Thus, a defect in PL remodeling and increased CEs could be observed
in livers of human NAFLD and NASH. It is reported that the activity of the desaturase FADS1 is
decreased in NAFLD liver biopsies [119]. This decrease in desaturation of FFA would likely lead
to a depletion of MUFA and PUFA lipids, particularly PLs in NAFLD/NASH. It is shown that the
hepatic PC/PE ratio is decreased in human NASH livers [53]. In another study, this ratio is lower in
simple steatosis and NASH patients compared with controls, but it was not different between SS and
NASH [120]. PC was lower and PE higher in the liver of simple patients compared with controls,
whereas in NASH patients, only PE was higher [120]. Thus, the decrease of hepatic PC/PE ratio is a
key parameter for human NAFLD and progression to NASH.

Livers of C57b/S129J mice fed a high-fat/high-cholesterol diet show an increase of hepatic CEs
while hepatic PC, PE, and PS contents are decreased in NAFLD and a further decrease in PC and PE are
observed in NASH [121]. Not only MUFA-PLs, hepatic PUFA-PC, PUFA-PE and PUFA-PI are reported
to be decreased in MCD-fed mice compared with chow-fed or HFD-fed mice [122]. Hepatic 16:0 CEs
are also increased in MCD-fed mice compared to chow-fed mice.

Results on liver lipids in our studies overall are consistent with those reported in
human [55,118–120] and mouse [121,122] NAFLD/NASH. In our studies, a decrease of PUFA-PLs
and MUFA-PLs was observed in livers of Ob/Ob and HFD-fed mice (Figure 9A) and MCD-fed mice
(Figure 9B). The elevation of CEs led to a decrease of PC/CE and PE/CE ratios in obese and non-obese
lives. iPLA2β deficiency rescued not only the defect of liver PL remodeling, but also reversed the
suppression of PC/CE and PE/CE in Ob/Ob and HFD-fed mice (Figure 9A). iPLA2β deficiency in
MCD-fed mice did not alter these parameters (Figure 9B). In our models, iPLA2β deficiency did not
interfere with liver sphingolipids. Our work suggests the functions of iPLA2β on the hepatocyte PL
remodeling in obese NAFLD models. Interestingly, hepatic PC/PE ratio is increased in Ob/Ob mice
but decreased in HFD- and MCD-fed mice (Figure 9). Thus, this ratio is a marker in discriminating
genetic versus diet-induced NASH, which is in a similar manner to human NASH [53,120]. iPLA2β

deficiency reversed PC/PE ratio in obese but not non-obese model, rendering this ratio as a marker for
phenotypic changes in NASH.

Besides PC and PE, our current data present an additional evidence for changes in other PLs
including anionic PS and PI in Ob/Ob mice (Figure 9A). iPLA2βdeficiency elicited full protection against
fatty liver, obesity, and elevation of liver enzymes in Ob/Ob and HFD-fed mice [39,40]. In these obese
models, we propose that iPLA2β specifically hydrolyzes PUFA-PLs and MUFA-PLs for generation
of FAs subsequently utilized for TG and CE syntheses for hepatic steatosis. This process may be
coordinated with other PLA2 enzymes. By this way, PUFA-PL and MUFA-PL contents in Ob/Ob and
HFD livers are suppressed, and this suppression is rescued or replenished by iPLA2β deficiency. In line
with this, administration of n-3 essential FAs [123] and PUFAs [124] have been shown to ameliorate
hepatic steatosis in obese mice likely by increasing membrane fluidity [125]. Unlike Ob/Ob mice [39],
iPLA2β deficiency during HFD feeding did not protect mice from liver inflammation [40]. Consistently,
PLs, such as PC, are shown to elicit protection of hepatic steatosis in NAFLD without attenuating
liver inflammation in NASH [54]. Alternatively, iPLA2β deletion by birth under the background of
leptin deficiency may render a complete protection [39]; possibly due to adaptation in different cell
types upon gene deletions throughout the mouse lifetime. Chronic HFD feeding on the other hand
would represent an external stress to mice [40]. As iPLA2β KO mice were global deletion, we therefore
proposed that iPLA2β deletion may affect specific cell types, such as hepatocytes, immune cells,
and adipocytes, differently in response to HFD feeding (Figure 9A).

Due to the lack of choline and methionine in the diet, MCD feeding limits PC synthesis thus
resulting in a defect of PL remodeling (Figure 9B). iPLA2β deficiency did not protect mice from
MCD-induced fatty liver, but attenuated elevation of liver enzymes (Figure 9B). This attenuation could
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be due to an inhibition of the uptake of FA as determined by Cd36 expression and FA contents, as well
as an inhibition of HDL reverse transport as determined by SR-B1 expression and CE contents [41].
The latter may indicate an involvement of iPLA2β in cholesterol esterification to CEs [114,115]. Despite
attenuation of liver enzymes, iPLA2β inactivation during MCD however showed an increase of
α-smooth muscle actin and vimentin expression [41]. Such increased liver fibrosis could be due to
iPLA2β inactivation in specific cell types such as macrophages or hepatocytes associated with stress
induced by MCD feeding (Figure 9B).

