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Abstract: Numerous studies showed that sustained obesity results in accumulation of bioactive 

lipid derivatives in several tissues, including skeletal muscle, which further contributes to the 

development of metabolic disturbances and insulin resistance (IR). The latest data indicate that a 

potential factor regulating lipid and glucose metabolism is a phytocannabinoid—cannabidiol 

(CBD), a component of medical marijuana (Cannabis). Therefore, we aimed to investigate whether 

chronic CBD administration influences bioactive lipid content (e.g., ceramide (CER)), as well as 

glucose metabolism, in the red skeletal muscle (musculus gastrocnemius) with predominant 

oxidative metabolism. All experiments were conducted on an animal model of obesity, i.e., Wistar 

rats fed a high-fat diet (HFD) or standard rodent chow, and subsequently injected with CBD in a 

dose of 10 mg/kg or its solvent for two weeks. The sphingolipid content was assessed using high-

performance liquid chromatography (HPLC), while, in order to determine insulin and glucose 

concentrations, immunoenzymatic and colorimetric methods were used. The protein expression 

from sphingolipid and insulin signaling pathways, as well as endocannabinoidome components, 

was evaluated by immunoblotting. Unexpectedly, our experimental model revealed that the 

significantly intensified intramuscular de novo CER synthesis pathway in the HFD group was 

attenuated by chronic CBD treatment. Additionally, due to CBD administration, the content of other 

sphingolipid derivatives, i.e., sphingosine-1-phosphate (S1P) was restored in the high-fat feeding 

state, which coincided with an improvement in skeletal muscle insulin signal transduction and 

glycogen recovery. 

Keywords: cannabidiol; obesity; insulin resistance; ceramide; sphingolipids; glucose; insulin signaling 

 

1. Introduction 

Currently, obesity is a widespread medical condition reaching high rates in children and adults. 

Since 1975, the worldwide incidence of obesity increased almost threefold according to the World 

Health Organization [1]. The majority of obesity cases is the consequence of excessive food 

consumption and a sedentary lifestyle [2]. Sustained obesity disrupts metabolic processes and 

pathways, especially glucose and fatty acid (FA) metabolism, which is the background of lipotoxicity 

and insulin resistance (IR) [3], leading to the further development of metabolic syndrome (MetS) and 

type 2 diabetes mellitus (T2D) [4].  

An increased intake of fatty acids in a diet at an advanced stage of obesity progression results in 

adipocyte overload and the abnormal accumulation of bioactive lipid fractions in several tissues, 
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including skeletal and cardiac muscle, as well as the liver [5,6]. Over the last several years, attention 

was paid to sphingolipids, the synthesis of which is increased during the overfeeding state (Scheme 

1) [7]. Importantly, recent data clearly demonstrated that sphingolipids are not only structural 

components of the cells; they also act as signaling molecules participating in growth regulation, cell 

differentiation, apoptosis, and signal transduction [8]. It was shown that intramyocellular lipids, 

especially ceramide (CER), directly interfered with the insulin transduction signal pathway in the 

target tissues [5], which subsequently resulted in a deterioration of insulin-stimulated glucose uptake 

[9]. This seems to be of great importance since skeletal muscle, due to its mass, significantly 

contributes to the overall energy expenditure, for instance, by being responsible for nearly 80% of 

postprandial glucose uptake [9].  

Currently, a new therapeutic approach is being sought for the prevention and treatment of 

obesity and coexisting disorders. The endocannabinoid system (ECS) was in the spotlight for several 

decades due to its well-established role in the regulation of appetite and energy expenditure [10,11]. 

It consists of cannabinoid receptors, CB1 and CB2, which are widespread throughout the body and 

located both in the central nervous system (CNS) and in the peripheral tissues (e.g., skeletal muscle, 

liver, adipose tissue) [12–14]. Cannabinoid receptors are sensitive to endogenous ligands 

(endocannabinoids (ECs)), mainly N-arachidonoylethanolamine (anandamide (AEA)) and 2-

arachidonoylglycerol (2-AG), which are long-chain polyunsaturated fatty-acid derivatives [15]. The 

ECs, AEA and 2-AG, have their own metabolic routes, including enzymes responsible for their 

degradation: fatty acid amid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively 

[16]. Recently, new fatty-acid derivatives (more than 100), along with their corresponding molecular 

targets, were discovered, among which certain orphan G-protein-coupled receptors (GPCRs) like 

GPR55, transient receptor potential (TRP) channels like the TRP of vanilloid type-1 (TRPV1), and 

peroxisome proliferator activated receptors α and γ (PPARα and PPARγ) are present [17]. The above-

mentioned components, cannabinoid and non-cannabinoid receptors, lipid mediators, and specific 

enzymes, based on recent findings, form the expanded ECS or endocannabinoidome (eCBome), 

which is an extension of the classic definition of the ECS [18].  

