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Abstract: Studies have shown that epigenetic abnormalities are involved in various diseases, including
cancer. In particular, in order to realize precision medicine, the integrated analysis of genetics and
epigenetics is considered to be important; detailed epigenetic analysis in the medical field has
been becoming increasingly important. In the epigenetics analysis, DNA methylation and histone
modification analyses have been actively studied for a long time, and many important findings were
accumulated. On the other hand, recently, attention has also been focused on RNA modification in
the field of epigenetics; now it is known that RNA modification is associated with various biological
functions, such as regulation of gene expression. Among RNA modifications, functional analysis of
N6-methyladenosine (m6A), the most abundant RNA modification found from humans to plants is
actively progressing, and it has also been known that m6A abnormality is involved in cancer and other
diseases. Importantly, recent studies have shown that m6A is related to viral infections. Considering
the current world situation under threat of viral infections, it is important to deepen knowledge of
RNA modification from the viewpoint of viral diseases. Hence, in this review, we have summarized
the recent findings regarding the roles of RNA modifications in biological functions, cancer biology,
and virus infection, particularly focusing on m6A in mRNA.
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1. Introduction

The central dogma of biology has been described by Francis Crick as transmission of information
from genes (DNA) to proteins via RNA [1], which involves the consecutive steps of transcription
and translation. Initially, RNA was considered only a temporal messenger that conveys the genomic
information for protein synthesis. Recent studies have shown that non-coding RNAs (ncRNAs),
including microRNA (miRNAs), which are not stated in the central dogma, play important roles in
several cellular processes, and that their dysregulation is related to many diseases [2–4]. ncRNAs
and their binding protein complexes regulate transcription by modulating the chromatin structure [5].
In addition, post-transcriptional modifications of RNA, which have recently emerged as epigenetic
or epitranscriptomic modifications, have also been shown to regulate multiple biological processes,
including development. Similar to other epigenetic modifications, alterations in RNA modifications are
associated with the onset and progression of diseases, including cancer [6–8]. Thus, it is important to
elucidate the detailed molecular mechanisms of RNA modifications for new diagnostic and therapeutic
methods for diseases.
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m6A is the most abundant reversible modification on mRNA and typically enriched in the 3′

untranslated region (3′-UTR). The m6A peaks are enriched at the near stop codon, which more than 60%
of m6A peaks were detected in the first quarter of the 3′-UTR. In contrast, m6A is found at low levels
in the 5′-UTR and in the 5′ end of the coding sequence (CDS). The m6A peaks increase in proportion to
the transcript length and at the end of CDS is higher methylated than at the beginning [9]. Dominissini
et al. reported that an average of one to three m6A peaks per transcript (one peak per 2000 nucleotides
or 1.7 peaks per gene) were found in mammalian cells [10]. Furthermore, m6A modification has been
detected in mRNAs and ncRNAs [11]. In addition to m6A, other types of modifications, such as m1A,
Ac4C, m5C, and m7G, were reported in mRNAs, ncRNAs, tRNAs, rRNAs, and miRNAs from humans,
mice, and plants [12–18]. More specifically, there are more than 100 modifications known in tRNA;
m1A, m1G, m1Ψ, I, m1I, m2

2G, m3C, Ac4C, m5C, nm5U, f5C, ms2t6A, acp3U, Um, and so on, and the
functions related to disease are reported [19–21]. Although RNA modifications of the ribose group
have been reported [22], we have mainly focused on modifications of nitrogenous bases, especially
m6A in mRNA, in this review.

We have also discussed the relationship between RNA modifications and virus infections, including
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is a newly identified
virus that caused the coronavirus disease 2019 (COVID-19) pandemic worldwide since December 2019.

2. Chemical Mechanisms of Adenosine Methylation

An accumulating body of evidence indicates that RNA modification occurs on all four bases [23].
A consensus sequence, known as RRACH motif (R = A or G, H = A, C, or U), has been reported for
the m6A modification [6,24–26]; however, in vitro methylation activity with different RNA probes did
not reveal any structural preferences for the RRACH motif [27]. Of note, other studies for structural
insights with icSHAPE (in vivo click selective 2′-hydroxyl acylation analyzed by primer extension),
will be discussed in Section 3.1 (m6A Alters RNA Folding). Moreover, mRNA modifications are
distributed in a position-specific manner; for example, m1A occurs near translation start codons and
first splice sites, whereas m6A enriches in long coding sequences and the 3′-UTR [9,10,16,17], which is
a regulatory element for mRNA, where miRNA and other proteins bind, and these position specificities
are possibly important for RNA function. For instance, the m6A modification on mRNA modulates
gene expression levels, stability, splicing, polyadenylation, export, and translation [9–11,22,26,28],
i.e., most of the cellular events. Therefore, the relationship between RNA modifications and disease
is being actively investigated. We will discuss the roles of m6A modification in cancer in Section 5
(N6-methyladenosine in cancer).

It is well-known that three components, the modification writer, reader, and eraser, are involved
in RNA modification-dependent signaling. The first paper of m6A methyltransferase was reported
in 1997, which indicates that methyltransferase like 3 (METTL3) is a key component of methylation
complex [29]. Many important functions and mechanisms related the m6A modifications in RNAs were
reported in the early 2010, as mentioned below. The writer protein METTL3 and METTL14 constitute
the enzymatic core of a methyltransferase complex for m6A; the activity of which was reconstituted
in vitro [27,28]. With regard to the molecular mechanism of m6A modification, the methyltransferase
binds to the methyl donor S-adenosylmethionine (SAM) and RNA to generate m6A on the RNA,
while SAM is converted to S-adenosyl-L-homocysteine (SAH) [30] (Figure 1).
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Figure 1. Molecular mechanism of N6-methyladenosine methylation. SAM: S-adenosylmethionine. 
SAH: S-adenosyl-L-homocysteine. 

