Supporting Information

Synthesis and anticancer activity of dimeric polyether ionophores

Michał Sulik^a, Ewa Maj^b, Joanna Wietrzyk^b, Adam Huczyński^a, and Michał Antoszczak^{a,*}

^a Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańkisego 8, 61–614 Poznań, Poland

^b Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław, Poland

Index

Spectroscopic and spectrometric analysis of synthesized compounds	53 -
FT-IR and NMR analysis of propargyl and azide components	S3 –
¹ H and ¹³ C NMR analysis of newly synthesized compounds – S	S3 –
ESI MS analysis of dimeric polyether ionophores – Si	33 –

Spectroscopic and spectrometric analysis of synthesized compounds

FT-IR and NMR analysis of propargyl and azide components

Table S1. The yields of the synthesis, and the analytical bands in the FT-IR spectra (wavenumbers in cm⁻¹) and signals in the ¹H and ¹³C NMR spectra (δ in ppm) of propargyl and azide partners for the CuAAC reaction.

	No.	4	5	6	7	8	9	10	11	12	13
	Yield (%)	54	60	51	65	51	60	15	88	90	70
FT-IR KBr tablet	<i>v</i> (≡C–H)	3313	3311	3315	3314	3311	3310	3297	3319	3314	
	v(C≡C)	2125	2130	2120	2128	2120	2129	2130	2128	2127	
	v(N3)										2098
¹ H NMR in CD ₂ Cl ₂	δ(≡C- H)	2.32 (t, <i>J</i> = 2.5 Hz, 1H)	$2.58^{(a)}$ (t, $J = 2.5$ Hz, 1H)	signal overlapped	2.56 (t, <i>J</i> = 2.5 Hz, 1H)	2.22 (t, <i>J</i> = 2.5 Hz, 1H)	2.48 (t, <i>J</i> = 2.4 Hz, 1H)	$2.51^{(a)}$ (t, $J = 2.4$ Hz, 1H)	2.16 (t, <i>J</i> = 2.5 Hz, 1H)	$2.05^{(b)}$ (t, $J = 2.5$ Hz, 1H)	
¹³ C NMR in CD ₂ Cl ₂	δ(C=O) amide/ester	170.6	171.1 ^(a)	175.7 ^(a)	175.1	176.0	175.5	154.5 ^(a,c)	175.2	173.9 ^(b)	

^(a) in CDCl₃; ^(b) in C₆D₆; ^(c) δ (C=O)carbonate in **10**

¹H and ¹³C NMR analysis of newly synthesized compounds

Table S2. The yields of the synthesis, and the analytical signals in the ¹H and ¹³C NMR spectra of novel dimeric polyether ionophores.

		Analytical NMR signals (ppm) in CDCl ₃						
No.	Yield (%)	δ(<mark>C</mark> =O) carboxylate	δ(<mark>C</mark> =O) amide/ester	δ(H–N) amide	$\delta(CH_2-O)$ ester	R ₁ N N N		
14	70	184.5	170.1	7.28–7.19 (m, 1H)		144.5 ^(a)	7.82 (s, 1H)	
15	70	184.4	171.5		5.41 (dd, <i>J</i> = 26.1, 12.6 Hz, 2H)	141.6 ^(a)	7.68 (s, 1H)	
16	63	184.3	175.7	7.15-7.06 (m, 1H)		144.7	7.46 (s, 1H)	
17	52	184.4	175.0		5.24 (d, <i>J</i> = 12.8 Hz, 1H) 5.16 (d, <i>J</i> = 12.8 Hz, 1H)	142.4	7.63 (s, 1H)	
18	56	184.6	176.1	6.23 (t, <i>J</i> = 5.5 Hz, 1H)		144.4	7.48 (s, 1H)	
19	81	184.5	175.7		5.09 (dd, <i>J</i> = 25.8, 12.7 Hz, 2H)	142.5	7.58 (s, 1H)	
20	37	184.5	155.0 ^(b)		5.23-5.15 (m, 2H) ^(c)	141.8	7.67 (s, 1H)	
21	63	184.4	175.0	6.97 (t, <i>J</i> = 5.1 Hz, 1H)		144.9	7.60 (s, 1H)	
22	52	184.4	175.2		5.50 (d, <i>J</i> = 12.8 Hz, 1H) 5.25 (d, <i>J</i> = 12.8 Hz, 1H)	142.3	7.66 (s, 1H)	
23	32	173.5 ^(d)	175.3		5.43 (d, $J = 12.8$ Hz, 1H) second signal overlapped	142.9	7.55 (s, 1H)	
24	31	173.4 ^(d)	175.3		5.50 $\overline{(d, J = 12.9 \text{ Hz}, 1\text{H})}$ second signal overlapped	142.9	7.62 (s, 1H)	