Numerous studies showed that, during obesity, the ECS is overactivated; therefore, it emerges 

as a promising target in the treatment of obesity with a considerable physiological significance [19–

21]. It was soon realized that cannabidiol (CBD) is a potential therapeutic agent on the grounds of its 

well-confirmed anti-inflammatory, anti-oxidative, anti-epileptic, anti-psychotic, and neuroprotective 

properties [22–24]. CBD is one of the most abundant and therapeutically relevant phytocannabinoids 

in the Cannabis plant, devoid of the psychoactive side effect [25]. So far, molecular targets involved 

in various therapeutic properties produced by CBD are not fully understood. Furthermore, few 

studies were performed in order to examine the effects of CBD with respect to obesity and its 

complications. Thus, the aim of the present study was to investigate whether chronic CBD 

administration affects the content of bioactive lipid species (e.g., CER or sphingosine-1-phosphate 

(S1P)), as well as insulin signal transduction, in red skeletal muscle (musculus gastrocnemius) of rats 

subjected to a high-fat diet (HFD) (Scheme 1). In our experimental model, we focused on the red 

skeletal muscle (consisting mainly of slow-twitch fibers) due to its predominant aerobic metabolism, 

in which a primary source of energy is based on the oxidation of glucose and FAs, as well as indicated 

insulin resistance [26]. 
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Scheme 1.  Effects of a high-fat diet (HFD) and chronic cannabidiol (CBD) administration on the 

sphingolipid metabolic pathway in rat myocytes. ↑, increase; ↓, decrease; red arrows indicate the 

effects of high-fat feeding; green arrows indicate the effects of CBD treatment; serine 

palmitoyltransferase, long chain base subunit 1 (SPTLC1); ceramide synthase 5 (LASS5); 

dihydroceramide desaturase (DES); neutral sphingomyelinase (NSmase); UDP-glucose ceramide 

glucosyltransferase (UGCG); ceramide synthase (CerS); acid ceramidase (ASAH1); sphingosine 

kinase 2 (SPHK2); phosphorylated protein kinase B (pAkt); phosphorylated glycogen synthase kinase 

3 (pGSK-3). 

2. Materials and Methods  

2.1. Animals and Study Design 

Male Wistar rats (70–100 g) were purchased from the Center for Experimental Medicine of the 

Medical University of Bialystok, Poland. The animals were kept under controlled conditions (22 °C ± 

2, 12-h/12-h light/dark cycle) with unlimited access to tap water and standard rodent chow (Labofeed 

B, Animal Feed Manufacturer “Morawski”, Kcynia, Poland). The study was approved by the Animal 

Ethics Committee in Olsztyn (No. 71/2018). 

The animals were randomly assigned to four experimental groups after a period of 

acclimatization (seven days): (1) control group—rats fed a standard diet (kcal distribution: 12.4% of 

energy from fat, 57.1% from carbohydrates, and 30.5% protein), (2) CBD group—rats fed a standard 

diet and CBD-treated, (3) HFD group—rats fed a high-fat diet (kcal distribution: 60% of energy from 

fat, 20% from carbohydrates, and 20% protein), and (4) HFD + CBD group—rats fed a high-fat diet 

and CBD-treated. The total time course of feeding rats either standard chow or a high-fat diet lasted 

seven weeks, and each experimental group consisted of 10 rats. Starting from the fifth week, 

simultaneously with the respective diet, the rats received injections of CBD or its vehicle for the next 

two weeks of the experiment. Rats fed both a standard diet and an HFD were injected 

intraperitoneally (i.p.) with synthetic CBD (purity: ≥99%; THC Pharm GmbH, Frankfurt, Germany) 

in a dose of 10 mg/kg of body mass (3:1:16, ethanol, Tween-80, and 0.9% NaCl), and corresponding 

control and HFD groups received the vehicle once a day consecutively for 14 days. Twenty-four hours 

after the last dose of CBD or its solvent, rats from control groups, as well as HFD-fed groups, were 

anaesthetized by intraperitoneal injection of pentobarbital (80 mg/kg body mass). Muscle samples 

(red musculus gastrocnemius with oxidative metabolism) were collected, and visible fatty tissue was 

mechanically removed. Subsequently, the samples were immediately frozen using aluminum tongs 
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precooled in liquid nitrogen and stored at −80 °C until further analyses. Blood samples were obtained 

through inferior vena cava puncture and collected into heparinized tubes and centrifuged; then, 

plasma was separated.  

2.2. Plasma Measurements 

Plasma glucose and insulin concentrations were measured using a Glucose Colorimetric Assay 

Kit II (BioVision Inc., Milpitas, CA, USA) and Rat Insulin ELISA Kit (Mercodia AB, Uppsala, Sweden), 

respectively, following the manufacturer’s instructions. The intensity of colored product was 

measured in a hybrid multi-mode microplate reader (Synergy H1TM, BioTek Instruments, Winooski, 

VT, USA) and, for each measurement, calculated values were based on a separate standard curve. 

Additionally, the insulin sensitivity was assessed using the homeostasis model assessment of insulin 

resistance (HOMA-IR), where fasting plasma glucose (FPG) concentration was expressed in 

millimoles per liter and fasting plasma insulin was expressed in microunits per milliliter (HOMA-IR 

= (FPG × FPI)/22.5). 