Furthermore, other writer complex components were also identified. Wilms tumor 1-associated 
protein (WTAP) is a ubiquitously expressed nuclear protein that binds to METTL3 and METTL14, 
regulating nuclear speckle localization [31], and KIAA1429 or VIRMA in humans was identified as 
one of the 13 candidates associated with methyltransferase components in a proteomics analysis. The 
depletion of KIAA1429 in human A549 cells decreases m6A levels in mRNA [32]. The RNA-binding 
motif protein 15 (RBM15) and RBM15B interact with WTAP in HEK293T nuclear lysates and 
knockdown of RBM15 and RBM15B decreases m6A levels [33]. The zinc finger CCCH-type containing 
13 (ZC3H13 or KIAA0853) forms a complex with WTAP, VIRMA, and RBM15, which regulates the 
complex localization in nucleus and promotes m6A modification on mRNA in flies [34]. Casitas-B-
lineage lymphoma-transforming sequence-like protein 1 (CBLL1) or HAKAI, first reported as an E3 
ubiquitin ligase using a combination of genetics, proteomics, and RNA biochemistry, was reported 
to be involved in the writing of the m6A modification in human and plants [35,36]. It is noteworthy 
that RBM15, RBM15B, ZC3H13, and CBLL1 were reported to be WTAP binding proteins to form a 
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(YTHDF2), and 3 (YTHDF3) are primary members of m6A reader proteins, which devote to 
recognizing bases that undergo m6A methylation, participating in downstream translation, mRNA 
degradation, and accelerating the rate at which mRNA leaves the nucleus [10,26,39]. Humans contain 
two more YTH domain proteins, namely, YTHDC1 and YTHDC2. YTHDC1, preferentially binds m6A 
residues on XIST or other ncRNAs, such as MALAT1 and NEAT1. In addition, experimentally 
tethered YTHDC1 and XIST rescue XIST-mediated silencing upon loss of m6A [33], while an RNA 
helicase containing YTHDC2 promotes the translation efficiency of mRNAs with m6A in coding 
regions [40]. Furthermore, YTHDC2 is strongly expressed in testis and is essential for regulating m6A 
transcripts to ensure meiotic gene expression required for male and female fertility, and 
spermatogenesis [41,42]. Additionally, insulin-like growth factor 2 mRNA-binding proteins 1–3 
(IGF2BP1–3) have been recently identified as reader proteins. Unlike the decay-dependent pathways 
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Figure 1. Molecular mechanism of N6-methyladenosine methylation. SAM: S-adenosylmethionine.
SAH: S-adenosyl-L-homocysteine.

Furthermore, other writer complex components were also identified. Wilms tumor 1-associated
protein (WTAP) is a ubiquitously expressed nuclear protein that binds to METTL3 and METTL14,
regulating nuclear speckle localization [31], and KIAA1429 or VIRMA in humans was identified as
one of the 13 candidates associated with methyltransferase components in a proteomics analysis.
The depletion of KIAA1429 in human A549 cells decreases m6A levels in mRNA [32]. The RNA-binding
motif protein 15 (RBM15) and RBM15B interact with WTAP in HEK293T nuclear lysates and knockdown
of RBM15 and RBM15B decreases m6A levels [33]. The zinc finger CCCH-type containing 13 (ZC3H13
or KIAA0853) forms a complex with WTAP, VIRMA, and RBM15, which regulates the complex
localization in nucleus and promotes m6A modification on mRNA in flies [34]. Casitas-B-lineage
lymphoma-transforming sequence-like protein 1 (CBLL1) or HAKAI, first reported as an E3 ubiquitin
ligase using a combination of genetics, proteomics, and RNA biochemistry, was reported to be involved
in the writing of the m6A modification in human and plants [35,36]. It is noteworthy that RBM15,
RBM15B, ZC3H13, and CBLL1 were reported to be WTAP binding proteins to form a complex, implying
the possibilities that other WTAP binding proteins might be associated with m6A methylation because
WTAP was reported to bind to multiple proteins [37].

The YTH domain was identified as an RNA binding domain [38]. Biochemical purification
following mass spectrometric (MS)-analysis revealed that the YTH domain family 1 (YTHDF1),
2 (YTHDF2), and 3 (YTHDF3) are primary members of m6A reader proteins, which devote to
recognizing bases that undergo m6A methylation, participating in downstream translation, mRNA
degradation, and accelerating the rate at which mRNA leaves the nucleus [10,26,39]. Humans contain
two more YTH domain proteins, namely, YTHDC1 and YTHDC2. YTHDC1, preferentially binds m6A
residues on XIST or other ncRNAs, such as MALAT1 and NEAT1. In addition, experimentally tethered
YTHDC1 and XIST rescue XIST-mediated silencing upon loss of m6A [33], while an RNA helicase
containing YTHDC2 promotes the translation efficiency of mRNAs with m6A in coding regions [40].
Furthermore, YTHDC2 is strongly expressed in testis and is essential for regulating m6A transcripts to
ensure meiotic gene expression required for male and female fertility, and spermatogenesis [41,42].
Additionally, insulin-like growth factor 2 mRNA-binding proteins 1–3 (IGF2BP1–3) have been recently
identified as reader proteins. Unlike the decay-dependent pathways of YTHDF2, IGF2BPs enhance
mRNA stability and translation [43].

The last component is the eraser, which acts as a demethylase. Two demethylases have been
well-investigated thus far; the fat mass and obesity-associated protein (FTO) and alkB homolog 5,
RNA demethylase (ALKBH5). FTO removed modified m6A from RNA when recombinant human FTO



Biomolecules 2020, 10, 1071 4 of 22

was incubated with chemically synthesized m6A-containing single-stranded nucleic acids. In addition,
siRNA-medicated knockdown of FTO decreased the expression levels of m6A by 23% in HeLa cells
and by 42% in 293FT cells [44]. ALKBH5 overexpression and knockdown demonstrated that reduction
in m6A levels in cells affected fertility. Importantly, ALKBH5 is mainly localized in nuclear speckles.
Thus, ALKBH5 probably metabolizes m6A in nuclear RNA [45]. During the demethylation reaction,
FTO or ALKBH5 catalyzes Fe (II)- and 2-oxoglutarate (2OG)-dependent demethylation with oxygen as
an additional co-factor [46–48], as shown in Figure 2.
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Figure 2. Molecular mechanism of N6-methyladenosine demethylation. (A) Overall biochemical
process of m6A demethylation. (B) The enzymatic reaction of the first step of demethylation. FTO: fat
mass and obesity-associated protein. ALKBH5: alkB homolog 5, RNA demethylase.