Taken together, our results highlight the significance of cross-talk between the metabolism of
PLs and neutral lipids, i.e., CEs [115,126] and TGs in lipid droplets [43,127], which can be modulated
by iPLA2β deficiency. In the latter case, iPLA2β may co-function with other PLA2s such as group
IVA PLA2 in the shuttling of FAs toward TG synthesis [127]. iPLA2β inactivation was effective
in attenuating obese (Ob/Ob and chronic-HFD) NAFLD indicating specific involvement of iPLA2β

in obesity pathogenesis. As iPLA2β inactivation was ineffective to treat non-obese MCD NAFLD,
this indicates that choline and methionine in hepatic PC and PL synthesis and metabolism were
necessary for protection in obese models. Our data also emphasize the contributions and involvement
of hepatic PL, TG, and CE metabolism in the development of NAFLD.

13. Perspectives

13.1. Consideration of Cell-Type Specificity of iPLA2β

The phenotypes of iPLA2β-null mice have been recently reviewed [92,93]. On one hand, iPLA2β is
detrimental in mediating ER stress and cell death of pancreaticβ-cells. On the other hand, iPLA2β plays
a homeostatic role and the loss of iPLA2β in mice leads to ageing-related diseases, such as male infertility,
bone-density loss, and neurological disorders. Accordingly, PLA2G6 mutations lead to the pathogenesis
of infantile neuroaxonal dystrophy and PARK14-linked Parkinson’s disease [92,93]. These data have
highlighted various and often opposing functions of iPLA2β in a cell-type specific manner.

In our investigations of obese and non-obese NAFLD/NASH, global deletion iPLA2β-null mice
were used. Thus, we could not identify whether the observed effects of iPLA2β inactivation were
due to altered functions in adipocytes [99], immune cells such as macrophages [128,129], and Kupffer
cells [130], as well as hepatocytes as shown by our work [39–41]. Concurrently, we have also reported
that global deletion of iPLA2βwas able to sensitize hepatocellular damage induced by concanavalin
A [131] or during ageing [132]. It is thought that such epithelial damage caused by iPLA2β deficiency
may secrete mediators that in turn activate inflammatory macrophages leading to sensitized injury.
The observed sensitization of liver injury [131,132] could therefore be the combined effects of iPLA2β

deficiency in hepatocytes and macrophages.
The effects of iPLA2β inactivation in macrophages have been reported [128,129]. On one hand,

macrophages from iPLA2β-null mice exhibited suppressed pro-inflammatory M1 response [128,130]
and showed enhanced IL-4-induced M2 polarization in vitro [128]. Consistently, iPLA2β-null mice
treated with anti-CD95 antibody primed Kupffer cells for attenuated release of TNF-α but enhanced
release of interleukin-6 in vitro [130]. iPLA2β-null mice showed the inability to phagocytose infected
parasites in vivo [133]; thus iPLA2βdeficiency could lead to a defect in innate immunity. As iPLA2β-null
mice showed propensity for increased liver inflammation and fibrosis during HFD and MCD NAFLD
(Figure 9), this could be due to the ability of iPLA2β-deficient macrophages to differentially regulate
M1 and M2 cytokines during NAFLD.

Our work has demonstrated iPLA2β activity in the hepatocytes by a decrease of products lysoPL
and an accumulation of substrates PC and PE observed in livers of iPLA2β-null mice fed with
chow [39,40]. Such accumulation could therefore lead to replenishment of PLs and steatosis protection
in obese Ob/Ob and HFD NAFLD (Figure 9A). On the other hand, the alterations of hepatocellular PL
composition and a decrease of PC/PE in chow-fed iPLA2β-null mice may render altered PL membranes
leading to susceptibility for previously observed liver injury [131,132]. Further studies are warranted
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to determine whether iPLA2β inactivation specifically in hepatocytes could affect hepatic steatosis and
inflammation/fibrosis in HFD (Figure 9A) and MCD (Figure 9B) models.