2.3. Intramuscular Glycogen Analysis 

The intramuscular glycogen content was determined using a colorimetric method (Glycogen 

Colorimetric Assay Kit II, BioVision Inc., Milpitas, CA, USA) according to the manufacturer’s 

protocol. Briefly, skeletal muscle samples were homogenized in double-distilled water; subsequently, 

tissues were boiled in order to inactivate enzymes and then centrifuged. Appropriate reagents were 

added to the collected supernatants and, after 30 minutes of incubation at room temperature. the 

absorbance of glycogen products was measured in a hybrid multi-mode microplate reader (Synergy 

H1TM, BioTek Instruments, Winooski, VT, USA). Calculated values were based on a standard curve, 

and glycogen concentration was expressed in micrograms per microliter. 

2.4. Skeletal Muscle Lipid Analysis 

The contents of ceramide (CER), sphinganine (SFA), sphingosine (SFO), sphinganine-1-

phosphate (SFA1P), and sphingosine-1-phosphate (S1P) in the skeletal muscle samples were 

measured by the means of high-performance liquid chromatography (HPLC), as previously reported 

[27]. In brief, tissues were homogenized, and lipids were extracted by the addition of chloroform. The 

lipid extracts were transferred to a fresh tube with pre-added 40 pmol of N-palmitoyl-D-erythro-

sphingosine (C17 base) as an internal standard. Afterward, the samples were washed with alkaline 

water to form deacylate ceramide. The obtained lipid residues released from ceramide were 

converted to their o-phthalaldehyde derivatives and analyzed using the HPLC system (PROSTAR; 

Varian Inc. (Palo Alto, CA, USA)) equipped with a fluorescence detector and C18 reversed-phase 

column (Varian Inc. OmniSpher 5, 4.6 × 150 mm). 

2.5. Western Blotting 

The total expression of proteins directly involved in sphingolipid and glucose metabolism, as 

well as components of the endocannabinoidome, was detected using a routine Western blotting 

procedure, as previously described [28]. Briefly, samples of the red skeletal muscle were 

homogenized in radioimmunoprecipitation assay (RIPA) buffer containing a cocktail of protease and 

phosphatase inhibitors (Roche Diagnostics GmbH, Mannheim, Germany). Then, the bicinchoninic 

acid method (BCA), with bovine serum albumin (BSA) as a standard, was used to ascertain protein 

concentration in the homogenates. After that, homogenates were diluted with Laemmli buffer, and 

the same amounts of protein (30 µg) were loaded onto CriterionTM TGX Stain-Free Precast Gels (Bio-

Rad, Hercules, CA, USA). Subsequently, muscle homogenates were separated during electrophoresis 

and transferred onto nitrocellulose membranes. After blocking in Tris-buffered saline with Tween-20 

(TBST) with 5% non-fat dry milk or BSA, the membranes were incubated overnight with selected 

primary antibodies: insulin receptor substrate 1 (IRS-1, 1:1000; Cell Signaling Technology, Danvers, 

MA, USA), phosphorylated insulin receptor substrate 1 (pIRS1 (Ser302), 1:1000; Cell Signaling), 
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protein kinase B (Akt/PKB, 1:1000; Cell Signaling Technology), phosphorylated protein kinase B 

(pAkt/PKB (Ser473), 1:1000; Cell Signaling Technology), AS160 protein (AS160, 1:500; Cell Signaling 

Technology) phosphorylated AS160 protein (pAS160, 1:500; Cell Signaling Technology), glycogen 

synthase kinase 3 (GSK3, 1:500; Thermo Scientific, Rockford, IL, USA), phosphorylated glycogen 

synthase kinase 3 (pGSK3 (Ser9), 1:500; Thermo Scientific), glucose transporter 1 (GLUT1, 1:500; Santa 

Cruz Biotechnology, Inc., Dallas, TX, USA), glucose transporter 4 (GLUT4, 1:500; Santa Cruz 

Biotechnology, Inc., Dallas, TX, USA), pyruvate dehydrogenase (PDH, 1:5000; Abcam, Cambridge, 

UK), serine palmitoyltransferase, long chain base subunit 1 (SPTLC1, 1:500; Abcam), ceramide 

synthase 5 (LASS5, 1:500; Thermo Scientific), acid ceramidase (ASAH1, 1:500; Santa Cruz 

Biotechnology), sphingosine kinase 2 (SPHK2, 1:500; Sigma Aldrich, Saint Louis, MO, USA), 

cannabinoid receptor 1 (CB1, 1:500; Abcam), cannabinoid receptor 2 (CB2, 1:500; Abcam), transient 

receptor potential channel 1 (TRPV1, 1:500; Santa Cruz Biotechnology), and serotonin receptor (5-

HT1A, 1:3000; Thermo Scientific). Next, nitrocellulose membranes were incubated with the 

corresponding secondary antibody conjugated with horseradish peroxidase (HRP) (Cell Signaling 

Technology). Thereafter, the protein bands were visualized using the appropriate substrate (Clarity 

Western ECL Substrate; Bio-Rad, Hercules, CA, USA), and obtained signals were quantified 

densitometrically with a ChemiDoc visualization system (Image Laboratory Software Version 6.0.1; 

Bio-Rad, Warsaw, Poland). The expression of selected target proteins was quantified using stain-free 

gels and the total protein normalization method (Bio-Rad). All data are expressed as the percentage 

of the control group based on six independent determinations. 