The detailed function of each of these components and their relationships to diseases will be
discussed in Section 3 (biological functions of N6-methyladenosine) and 4 (N6-methyladenosine in
cancer). The effect of m6A modification on virus infections will be discussed in Section 5 (significance
of N6-methyladenosine for Virus Infection, including SARS-CoV-2).

3. Biological Functions of N6-Methyladenosine

The identification of the m6A modulators, as well as the advancements in next-generation
high-throughput sequencing techniques, enabled determination of the biological functions of m6A in
post-transcriptional processes and other diverse biological events. In particular, m6A is involved in the
regulation of almost every aspect of mRNA metabolism, including, but not limited to, RNA folding,
splicing, stability, transport, and translation (Figure 3).
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3.1. m6A Alters RNA Folding

A recent study revealed that inclusion of m6A in three G:A base pairs abrogated RNA folding
and ribosomal protein 7Ae 60S large ribosomal subunit (L7Ae) protein binding at the adenine A1n,
and exerted a relatively mild effect at A2b and A3b positions, which may affect m6A recognition and
its downstream biological regulation [49]. Another study showed that adenine may destabilize the
duplex in the paired regions of RNA, leading to a less folded structure. In contrast, m6A stabilized the
stretches of single-stranded RNA in unpaired positions as m6A stacked relatively stronger than the
unmodified base [50]. Several research groups have identified a stronger RNA structural signature at
m6A-modified sites than at unmodified positions, as well as significant loss of structural signals in
METTL3 knockout cells using a novel approach termed icSHAPE. Consistent with the results of other
studies, these observations suggested that the destabilization effect of m6A on RNA helices enhances
RNA structural signals [51].

3.2. m6A Affects RNA Splicing

Splicing of pre-mRNA is a dynamic and important process for gene expression. Intronic m6A
has been linked to sex-lethal (Sxl) alternative pre-mRNA splicing, which specifically determines
female sex [52]. Another study demonstrated that spliced exons and introns are enriched with m6A
peaks, and silencing of METTL3 protein affects alternative splicing [10]. Liu et al. observed that
m6A remodeled local RNA structure to enhance binding to heterogeneous nuclear ribonucleoprotein
C (hnRNP C), a pre-mRNA splicing factor [53]. The other methyltransferase METTL16 is reported
to play an important role in pre-mRNA splicing. METTL16, and the presence of its m6A substrate,
a conserved hairpin (hp1) in the methionine adenosyltransferase 2 (MAT2A) 3′-UTR site, are necessary
for the induction of MAT2A splicing, which promotes SAM synthetase expression [54]. Another report
showed that METTL16-mediated m6A at position 43 of the U6 snRNA interacts with 5′ splice sites
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of pre-mRNAs during splicing [55,56]. The abovementioned studies showed that there is a specific
adenine modification site underlined (UACAGAGAA) methylated by METTL16.

FTO and ALKBH5 also appear to regulate alternative splicing. FTO binds to pre-mRNAs in
intronic regions, and FTO knockout leads to exon skipping events mediated by m6A [57]. Furthermore,
FTO-dependent demethylation of m6A has been shown to control alternative splicing of Runt-related
transcription factor 1 (RUNX1T1) by regulating the serine/arginine-rich splicing factor 2 (SRSF2) [58].
Notably, ALKBH5-mediated m6A is required for proper mRNA splicing, and the absence of ALKBH5
results in aberrant splicing of target genes, as well as decrease in serine/arginine-rich splicing factor 1
(SRSF1) signals [45,59].

The YTHDC1 has been proposed to affect mRNA splicing by recruiting the splicing factor 3
(SRSF3), which promotes inclusion of their targeted exons, while blocking serine/arginine-rich splicing
factor 10 (SRSF10), which primarily facilitates exon skipping; this modification is dependent on the
ability of YTHDC1 to recognize m6A regulation [60]. In addition, YTHDC1 interacts with SRSF3 and
contributes to the regulation of mRNA splicing in oocytes in an m6A-based manner [61].

3.3. m6A Regulates RNA Stability

m6A is enriched in 3′-UTRs close to the stop codon, where RNA-binding proteins and other
RNAs that modulate RNA stability are mostly localized. One of the best-established functions for
m6A is to regulate mRNA stability. YTHDF2 is reported to destabilize the m6A containing mRNA,
and YTHDF2 knockdown promotes the stability of target RNAs [26,62]. Another study showed that
METTL3 knockdown, along with YTHDF2 deficiency, increases the RNA stability of the d2 isoform of
vacuolar ATPase V0 domain (ATP6V0D2), and prolongs its half-life, indicating the impact of m6A in
regulation of RNA stability [63]. METTL16 and YTHDC1 regulate the stability of the MAT2A mRNA
via m6A methylation, which interacts with transcription factors and histone methyltransferases [56].
The impairment of the methyltransferase complex stabilizes the mRNAs of specific targets such
as pluripotency factor Nanog homeobox (NANOG) upon the m6A deposition [64]. Interestingly,
METTL14 knockdown increases the stability and translation of the MYC proto-oncogene (MYC) in
an m6A-dependent manner [65]. m6A readers IGF2BPs have also been reported to promote the
stability and expression of their target mRNAs, including MYC, by regulating m6A abundance [43].
Another study showed that depletion of FTO destabilizes its critical mRNA targets such as ankyrin
repeat and SOCS box containing 2 (ASB2) and retinoic acid receptor alpha (RARA) due to reduction in
m6A levels at these targets, which are important for differentiation of acute myeloid leukemia (AML)
cells [66]. Previous studies have suggested that ALKBH5 is required for correct RNA splicing; in
addition, ALKBH5-dependent m6A demethylation also regulates the stability of long 3′-UTR mRNAs
in male germ cells [59].