While knockdown of iPLA2β inhibits hormone-induced differentiation of adipocytes in vitro [99],
iPLA2β inactivation in adipocytes may inhibit adipocyte expansion, thus attenuating adipogenesis
and obesity observed in our obese NAFLD models [39,40]. It has recently been shown that protection
of hepatic steatosis by an ablation of adipocyte PLA2 is mediated by adipocyte hormone leptin [134].
By unknown mechanisms, iPLA2β inactivation may lead to an increase secretion of leptin, and may
thus elicit protection in a similar way as adipocyte PLA2. Accordingly, leptin has biological activity
in depleting liver TG [135] as well as activating Kupffer cells and thereby altering hepatic lipid
metabolism [136]. To figure out the contribution of adipocytes, macrophages, and hepatocytes on
the NAFLD/NASH pathogenesis, the generation of tissue-specific iPLA2β-deficient mice is therefore
warranted. These results will help us understand that iPLA2β deficiency in which cell type is
responsible for steatosis protection in HFD NAFLD and for increased liver fibrosis in MCD NAFLD.
Results from tissue-specific iPLA2β KO mice will also help with the designs of iPLA2β inhibitors and
formulations for specific-tissue delivery for effective treatment of obese and non-obese NAFLD.

13.2. Use of PLs or iPLA2β Antagonists for Steatosis Protection in Obese Versus Non-Obese NAFLD

Because there are no approved drugs for treatment of NAFLD/NASH, our research results may
provide some insights for further development toward NAFLD treatment. Here, our data support the
idea for repletion of PL loss by use of PLs themselves or use of iPLA2β inhibitors for treatment of obese
NAFLD. Some iPLA2β inhibitors have been found to be effective for treatment of diabetes at least
in experimental animals [137]. Potent and selective inhibitors of iPLA2β have been developed [138].
Pending the results on the phenotypes of hepatocyte-, macrophage-, and adipose-specific iPLA2β

KO mice in obese NAFLD models, investigators may design iPLA2β inhibitors in combination with
specific delivery to hepatocytes [139], macrophages [140], or adipocytes [141] for better treatment of
the common disease obese NAFLD.

For non-obese MCD NAFLD, iPLA2β inhibitors may be found to be partially effective in
attenuating liver enzymes but not hepatic steatosis (Figure 9B). Choline supplementation in patients
under parenteral nutrition reverses hepatic steatosis [142], and the strategy for non-obese NAFLD
treatment may involve the use of choline and methyl donors as co-treatment with iPLA2β inhibitors.
Choline deficiency in humans has been shown to induce hepatic steatosis [143,144] causing liver
dysfunctions [145]. Hence, supplementation of choline [142] and methyl donors [146] may be effective
in attenuating hepatic steatosis under non-obese NAFLD/NASH. Further investigations in experimental
animals are necessary to evaluate the long-term use of iPLA2β inhibitors alone for obese NAFLD
and in combination with choline/methyl donor supplementation for non-obese NAFLD models.
Nonetheless, the hierarchical mode of action by iPLA2β deficiency indicates that an iPLA2β inhibitor
may be designed perhaps with tissue-specific delivery for therapeutic development to treat metabolic
syndromes due to obese NAFLD, and may not be suitable for non-obese NASH.

14. Conclusions

We demonstrated a pivotal role of iPLA2β in the development of hepatic steatosis and inflammation
in obese and non-obese NAFLD models. iPLA2β inactivation rescued the defect in PL remodeling and
elicited steatosis protection in obese NAFLD models, but not in non-obese MCD model. While our
study suggests the use of iPLA2β inhibitors for therapy of obese NAFLD due to genetics or chronic
HFD intake, further investigations using tissue-specific iPLA2β-deficient mice are still warranted.
Here, the usefulness of the lipidomics methodology is shown in deciphering the alterations in hepatic
PL pools and ratios among three NAFLD models.
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Abbreviations

BFP body fat percentage
CAD cardiovascular disease
CE cholesterol esters
Cer ceramides
CT computed tomography
ER endoplasmic reticulum
ESI-MS/MS electrospray ionization tandem mass spectrometry
FA fatty acid
FC free cholesterol
FAS fatty acid synthase
GC/MS gas chromatography mass spectrometry
GWAS genome-wide association studies
HFD high fat diet
iPLA2β group VIA calcium-independent PLA2
LPC lysophosphatidylcholine
LPE lysophosphatidylethanolamine
MCD methionine- and choline-deficient diet
MUFA monounsaturated fatty acids
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
Ob/Ob mice leptin-deficient mice
PC phosphatidylcholine
PE phosphatidylethanolamine
PEMT phosphatidylethanolamine N-methyltransferase
PI phosphatidylinositol
PL phospholipid
PLA2 phospholipase A2
Pla plasmalogens
PNPLA patatin-like phospholipase containing lipase
PS phosphatidylserine
PUFA polyunsaturated fatty acids
SR-B1 scavenger receptor B type 1
SREBP sterol regulatory element-binding protein
SM sphingomyelin
TG triglyceride
WT wild-type
VLDL very low-density lipoproteins
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