2.6. Statistical Analysis 

All results are expressed as mean values ± SD. The data were subjected to the Shapiro–Wilk test 

and Bartlett’s test to assess the distribution of values and homogeneity of the variance. Statistical 

differences between groups were determined based on the results of one-way ANOVA followed by 

an appropriate post hoc test using GraphPad Prism version 7.0 for Windows (GraphPad Software, 

La Jolla, CA, USA). Results were considered to be statistically significant at p < 0.05. 

3. Results 

3.1. Effect of Chronic CBD Administration on Plasma Glucose and Insulin Concentrations, as Well as 

HOMA-IR, in Rats Subjected to Standard and High-Fat Diets 

Our study demonstrated a pronounced decrease in plasma glucose level in the CBD group 

(−11.9%, p < 0.05; Table 1) compared to the control rats. Moreover, we noticed that both HFD-fed 

groups (untreated and treated with CBD) exhibited a significantly increased concentration of insulin 

(+89.9% and +45.2%, p < 0.05; Table 1, respectively) and considerably increased HOMA-IR index 

(+59.9% and +39.0%, p < 0.05; Table 1, respectively) in comparison with the control group. 

Importantly, we observed that two-week CBD treatment caused a substantial reduction in insulin 

concentration in the HFD group (−23.5%, p < 0.05; Table 1 vs. HFD group). Even though, chronic CBD 

administration decreased the HOMA-IR value in the HFD group compared to the corresponding 

untreated HFD group, the difference did not reach a significant level (−13.0%, p > 0.05; Table 1).  

Table 1. Plasma glucose and insulin levels, as well as homeostatic model assessment for insulin 

resistance (HOMA-IR), after chronic cannabidiol (CBD) administration in rats fed standard (control 

group) and high-fat diets (HFD). The data are expressed as mean values ± SD, n = 10 in each group. a 

p < 0.05 significant difference: control group vs. examined group; b p < 0.05 significant difference: HFD 

vs. HFD + CBD. 

 Control CBD HFD HFD + CBD 

Glucose (mg/dL) 105 ± 8 93 ± 7 a 94 ± 7 100 ± 6 

Insulin (µg/mL) 0.65 ± 0.12 0.70 ± 0.18 1.24 ± 0.19 a  0.95 ± 0.25 a,b 

HOMA-IR 3.84 ± 0.25  3.57 ± 0.77 6.46 ± 1.40 a 5.62 ± 1.56 a 
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3.2. Effect of Chronic CBD Administration on the Sphingolipid Pathway (Sphinganine, Sphinganine-1-

Phosphate, Ceramide, Sphingosine, and Sphingosine-1-Phosphate) in Skeletal Muscle of Rats Subjected to 

Standard and High-Fat Diets 

In the experimental model of HFD-induced obesity, we observed a significant intensification of 

the de novo ceramide synthesis pathway, which resulted in an elevation of intramuscular content of 

SFA (+21.2%, p < 0.05; Figure 1A), SFA1P (+231.1%, p < 0.05; Figure 1B), CER (+25.7%, p < 0.05; Figure 

1C), and SFO (+14.8%, p < 0.05; Figure 1D) after the HFD course in comparison with the control group. 

As expected, chronic CBD administration to rats fed the high-fat diet substantially reduced the content 

of the above-mentioned components of the sphingolipid pathway, i.e., SFA (–72.9%, p < 0.05; Figure 

1A), CER (−14.9%, p < 0.05; Figure 1C), and SFO (−24.3%, p < 0.05; Figure 1D), in the red gastrocnemius 

muscle compared to the HFD group alone. The only component of the sphingolipid pathway which 

was enhanced by two-week CBD treatment in rats fed either the standard chow or the high-fat diet in 

the red gastrocnemius muscle was SFA1P (+306.7% and +325.0%, p < 0.05; Figure 1B vs. control group, 

respectively). Concomitantly, compared to the control conditions, rats from the CBD group exhibited 

significantly reduced content of both SFA and SFO (−53.6% and −26.3%, p < 0.05; Figure 1A and 1D, 

respectively) with no change in CER and S1P levels (p > 0.05; Figure 1C and 1E, respectively). 

Interestingly, the intramuscular content of S1P was decreased in the lipid overload condition (−21.8%, 

p < 0.05; Figure 1E vs. control group) and subsequently elevated by CBD introduction in the same HFD 

group (+22.4%, p < 0.05; Figure 1E vs. HFD group). Similarly, the value of S1P/CER ratio was restored 

after CBD application in the high-fat diet group (−27.3%, p < 0.05; Figure 1F, HFD group vs. control 

group; +20.9%, p < 0.05; Figure 1F, HFD group vs. HFD + CBD group). 