3.4. m6A Mediates RNA Nuclear Export

Fustin et al. identified that specific inhibition of m6A methylation delays mRNA export, suggesting
a role of the m6A modification in the mRNA export process [67]. Furthermore, ALKBH5 affects mRNA
export due to its demethylation activity, and depletion of ALKBH5 accelerates nuclear to cytoplasmic
export [45]. YTHDC1 has been demonstrated to modify mRNA splicing via interaction with splicing
factors SRSF3 and SRSF10 [60]. Consistent with this role, YTHDC1 enhances nuclear export of
m6A-modified mRNAs via the nuclear export pathway with SRSF3, the canonical mRNA export
receptor, and nuclear transcription factor X-box binding 1 (NXF1), whereas YTHDC1 knockdown
leads to deficient export of target mRNAs [68]. Interestingly, another study revealed that the m6A
methyltransferase complex recruits the three prime repair exonuclease (TREX), a major mRNA export
complex, to m6A-modified mRNAs, thereby driving efficient nuclear export [69].
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3.5. m6A Modulates RNA Translation

Numerous studies have elucidated the important role of m6A in the regulation of mRNA translation.
The reports showed that inhibition of m6A residues decreased the translation rate of dihydrofolate
reductase by 20%, suggesting the presence of m6A in boosting translation efficiency [70]. YTHDF1 was
found to elevate translation efficiency of m6A-modified mRNAs via interplay with translation initiation
factor complex 3 (eIF3) and promote RNA loading onto ribosomes [71]. Furthermore, YTHDF2
promotes translation of structured mRNAs owing to the ability of m6A methylation to resolve mRNA
secondary structures of CDS [40]. Studies have also shown that YTHDF3 enhances the translation of
target mRNAs via interaction with YTHDF1 and YTHDF2 [72]. IGF2BPs, distinct m6A reader proteins,
also enhance the translation of many target mRNAs in an m6A-dependent manner [43]. Interestingly,
other studies indicated that METTL3 boosts the translation of m6A-modified mRNAs within the
CDS by releasing ribosome stalling [73], and that METTL3 might directly facilitate translation of
m6A-containing mRNAs near stop codons in cancer cells without the involvement of m6A reader
proteins, including YTHDF1 or YTHDF2 [74]. Furthermore, m6A in the 5′-UTR promotes mRNA
translation independent of initiation factor complex 4 (eIF4F), and ATP binding cassette subfamily F
member 1 (ABCF1) plays a vital role in this process [75]. In contrast, Slobodin et al. demonstrated
that enhanced m6A methylation in CDS impairs translation. In addition, m6A links transcription and
translation via interaction with RNA polymerase II (RNAPII) and METTL3 [76]. One of the possible
explanations is that m6A impacts translation depending on the location of the methylated residues
either at UTRs or CDS.

3.6. m6A Regulates RNA Degradation

Studies have shown that proper m6A methylation is required for RNA degradation. A global
increase in m6A levels induced by METTL3 enhanced degradation of mRNAs, including NANOG,
SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and MYC [77]. Another study
revealed that temperature stress re-localizes METTL3 and the DGCR8 microprocessor complex subunit
(DGCR8) to stress-induced genes including heat shock protein 70 (Hsp70), for further degradation [78].
Studies have demonstrated that METTL16 and YTHDC1 regulate SAM-responsive RNA degradation of
the MAT2A mRNA in the 3′-UTR via m6A modification [56]. Other than promoting mRNA translation,
the YTHDF2-m6A-mRNA complex has been reported to control mRNA degradation [26], and YTHDF3
has been found to accelerate mRNA decay via cooperation with YTHDF2 [72]. YTHDC2 enhances the
degradation of target mRNAs via interaction with a 5′-3′ exonuclease 1 (XRN1) in a m6A-dependent
manner [41,42]. ALKBH5 knockout increases in m6A levels and facilitates degradation of longer 3′-UTR
transcripts during spermiogenesis, which also highlights the functional importance of m6A in mRNA
degradation [59].

4. N6-Methyladenosine in Cancer

Emerging evidence suggests that m6A modification plays a critical role in various types of
human cancers, including liver cancer, leukemia, lung cancer, breast cancer, glioblastoma, colon cancer,
ovarian cancer, and other cancers. The molecular mechanisms underlying m6A-mediated regulation of
proliferation, invasion, and migration of cancer cells, involve m6A writers, erasers, and readers.

4.1. m6A Writers in Cancer

The methyltransferase complex has been reported to have both a tumor-suppressor role and an
oncogenic role in different cancers. Among the writers, METTL3 is widely studied and is known to be
involved in various types of cancers. Recently, METTL3 was shown to be localized in the cytoplasm
and nuclei of osteosarcoma cells, where it acted as an oncoprotein. METTL3 knockdown affected
m6A methylation and impairs osteosarcoma cell proliferation and metastasis. Moreover, the ATPase
family AAA domain-containing protein 2 (ATAD2), identified as the downstream target of METTL3,
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contributes to its oncogenic role in osteosarcoma [79]. METTL3 acts as an oncogene in colorectal
cancer via its interaction with the glycolysis components, hexokinase 2 (HK2) and glucose transporter
1 (GLUT1) mRNAs, in an m6A-dependent manner. Studies have shown that METTL3 upregulates
the m6A levels of HK2 and GLUT1, depletion of which inhibits cancer cell proliferation and colony
formation [80]. Similarly, the overexpression of METTL3 in colorectal cancer leads to abnormal m6A
modification, and further promotes tumor progression and metastasis via its targets SOX2 [81] and the
METTL3/miR-1246/Sprouty-related EVH1 domain containing 2 (SPRED2) axis [82], respectively.

In bladder cancer, METTL3 is overexpressed, which correlates with poor prognosis. It has been
suggested that METTL3 promotes bladder cancer cell proliferation and invasion by modulating
pri-miR-221/222 [83] and the AF4/FMR2 family member 4 (AFF4)/nuclear factor kappa B subunit 1
(NF-κB)/MYC pathway in an m6A-dependent manner [84]. METTL3 is also an unfavorable prognostic
factor in hepatocellular carcinoma, and knockdown of METTL3 suppressed hepatocellular carcinoma
cell proliferation, colony formation, and migration in vitro. More importantly, suppressor of cytokine
signaling 2 (SOCS2) was identified as a target of METTL3-mediated m6A modification in hepatocellular
carcinoma [85]. METTL3 is associated with the m6A modified transcription factor CCAAT enhancer
binding protein zeta (CEBPZ), and is required for the growth of AML cells [73]. Furthermore,
m6A enhances the translation of MYC, BCL2 apoptosis regulator (BCL2) and phosphatase, and
tensin homolog (PTEN) in AML, and METTL3 overexpression results in inhibition of leukemic cell
differentiation [86].

In gastric cancer, METTL3-mediated m6A regulation plays an oncogenic role, and accelerates
epithelial-mesenchymal transition (EMT) and metastasis via the METTL3/zinc finger MYM-type
containing 1 (ZMYM1)/E-cadherin pathway [87], as well as the METTL13/heparin binding growth
factor (HDGF)/glucose transporter 4 (GLUT4)/enolase 2 (ENO2) axis [88]. In pancreatic cancer, m6A
and METTL3 are enriched in tumor specimens, and METTL3 boosts cancer cell proliferation, invasion,
and migration via m6A modification [89]. Furthermore, depletion of METTL3 increases chemo-
and radio-sensitivity in pancreatic cancer therapy [90]. It has been suggested that METTL3 plays
an oncogenic role in lung cancer by regulating m6A containing mRNAs. METTL3 facilitates the
translation of important oncogenes such as epidermal growth factor receptor (EGFR) and tafazzin
(TAZ), a Hippo pathway effector, further regulating cancer cell growth, survival, and invasion [74].
In human endometrial cancer, researchers observed downregulation of m6A methylation in 70% in
endometrial tumors, either because of the reduced METTL3 expression or METTL14 mutation. Notably,
low levels of m6A in mRNA enhanced endometrial cancer cell proliferation and tumorigenicity via
AKT serine/threonine kinase (AKT) signaling [91].

Interestingly, the role of m6A methylation in glioblastoma is conflicting. One study showed that
m6A modification acts as a tumor suppressor by regulating glioblastoma stem cell growth, cell renewal,
and tumorigenesis. METTL3 or METTL14 knockdown reduced m6A RNA levels, which elevated the
expression of oncogenes such as EPH receptor 3 (EPHA3), KLF4, and ADAM metallopeptidase domain
19 (ADAM19), while it suppressed several tumor suppressor genes such as cyclin dependent kinase
inhibitor 2A (CDKN2A), BRCA2 DNA repair associated (BRCA2), and tumor protein p53 inducible
protein 11 (TP53I11) [92]. Nevertheless, the oncogenic role of METTL3 was shown in another study,
where METTL3-mediated m6A modification enhanced SOX2 mRNA stability, METTL3 knockdown
decreased glioblastoma stem cell growth in a SOX2-dependent manner [93].

METTL14 was found to be highly expressed in AML, where it acted as an oncogene via m6A
target genes such as MYB proto-oncogene transcription factor (MYB) and MYC. METTL14 silencing
leads to inhibition of AML cell growth and survival [65]. m6A levels and METTL14 mRNA expression
were low in renal cancer carcinoma, which were associated with poor overall survival. Mechanistically,
METTL14-guided m6A modification suppresses the purinergic receptor P2X 6 (P2RX6) protein
translation, which is important for renal cell carcinoma migration and invasion [94]. In hepatocellular
carcinoma, METTL14 antagonizes METTL3 by suppressing tumor metastasis via interaction with
DGCR8 [95]. Similarly, METTL14 inhibited colorectal cancer cell growth and metastasis by regulating
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its downstream target miR-375, which is a well-known tumor suppressor miRNA, revealing the role of
METTL14-dependent m6A methylation in cancer [96].

WTAP has been reported as an oncogene in various cancers; for example, WTAP promotes
metastasis of glioblastoma cells via EGF [97]. However, how WTAP affects human cancers in
conjunction with m6A warrants further investigation. In hepatocellular carcinoma, WTAP has been
shown to predict poor prognosis and acts as an oncogene. WTAP promotes hepatocellular carcinoma
cell proliferation by silencing the expression of the tumor suppressor ETS proto-oncogene 1 (ETS1)
transcriptional factor in an m6A-dependent manner [98].

4.2. m6A Erasers in Cancer

Increasing evidence has revealed that m6A eraser proteins regulate cancer-related biological
processes. FTO has been reported to play a carcinogenic role in AML and promotes cancer cell
proliferation and transformation by downregulating the m6A levels on several important cell
differentiation related genes such as ASB2 and RARA [66]. In lung squamous cell carcinoma,
overexpression of FTO correlates with poor prognosis, as it dysregulates m6A levels. FTO enhances
myeloid zinc finger protein 1 (MZF1) expression and further promotes cell proliferation and invasion
by suppressing m6A levels [99]. ALKBH5, another important eraser of m6A methylation, has oncogenic
roles in breast cancer [100] and glioblastoma [101], while it inhibits cancer cell migration and invasion
in pancreatic cancer [102]. In breast cancer, overexpression of ALKBH5 promotes mRNA stability and
expression of the pluripotency factor NANOG, which is required for primary tumor formation, and
metastasis by catalyzing m6A demethylation [100]. In glioblastoma, increase in ALKBH5 expression is
considered a poor prognostic factor. Forkhead box M1 (FOXM1), which is vital for glioblastoma stem
cell proliferation and tumorigenesis, is significantly upregulated by ALKBH5 via its demethylation
activity on m6A [101]. Interestingly, in pancreatic cancer, ALKBH5 is downregulated, which decreases
cancer cell motility owing to demethylation of the m6A target lncRNA KCNK15-AS1 [102].

4.3. m6A Readers in Cancer

m6A reader proteins, also known as binding proteins, includes YTHDF1-3, YTHDC1-2, and
IGFBP1-3. m6A readers decide the ‘fate’ of m6A-modified mRNAs and play critical roles in cancer
progression and tumorigenesis. YTHDF1 is overexpressed in colorectal cancer cells and acts as a
poor prognostic factor. Studies have shown that of YTHDF1 silencing inhibits cancer proliferation.
More importantly, the MYC oncogene is related to the expression of YTHDF1 in this process [103].
YTHDC1 has been shown to interact strongly with the metadherin (MTDH) oncoprotein in prostate
cancer, suggesting its role in cancer proliferation and tumorigenesis [104].