. 

Figure 1. Intramuscular content of different components of sphingolipid pathway in rats after chronic 

cannabidiol (CBD) treatment, i.e., (A) sphinganine (SFA), (B) sphinganine-1-phosphate (SFA1P), (C) 

ceramide (CER), (D) sphingosine (SFO), (E) sphingosine-1-phosphate (S1P), and (F) sphingosine-1-

phosphate/ceramide ratio (S1P/CER Ratio) in the red gastrocnemius muscle of rats fed a standard diet 

(control group) or high-fat diet (HFD). The data are expressed as mean values ± SD, n = 10 in each 
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group. a p < 0.05 significant difference: control group vs. examined group; b p < 0.05 significant 

difference: HFD vs. HFD + CBD. 

3.3. Effect of Long-Term CBD Administration on the Total Intramuscular Expression of Proteins Involved in 

the Sphingolipid Metabolism in Rats Fed Standard and High-Fat Diets 

Induction of obesity by high-fat diet feeding resulted in a significant increase in the total 

expression of SPTLC1 (+25.9%, p < 0.05; Figure 2A) in the red gastrocnemius muscle of the HFD group 

compared to the rats fed a standard chow, which was further declined by two-week CBD injections (

−18.2%, p < 0.05; Figure 2A vs. HFD group). Similar effects compared to control conditions were 

observed in the high-fat diet group in regard to the total expression of LASS5 (+41.2%, p < 0.05; Figure 

2B). Most importantly, the total intramuscular expression of this enzyme was considerably reduced 

in the chronic presence of CBD during the course of high fat feeding (−66.4%, p < 0.05; Figure 2B vs. 

control group and −76.2%, p < 0.05; Figure 2B vs. HFD group). Concomitantly, we did not notice any 

significant alternations in the total expression of ASAH1 and SPHK2 (p > 0.05; Figure 2C and 2D, 

respectively) in the red gastrocnemius muscle of rats subjected to an HFD compared to the control 

subjects. Interestingly, two-week CBD treatment had a more pronounced effect on the ASAH1 

(+54.6%, p < 0.05; Figure 2C vs. HFD group) and SPHK2 expression (+28.7%, p < 0.05; Figure 2D vs. 

HFD group) in the red skeletal muscle during high-fat feeding. Moreover, during feeding rats with 

standard chow, CBD treatment had just the opposite effect of lowering ASAH1 expression (−47.6%, 

p < 0.05; Figure 2C) compared to the control group. 

 

Figure 2. The total expression of proteins involved in the sphingolipid metabolism, e.g., (A) serine 

palmitoyltransferase, long chain base subunit 1 (SPTLC1), (B) ceramide synthase 5 (LASS5), (C) acid 

ceramidase (ASAH1), and (D) sphingosine kinase 2 (SPHK2), in the red gastrocnemius muscle in the 

control (standard diet) and high-fat diet (HFD) groups after chronic cannabidiol (CBD) treatment. The 

total expressions of the above proteins are presented as a percentage difference compared to the 

control group, which was set as 100%. The data are expressed as mean values ± SD, n = 6 in each 
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group. a p < 0.05 significant difference: control group vs. examined group; b p < 0.05 significant 

difference: HFD vs. HFD + CBD. 

3.4. Effect of Chronic CBD Administration on the Total Expression and Phosphorylation of Insulin Pathway 

Proteins, Glucose Transporters, and Glycogen Content in Skeletal Muscle of Rats Fed Standard and High-

Fat Diets 

In the skeletal muscle, we observed that rats fed an HFD showed a substantial decrease in the 

phosphorylation of proteins involved in insulin signaling pathway, i.e., IRS-1 (−13.8%, p < 0.05; Figure 

3A, Figure S1) and GSK-3 (−24.1%, p < 0.05; Figure 3D, Figure S1) in comparison with the control rats 

fed a standard diet. Concomitantly, we noticed a substantial elevation in the total muscular 

expression of GLUT1 and GLUT4 (+62.9% and +56.4%, p < 0.05; Figure 3E and 3F, respectively) with 

a parallel decrease in the content of glycogen in the red gastrocnemius muscle (−43.3%, p < 0.05; Figure 

3H) in the HFD group compared to the control group. On the other hand, chronic CBD treatment 

resulted in a significant restoration in intramuscular phosphorylation of Akt (Ser-473) (+59.5%, p < 

0.05; Figure 3B vs. HFD group) and GSK-3 (+38.4%, p < 0.05; Figure 3D vs. HFD group) compared to 

HFD alone. Concomitantly, CBD administration to animals being on an HFD resulted in a 

pronounced reduction of the total expression of both GLUT1 and GLUT4 (−32.9% and −30.8%, p < 

0.05; Figure 3E and 3F, respectively) together with restoration of intramuscular glycogen pool 