YTHDF2 acts as a tumor suppressor in cervical cancer. The lncRNA GAS5-AS1 increases the
expression of the tumor suppressor growth arrest specific 5 (GAS5) via the ALKBH5-m6A-YTHDF2
axis, regulating cancer growth and metastasis [105]. Moreover, YTHDF2 is upregulated in AML
and is essential for cancer initiation and metastasis via regulation of m6A-modified transcripts [106].
Intriguingly, another study regarding the mechanism via which YTHDF2 affects AML showed that
YTHDF2 binds to the MYC mRNA, which further enhances its stability and expression, antagonizing the
action of the tumor suppressor R-2-hydroxyglutarate (R-2HG) in leukemic cells [107]. In hepatocellular
carcinoma, YTHDF2 suppresses the mitogen-activated protein kinase 1 (ERK)/mitogen-activated
protein kinase 7 (MEK) signaling pathway by reducing EGFR expression and subsequently inhibits
cancer cell proliferation and growth [108]. YTHDC2 is overexpressed in human colon cancer and
positively correlates with tumor metastasis via hypoxia-inducible factor 1a (HIF-1α) [109].

IGF2BP1 is upregulated in ovarian, skin, lung, and liver cancers, and enhances the expression of
serum response factor (SRF) by elevating m6A modification, thereby accelerating cell proliferation and
metastasis [110]. IGFBP2 is highly expressed in pancreatic cancer and is considered as an unfavorable
prognostic factor. DANCR, a long non-coding RNA that enhances cancer cell proliferation and stem-like
properties, is positively modulated by IGF2BP2 via m6A modification [111].
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Taken together, we have comprehensively summarized recent studies regarding m6A modification
and the molecular mechanisms of m6A modulators in regulating various human cancers, including
tumor initiation, cancer cell proliferation, metastasis, and invasion (Table 1).

Table 1. The role and mechanisms of m6A modulators in human cancer.

m6A
Modulators

Cancer Types Roles Mechanisms Ref.

METTL3

Osteosarcoma Oncogenic functions

m6A methylation level and METTL3
expression are both upregulated in
osteosarcoma tissues and cell lines.

Promotes cancer cell proliferation and
metastasis by regulating ATAD2

[79,112]

Colorectal cancer
(CRC)

Oncogenic functions

METTL3 can stabilize HK2 and GLUT1
expression in CRC through an

m6A-IGF2BP2/3-dependent mechanism.
[80]

METTL3 maintains SOX2 expression
through an m6A-IGF2BP2-dependent

mechanism in colorectal cancer cells, and
can work as a potential biomarker panel

for prognostic prediction in CRC.

[81]

METTL3/miR-1246/SPRED2 axis plays an
important role in tumor metastasis. [82]

Bladder cancer Oncogenic functions

METTL3, significantly increased in
bladder cancer, is correlated with poor

prognosis of bladder cancer patients, and
may have an oncogenic role in bladder

cancer through positively modulating the
pri-miR-221/222 process in an

m6A-dependent manner.

[83]

METTL3-mediated m6A modification
promotes bladder cancer progression

through AFF4/NF-κB/MYC
signaling network.

[84]

Hepatocellular
carcinoma

(HCC)
Oncogenic functions

METTL3 is frequently upregulated in
human HCC and contributes to HCC

progression through repressing SOCS2
expression in an

m6A-YTHDF2-dependent mechanism.

[85]

Acute myeloid
leukemia

(AML)
Oncogenic functions

Promoter-bound METTL3 induces m6A
modification within the coding region of

the associated mRNA transcript, and
enhances its translation, which is necessary
for the maintenance of the leukemic State.

[73]

METTL3 is frequently upregulated in
human AML, and controls expression of

c-MYC, BCL-2, and PTEN in an
m6A-dependent manner.

[86]

Gastric cancer Oncogenic functions

METTL3, overexpressed in gastric cancer,
is correlated with poor prognosis of gastric

cancer, and required for the
epithelial-mesenchymal transition (EMT)

process in vitro and for metastasis in vivo.

[87]

Elevated METTL3 expression can promote
tumor angiogenesis and glycolysis in

gastric cancer through m6A modification
of HDGF mRNA.

[88]
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Table 1. Cont.

m6A
Modulators

Cancer Types Roles Mechanisms Ref.

Pancreatic cancer Oncogenic functions

METTL3 is enriched in human pancreatic cancer,
and can promote cell proliferation and invasion of

pancreatic cancer cells.
[89]

METTL3 can promote the chemoresistance and
radioresistance of pancreatic cancer cells through
regulation of several critical pathways, including

MAPK cascades, ubiquitin-dependent process, and
RNA splicing.

[90]

Lung cancer Oncogenic functions

METTL3 is upregulated in human lung
adenocarcinoma, and can promote cell

proliferation, survival, and invasion of human lung
cancer cells through enhancing translation of

certain mRNAs, including EGFR and TAZ.

[74]

Endometrial cancer Tumor suppressive
functions

About 70% of endometrial tumors show reduced
total m6A mRNA methylation, which is mediated

by either decreased METTL3 expression or
METTL14 loss-of-function mutation, and reduced

m6A methylation could promote cancer cell
growth through activation of the AKT pathway.

[91]

Glioblastoma
Tumor suppressive

functions

Knockdown of METTL3 or METTL14 induces
changes in mRNA m6A enrichment, and enhances
cell proliferation of glioblastoma stem cells (GSCs)
through altering expression of several oncogenes

and tumor suppressors, such as ADAM19
and CDKN2A.

[92]

Oncogenic functions
METTL3, upregulated in GSCs, is essential for GSC

maintenance, and stabilizes SOX2 mRNA in an
m6A-dependent manner.

[93]

METTL14

Acute myeloid
leukemia

(AML)
Oncogenic functions

METTL14 is required for development and
maintenance of AML through regulating its mRNA

targets, including MYB and MYC in an
m6A-dependent manner.

[65]

Renal cancer
carcinoma

(RCC)

Tumor suppressive
functions

METTL14 is downregulated in RCC tissues, and
could abrogate P2RX6 protein level in an

m6A-dependent manner.
[94]

Hepatocellular
carcinoma

(HCC)

Tumor suppressive
functions

METTL14, downregulated in HCC, is associated
with metastasis through modulating the processing

of miR-126 in an m6A-dependent manner, and
works as a prognostic factor in HCC.

[95]

METTL16
Colorectal cancer

(CRC)

Association with worse
OS in rectal

adenocarcinoma

METTL16 is abundantly expressed in colon
adenocarcinoma, and associated with the clinical

outcomes of CRC patients.
[113]

Mutational ITH and
frameshift mutations

with MSI-H

METTL16 harbors mutational intratumor
heterogeneity (ITH) as well as the frameshift

mutations in CRC with high microsatellite
instability (MSI-H).

[114]

WTAP
Hepatocellular

carcinoma
(HCC)

Oncogenic functions

WTAP, highly expressed in HCC, is correlated with
poor prognosis of HCC patients, and can promote
cell proliferation of HCC cells through suppression

of ETS1 in an m6A-dependent manner.

[98]

FTO

Acute myeloid
leukemia

(AML)
Oncogenic functions

FTO is highly expressed in AMLs, and can enhance
oncogene-mediated cell transformation and

leukemogenesis through regulating its mRNA
targets such as ASB2 and RARA in an

m6A-dependent manner.

[66]

Lung squamous
cell carcinoma

(LUSC)
Oncogenic functions

FTO is a prognostic factor for LUSC, and can
facilitate tumor progression in LUSC through

regulating MZF1 expression in an
m6A-dependent manner.

[99]
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Table 1. Cont.

m6A
Modulators

Cancer Types Roles Mechanisms Ref.

ALKBH5

Breast cancer

HIF-depended
enrichment of breast

cancer stem cells
(BCSCs)

Increased NANOG mRNA expression is induced
by hypoxia in an HIF- and ALKBH5-dependent
manner, which increased specification of BCSCs.

[100]

Glioblastoma Maintaining
tumorigenicity of GSCs

ALKBH5 is highly expression in GSCs, and
maintains tumorigenicity through regulating

FOXM1 expression in an m6A-dependent manner.
[101]

Pancreatic cancer Tumor suppressive
functions

ALKBH5 inhibits pancreatic cancer motility
through regulating lncRNA KCNK15-AS1
expression in an m6A-dependent manner.

[102]

YTHDF1 Colorectal cancer
(CRC) Oncogenic functions

YTHDF1, highly expressed in CRC, is correlated
with poor prognosis of CRC patients, and can

promote cell proliferation of CRC cells.
[103]

YTHDF2

Cervical cancer Tumor suppressive
functions

lncRNA GAS5-AS1 upregulates GAS5, a tumor
suppressor, through an

YTHDF2-dependent mechanism.
[105]

Acute myeloid
leukemia

(AML)
Oncogenic functions

YTHDF2, overexpressed in human AML, is
required for disease initiation, and decreases the

half-life of diverse m6A transcripts that contribute
to the overall integrity of self-renewing leukemic

stem cell (LSC) function, including TNFR2.

[106]

Hepatocellular
carcinoma

(HCC)

Tumor suppressive
functions

Hypoxia induces downregulation of YTHDF2 in
HCC cells, and YTHDF2 overexpression

suppresses cell proliferation of HCC cells through
inactivation of MEK and ERK.

[108]

YTHDC1 Prostate cancer Potential tumor
biomarker

The oncogene MTDH interacts with YTHDC1,
KHDRBS1, and KHDRBS3, and modulates

alternative splicing.
[104]

YTHDC2 Colon cancer Promoting cancer
metastasis

YTHDC2 can promote cancer metastasis through
promoting HIF-1α. [109]

IGF2BP1 Ovarian, skin, lung,
liver cancer Oncogenic functions

IGF2BP1 can promote the transcriptional regulator
SRF-dependent transcription in an

m6A-dependent manner.
[110]

IGF2BP2 Pancreatic cancer Oncogenic functions

IGF2BP2, highly expressed in pancreatic cancers, is
correlated with poor prognosis of pancreatic cancer

patients, and can promote cell proliferation of
pancreatic cancer cells through DANCR.

[111]

5. Significance of N6-Methyladenosine for Virus Infection, Including SARS-CoV-2

Similar to that observed in other species, recent studies have shown that virus RNA modifications
play an important role in cellular events [115–117]. Studies have clearly demonstrated that m6A
regulates human immunodeficiency virus (HIV) production, replication, translation, and reverse
transcription, suggesting that the understanding of virus RNA modifications is as important as other
areas of virology.

In this Section, we have summarized (1) the history of RNA modifications on viruses,
(2) the relationship between m6A modification and viral infection, replication, and cellular immunity,
and (3) m6A modification in SARS-CoV-2.

5.1. History of RNA Modification on Viruses

RNA modification of influenza virus was detected in 1976; kidney cells were infected with the
virus in the presence of the radioactive material [118]. Subsequently, specific m6A methylation on
Rous sarcoma virus RNA was observed after infection of the host cells. The virus RNA isolated from
the host cells was hybridized with single-stranded phage DNA. After restriction enzyme digestion of
nucleotides spanning approximately 6000 to 8000 bp, seven positive and four ambiguous m6A sites on
the virus RNA were identified [119]. The biological function of m6A varies with different virus strains
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and host cells. To date, more than 10 viruses have been examined to determine the role of m6A after
infection [120]. Furthermore, a recent study demonstrated that the demethylase activity of the eraser
protein, ALKBH5, was impaired in host cells, which increased m6A expression on α-ketoglutarate
dehydrogenase (OGDH) mRNA in response to viral infection, reducing mRNA stability and protein
expression [121]. This indicated that the importance of RNA modification in the host cell metabolism.

5.2. The Relationship between m6A Methylation and Viral Infection, Replication, and Cellular Immunity

Many single-stranded RNA viruses (ssRNA) cause severe infectious diseases such as influenza,
Ebola fever, Zika fever, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome
(MERS), and COVID-19. When viral genomic RNA is internalized and released into the cytoplasm
after infection, the RNA is recognized by cellular RNA sensors such as stimulator of interferon
response cGAMP interactor 1 (STING), Toll-like receptor 7 (TLR7), DExD/H-box helicase 58 (RIG-I),
and others [122]. These sensors participate in the detoxification of the invading viruses via immune
response, which is accompanied by the production of type I interferons (IFNs), inflammatory cytokines,
and chemokines. However, RNA viruses are known to escape from these immune responses using
various strategies.