(+56.4%, p < 0.05; Figure 3H) in comparison with HFD group. The above-mentioned effects of 

prolonged CBD treatment in high-fat diet rats were completed by markedly elevated total PDH 

expression (+37.9%, p < 0.05; Figure 3G vs. HFD group).  
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Figure 3. The ratio of total expression of phosphorylated and unphosphorylated proteins involved in 

insulin signaling pathway, e.g., (A) phosphorylated insulin receptor substrate 1/insulin receptor 

substrate 1 (pIRS-1/IRS-1), (B) phosphorylated protein kinase B/protein kinase B (pAkt/Akt), (C) 

phosphorylated AS160 protein/AS160 protein (pAS160/AS160), and (D) phosphorylated glycogen 

synthase kinase 3/glycogen synthase kinase 3 (pGSK-3/GSK-3), as well as total expression of (E) 

glucose transporter 1 (GLUT1), (F) glucose transporter 4 (GLUT4), (G) pyruvate dehydrogenase 

(PDH), and (H) glycogen content in the red gastrocnemius muscle in the control (standard diet) and 

high-fat diet (HFD) groups after chronic cannabidiol (CBD) treatment. The total expressions of the 
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above proteins are presented as a percentage difference compared to the control group, which was 

set as 100%. The data are expressed as mean values ± SD, n = 6 in each group. a p < 0.05 significant 

difference: control group vs. examined group; b p < 0.05 significant difference: HFD vs. HFD + CBD. 

3.5. Effect of Chronic CBD Administration on the Total Intramuscular Protein Expression of 

Endocannabinoid System Components in Rats Subjected to Standard and High-Fat Diets 

Our experiment demonstrated that the HFD group presented significantly elevated total 

expression of eCBome receptors, i.e., CB1 (+47.9%, p < 0.05; Figure 4A), TRPV1 (+61.9%, p < 0.05; Figure 

4C), and 5-HT1A (+93.3%, p < 0.05; Figure 4D) in comparison with the control group fed standard chow. 

Unexpectedly, the total intramuscular expressions of the above-mentioned receptors in the lipid 

overload conditions and CBD presence were considerably decreased (CB1: −33.9%, p < 0.05; Figure 4A; 

TRPV1: −35.4%, p < 0.05; Figure 4B; 5-HT1A: −62.2%, p < 0.05; Figure 4D) compared to the rats subjected 

only to an HFD. Concomitantly, we did observe an increase in the total muscular expression of CB2 only 

in the case of animals fed a standard and high-fat chow and being injected with CBD (+40.6%, p < 0.05; 

Figure 4B vs. control group and +43.5%, p < 0.05; Figure 4B vs. HFD group). 

 

Figure 4. The total expression of (A) cannabinoid receptor 1 (CB1), (B) cannabinoid receptor 2 (CB2), 

(C) transient receptor potential channel 1 (TRPV1), and (D) serotonin receptor (5-HT1A) in red 

gastrocnemius muscle in the control (standard diet) and high-fat diet (HFD) groups after chronic 

cannabidiol (CBD) treatment. The total expressions of the above proteins are presented as a 

percentage difference compared to the control group, which was set as 100%. The data are expressed 

as mean values ± SD, n = 6 in each group. a p < 0.05 significant difference: control group vs. examined 

group; b p < 0.05 significant difference: HFD vs. HFD + CBD. 
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4. Discussion 

CBD, a non-psychotropic constituent of marijuana, exerts potentially beneficial pharmacological 

effects for obesity treatment. Therefore, according to our knowledge, for the first time, we examined, 

in a rat model of HFD-induced obesity and related whole-body insulin resistance, the impact of CBD 

on sphingolipids and glucose metabolism in the red skeletal muscle. It is important to note that the 

present study revealed the link between ceramide and other sphingolipid derivatives, ECS, and 

insulin signal transduction.  

As we mentioned, one of our aims was to determine the effect of CBD on the intramuscular 

content of selected sphingolipids (e.g., SFA, CER, S1P) in a model of HFD-induced obesity. During 

obesity, adipocytes are overloaded, which results in the accumulation of bioactive lipids in excessive 

amounts in several tissues, such as skeletal and cardiac muscle [29]. This phenomenon is known as 

lipotoxicity and contributes to the development of insulin resistance; however, the exact mechanism 

is not yet well characterized [30,31]. Accumulation of lipid intermediates, including CER, can directly 

interfere with the insulin signaling pathway [29]. In particular, ceramides impair insulin signal 

transduction by activating protein kinase C λ/ζ (PKC λ/ζ), implicated in the dephosphorylation and 

reduction in protein kinase B (Akt/PKB) activity, as well as stimulation of IκB kinase (IKK) and c-Jun 

N-terminal kinase (JNK), which attenuates insulin receptor substrate 1 (IRS-1) phosphorylation 

[32,33]. Importantly, our results demonstrated that CBD can be effective  in ameliorating lipotoxicity 

and related insulin resistance due to observed alternations in the content of several sphingolipids. 

The current experiment showed markedly decreased SFA content after CBD treatment, thereby 

demonstrating a decline in the first step of the de novo pathway of ceramide synthesis, which was 

shown to be intensified during obesity [26]. Additionally, the above changes are in line with a 

decrease in SPTLC1 and LASS5 expressions (an enzymes involved in the de novo ceramide synthesis, 

Scheme 1) after CBD administration in rats fed an HFD [32]. This favorable effect of CBD action was 

manifested primarily by pronounced reduction in the intramyocellular CER content. Furthermore, 

ceramide derivatives, such as SFO and S1P, can also influence cellular survival, growth, and various 

functions and, thus, they may be involved in metabolic disorders [34]. SFO is reported as a 

proapoptotic molecule, whereas conflicting reports regarding S1P function in skeletal muscle can be 

found [35,36]. Several studies indicate that an increase in the S1P formation contributes to the IR [37]. 

However, a growing body of evidence described that S1P has just the opposite effects to CER and 

promotes cell proliferation and survival [38]. The current study showed a significant increase in 

intramyocellular SFO content in rats fed an HFD, whereas CBD substantially reduced its amount in 

favor of enhancing S1P content. This, in turn, resulted in an elevation of S1P/CER ratio and 

emphasized an improvement in sphingolipid rheostat imbalance due to IR [38]. The lower value of 

S1P/CER ratio observed in the HFD group may be associated with impaired insulin signal 

transduction, as well as enhanced cellular apoptotic processes. Furthermore, we observed changes in 

the total intramuscular expression of enzymes involved in the conversion of CER to its derivatives. 

Chronic CBD treatment of rats subjected to the fatty acid oversupply caused a considerable elevation 

in the total ASAH1 expression (conversion of ceramide to sphingosine; Scheme 1) and simultaneously 

reduced its expression in the standard diet group. These data confirmed that CBD also diminished 

accumulation of proapoptotic sphingolipids in rats fed a standard diet. Nevertheless, after CBD 

administration, we noticed an increase in the total SPHK2 expression, which is a kinase responsible 

for the maintenance of a balance between proapoptotic and proliferative precursors [38]. Moreover, 

Bruce et al. [39] demonstrated that SPHK1 overexpression prevents intramuscular ceramide 

accumulation by promoting its conversion into S1P and, thus, attenuates insulin resistance. 

Therefore, targeting enzymes involved in the maintaining an equilibrium between CER and S1P 

levels may be a beneficial strategy for improving muscle insulin sensitivity. Hence, it should be 

underlined that, in our research, we provide evidence for promising effects of CBD in regard to 

sphingolipid metabolism in the condition of lipid oversupply. 

Moreover, our data showed that feeding rats an HFD attenuated whole-body insulin sensitivity 

since, after seven weeks of the experiment, we observed an increase in the concentration of insulin 

content. The occurrence of IR after a high-fat feeding was confirmed by the elevation in the HOMA-
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IR value, which is consistent with other researchers’ results [40–42]. In a number of studies, it was 

shown that increased fatty acid supply in a diet directly interferes with intracellular insulin signal 

pathways, leading to disturbances in whole-body glucose metabolism, together with a reduction of 

glycogen synthesis in skeletal muscle, which is again in line with the results obtained in our research 

[30,43,44]. Even though the data presented herein indicated that the two-week time frame of CBD 

treatment is too short in order to substantially improve whole-body IR, it was revealed that CBD 

ameliorates the deteriorated intramuscular insulin pathway in rats subjected to HFD, mainly by 

enhancing the phosphorylation ratio of proteins involved in the downstream signaling of that 

hormone (i.e., Akt and GSK-3). This is in line with the recent research conducted by Fellous et al., 

who showed that CBD treatment (5 µM) of bone marrow mesenchymal stem cells (BM-MSCs) 

prevented the palmitate-induced insulin resistance by increasing Glut4 messenger RNA (mRNA) 

expression with simultaneous full restoration of Akt activation and subsequent glucose uptake [45]. 

In parallel, as the consequence of chronic CBD administration, we observed restored glycogen 

depletion in the red gastrocnemius, which resulted from increased phosphorylation of Akt and 

further GSK-3 inhibition. Furthermore, it is well established that a high-fat feeding results in impaired 

translocation of glucose transporter 4 from the intramyocellular compartments to the plasma 

membrane in insulin sensitive tissues [46,47]. In our study, we noticed considerably elevated total 

expression of both GLUT4 and GLUT1 in rats after a seven-week course of HFD, whereas CBD 

administration substantially reduced their skeletal muscle expression in the same group of examined 

animals. We hypothesize that the increase in the total expression of glucose transporters in HFD 

group was a compensatory effect, since parallel glycogen depletion was observed. Importantly, the 

aforementioned increase in GLUT4 and GLUT1 expressions was attenuated by chronic CBD 

treatment in the HFD group, most probably as the consequence of reduced plasma insulin 

concentration and an improvement in its downstream signaling (increased pAkt/Akt and pGSK-

3/GSK-3 ratios) in red gastrocnemius. Even though, we did not measure plasmalemmal expression 

of GLUT4 in our study, it seems that CBD through regulation of signaling proteins stimulated 

intramyocellular trafficking of the GLUT4 transporter, which resulted in restoration of intramuscular 

glycogen and elevated expression of oxidative enzymes (i.e., increased expression of PDH). 