Flaviviridae is a family of positive-sense ssRNA viruses represented by the Zika virus (ZIKV),
dengue virus (DENV), and West Nile virus (WNV). The RNA genomes of several Flaviviridae viruses
have been reported to contain m6A modification. For example, Gokhale et al. reported that the m6A in
the genomic RNAs of ZIKA, DENV, WNV, yellow fever virus (YFV), and hepatitis C virus (HCV) can be
detected by using methylated RNA immunoprecipitation sequencing (MeRIP-seq) [123], and Lichinchi
et al. reported that ZIKV infection enhances m6A levels in the 5′-UTR region of cellular RNAs [115].
Despite the identification of these 51 genes, the alterations in m6A levels in the 5′-UTR region were
not statistically significant [123]. Although we can argue regarding the qualitative versus quantitative
nature of the data, this discrepancy should be addressed using biochemical assays, such as the
site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer
chromatography (SCARLET) method [124], or a novel sequencing method [125], ideally coupled with
functional assays for identifying the effect of infections on RNA modifications. It is noteworthy that
these 51 genes are associated with antiviral and proviral functions, suggesting that further studies are
required to better classify the function of m6A modification.

Similar to positive-sense ssRNA viruses, m6A modification in negative-sense ssRNA viruses
has also been reported. For example, the RNA of HMPV (human metapneumovirus) harbors the
m6A modification [126]. Therefore, increased expression levels of viral proteins were observed
in A549 cells experimentally infected with HMPV, along with the overexpression of METTL3 and
METTL14 and YTHDF1-3. Interestingly, infection with intact (m6A-unmethylated) HMPV activates the
expression levels of RIG-I, followed by the activation of IFN-I and NF-κB pathways [126]. Furthermore,
another study showed that IFN-β is significantly activated in cotton rats infected by intact HMPV,
showing low virulence and significant induction of virus-neutralizing antibodies at two weeks
post-infection [126]. Importantly, these results suggested that m6A methylation in HPMV is critical
for escaping RIG-I-mediated host immune mechanism, and that intact HMPV may be useful as an
attenuated vaccine [126].

5.3. m6A Methylation in SARS-CoV-2

As discussed previously, many RNA viruses contain the m6A modification. Here, we have focused
on RNA modifications of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is
a positive-sense, single-stranded RNA virus that causes a potentially lethal COVID-19 respiratory tract
infection. As COVID-19 is now one of the most life-threatening diseases worldwide, many researchers
are actively investigating SARS-CoV-2 strains to combat this disease. The basic background of
SARS-CoV-2 has been summarized by a Turkish group [127]. To tackle this global pandemic, a deeper
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understanding of the mechanisms underlying SARS-CoV-2 infection, replication, or RNA modifications,
which may contribute to the development of vaccines or drugs, is urgently required.

Partial sequences of coronaviruses (mouse hepatitis viruses) have been previously
reported [128–130]. A recent study regarding SARS-CoV-2 demonstrates two important findings [131].
First, SARS-CoV-2 expresses genomic RNA, the sub-genomic RNAs of which consist of nine elements.
Second, total RNA extracted from Vero cells with or without SARS-CoV-2 infection was sequenced
using Nanopore direct RNA sequencing. This study revealed the SARS-CoV-2 transcriptome and
epitranscriptome map, which allowed us to visualize RNA modification sites. The authors excluded
METTL3-mediated m6A modification owing to the absence of a consensus RRACH motif, but observed
at least 41 RNA modification sites, of which AAGAA and AAGAA-like A/G-rich motifs were
prominently modified compared to the unmodified controls. In another cohort study in China,
involving patients admitted from January 17th to February 8th 2020 [132], the authors detected
clinically important features in the patients, as well as novel m6A modification loci in the Spike
(S) protein, which are the m6A modification sites of SARS-CoV-1 and SARS-CoV-2 (Wuhan-Hu-1,
ZJ01) using a bioinformatics approach. The importance of S proteins for SARS-CoV has been
already discussed elsewhere [133]. Viral S proteins bind with angiotensin I converting enzyme 2
(ACE2) to get entered into the host cells. Identification of the potential m6A sites for S proteins in
SARS-CoV-1 and SARS-CoV-2 indicated that m6A sites differ among viruses. Although the size of the
genomic RNA size varies, flaviviruses, such as ZIKV and DENV, are estimated to possess 5–12 m6A
modifications [115,123], while HIV-1 has 10–14, HCV has approximately 16, and influenza A virus
contains up to 24 sites [116,118,134,135].

These results indicate that virus RNA modification is common and, hence, further studies
are required for a comprehensive understanding of the relationship between RNA virus, infection,
RNA epigenetics, and host cell immunity.

6. Concluding Remarks

The diverse biological roles of epigenetics and RNA modifications or epitranscriptomics have been
elucidated, and epigenetic aberrations have been associated with various types of diseases, including
cancer [136–148]. Focusing on RNA modifications, studies of m6A are a new boundary of disease,
as we reviewed in this paper. This new additional layer of epigenetics facilitates an understanding
of novel insights underlying cancer development, metastasis, drug response, and immune response
induced by virus infection. m6A modifications are enriched in mRNA, especially in the 3′-UTR, but the
diverse modifications are reported in other functional RNAs such as tRNA and rRNA, which are also
associated with disease.

The importance of comprehensive understanding of RNA modifications in virus has surged these
days due to COVID-19 pandemic worldwide. The WHO raised the threat of this epidemic to the “very
high” level on February 28th, 2020. The SARS-CoV-2 genome, which is 30 kb in length, encodes a large
non-structural protein, which is further cleaved to generate nine elements (four structural and five
accessory proteins), as we discussed in Section 5.3. One of the four structural proteins is the S surface
glycoprotein. The S protein sequence is believed to be methylated and assuming to affect the virus
infection and virus replication. Thus, further active research is strongly desired.

Notably, the development of therapeutic agents targeting epigenetics is also progressing
rapidly [149–151]. Indeed, multiple chemical inhibitors targeting RNA modification and RNA-editing
enzymes are now known [47,152,153], and the estimated phase I trial will start in 2021 [152]. As discussed
in the previous sections, m6A modification on RNA influences many cellular events; this cumulative
knowledge can be expanded to investigate cancer, virus infection, and host innate immunity. Overall,
detailed insight regarding RNA epigenetics or epitranscriptomics will assist in developing safe and
effective drugs for cancer, COVID-19, and other diseases.
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