Moreover, we did observe alternations in the value of phosphorylated to unphosphorylated signaling 

proteins ratios only in the case of pAkt/Akt and pGSK-3/GSK-3, presumably due to lack of a direct 

stimulation of isolated skeletal muscle strips by insulin in ex vivo conditions, which may be 

considered as a limitation of the study. 

Previous studies showed that ECS is overactivated during obesity and, thus, it became a potential 

target of therapeutic interventions [17,20]. In order to determine the effect of CBD on the ECS in skeletal 

muscle of rats fed a standard chow and HFD, we examined the total expression of cannabinoid (CB1 and 

CB2) and non-cannabinoid receptors (TRPV1 and 5-HT1A). Our experiment showed that high-fat feeding 

resulted in a substantial elevation of the total CB1 expression in a rat’s skeletal muscle. These results are 

consistent with findings of other researchers and may be associated with increased levels of 

endocannabinoids during obesity, especially AEA, which is a partial agonist of the CB1 receptor [17,18]. 

Furthermore, evidence was recently provided that CB1 activation induced by an HFD suppresses the 

insulin-dependent phosphorylation of Akt through IRS-1 phosphorylation at Ser-307, thereby mediating 

the emergence of insulin resistance [48]. Furthermore, Trillou et al. demonstrated that CB1–/– mice are 

resistant to HFD-induced obesity [49]. Importantly, we noted that CBD treatment significantly decreased 

the expression of CB1 in the red gastrocnemius of rats subjected to an HFD. Our data are also in line with 

those obtained by Laprairie et al., since they demonstrated that CBD is a negative allosteric modulator of 

the CB1 receptor [50]. On the other hand, in the case of the CBD effect on CB2 receptors, several studies 

showed contradictory data, describing its activity as an agonist or inverse agonist of these receptors 

[51,52]. Our research reported that CBD significantly increased total CB2 expression in both control and 

high-fat diet-fed animals. The aforementioned alternations in the expression of cannabinoid receptors in 

skeletal muscle of high-fat diet-fed rats are in agreement with previous findings describing a positive 

relationship between CB1 receptors and oxidative stress [53] and an opposite effect in the case of CB2 

receptors [53]. This should be underlined owing to the fact that obesity and related metabolic disturbances 
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coincide with the promotion of oxidative stress. On the contrary, recent evidence emerged that, due to the 

low affinity of CBD for CB1 and CB2 receptors, it induces its effects primarily through other molecular 

targets, including TRPV1 channels and 5-HT1A receptors. The exact role of TRPV1 and 5-HT1A in obesity 

is not yet characterized, and additional research is needed to understand their molecular mechanism of 

action, as well as in the course of insulin resistance. In the current study, we showed elevated 

intramuscular TRPV1 and 5-HT1A expressions in HFD fed rats. We hypothesize that these changes may 

be associated with an increased level of endocannabinoids during obesity, in particular AEA, which is an 

agonist of those receptors [54]. Noteworthy, our research revealed that CBD administration to HFD-

subjected animals resulted in a significant reduction in the expression of these receptors, indicating that 

CBD interferes with their activation. Such a conclusion arises since it is confirmed that CBD exhibits 

agonistic activity on the TRPV1 and 5-HT1A receptors [55,56]. Interestingly, recent research demonstrated 

that CBD, mostly via TRPV1 activation, enhanced murine C2C12 myoblast differentiation, together with 

inflammation reduction and autophagy restoration in in vivo conditions, which supported our notion 

concerning the protective role of CBD in the skeletal muscle [57]. Taken altogether, the data presented 

herein support the hypothesis that the ECS is involved in the development of metabolic disorders 

including insulin resistance. Moreover, this finding raises the possibility that CBD may be a useful tool in 

the treatment of obesity and its comorbidities by acting on the ECS, not only on receptors, but also on 

ligands and their metabolic routes. 

5. Conclusions 

In summary, our data provide new insight into the mechanism of cannabidiol action at the 

cellular level in skeletal muscle. We reported, for the first time, that chronic CBD treatment. on the 

one hand, prevented intramyocellular accumulation of CER and SFA, but, on the other hand, elevated 

S1P in FA oversupply in a diet. Moreover, we found that CBD improves downstream insulin 

signaling and the oxidative metabolism of glucose, while it restores glycogen depletion in myocytes 

during high-fat feeding. Furthermore, taking into consideration some limitations of the study, it 

seems that a two-week CBD treatment is too short to markedly diminish whole-body IR in obese 

subjects. Nevertheless, a two-week CBD treatment is enough to effectively inhibit the de novo 

ceramide synthesis pathway, thereby reducing lipotoxicity and provoking an insulin-sensitizing 

effect in the myocytes. 
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