^(a) based on the ¹H-¹³C HMBC spectrum; ^(b) δ (C=O)carbonate in **20**; ^(c) δ (CH₂-O)carbonate in **20**; ^(d) δ (C=O)ester after conjugation with hydroxamic acid in **23** and **24**

1) The NMR spectra of newly synthesized propargyl precursors

List of spectra

Figure S1. The ¹ H NMR spectrum of 4 in dichloromethane-d ₂	.– S5 –
Figure S2. The ¹³ C NMR spectrum of 4 in dichloromethane-d ₂	.– S6 –
Figure S3. The ¹ H NMR spectrum of 5 in chloroform-d	.– S7 –
Figure S4. The ¹³ C NMR spectrum of 5 in chloroform-d	.– S8 –
Figure S5. The ¹ H NMR spectrum of 10 in chloroform-d	.– S9 –
Figure S6. The ¹³ C NMR spectrum of 10 in chloroform-d	- S10 –

2) The NMR spectra of dimeric polyether ionophores

List of spectra

Figure S7. The ¹ H NMR spectrum of 14 in chloroform-d– S11 –
Figure S8. The ¹³ C NMR spectrum of 14 in chloroform-d– S12 –
Figure S9. The ¹ H NMR spectrum of 15 in chloroform-d– S13 –
Figure S10. The ¹³ C NMR spectrum of 15 in chloroform-d– S14 –
Figure S11. The ¹ H NMR spectrum of 16 in chloroform-d– S15 –
Figure S12. The ¹³ C NMR spectrum of 16 in chloroform-d– S16 –
Figure S13. The ¹ H NMR spectrum of 17 in chloroform-dS17 –
Figure S14. The ¹³ C NMR spectrum of 17 in chloroform-d– S18 –
Figure S15. The ¹ H NMR spectrum of 18 in chloroform-dS19 –
Figure S16. The ¹³ C NMR spectrum of 18 in chloroform-d– S20 –
Figure S17. The ¹ H NMR spectrum of 19 in chloroform-d S21 –
Figure S18. The ¹³ C NMR spectrum of 19 in chloroform-d– S22 –
Figure S19. The ¹ H NMR spectrum of 20 in chloroform-d S23 –
Figure S20. The ¹³ C NMR spectrum of 20 in chloroform-d– S24 –
Figure S21. The ¹ H NMR spectrum of 21 in chloroform-d S25 –
Figure S22. The ¹³ C NMR spectrum of 21 in chloroform-d– S26 –
Figure S23. The ¹ H NMR spectrum of 22 in chloroform-d S27 –
Figure S24. The ¹³ C NMR spectrum of 22 in chloroform-d– S28 –
Figure S25. The ¹ H NMR spectrum of 23 in chloroform-d S29 –
Figure S26. The ¹³ C NMR spectrum of 23 in chloroform-d– S30 –
Figure S27. The ¹ H NMR spectrum of 24 in chloroform-dS31 –
Figure S28. The ¹³ C NMR spectrum of 24 in chloroform-d– S32 –

Figure S1. The ¹H NMR spectrum of 4 in dichloromethane- d_2 .

– S6 –

Figure S3. The ¹H NMR spectrum of 5 in chloroform-d.

Figure S4. The ¹³C NMR spectrum of 5 in chloroform-d.

Figure S5. The ¹H NMR spectrum of 10 in chloroform-d.

Figure S6. The ¹³C NMR spectrum of 10 in chloroform-d.

-

Figure S7. The ¹H NMR spectrum of 14 in chloroform-d.

– S12 –

Figure S9. The ¹H NMR spectrum of 15 in chloroform-d.

Figure S10. The ¹³C NMR spectrum of 15 in chloroform-d.

Figure S11. The ¹H NMR spectrum of 16 in chloroform-d.

Figure S12. The ¹³C NMR spectrum of 16 in chloroform-d.

Figure S13. The ¹H NMR spectrum of 17 in chloroform-d.

- S18 -

Figure S15. The ¹H NMR spectrum of 18 in chloroform-d.

Figure S16. The ¹³C NMR spectrum of 18 in chloroform-d.

Figure S17. The ¹H NMR spectrum of 19 in chloroform-d.

– S22 –

Figure S19. The ¹H NMR spectrum of 20 in chloroform-d.

Figure S20. The ¹³C NMR spectrum of 20 in chloroform-d.

Figure S21. The ¹H NMR spectrum of 21 in chloroform-d.

Figure S22. The ¹³C NMR spectrum of 21 in chloroform-d.

Figure S23. The ¹H NMR spectrum of 22 in chloroform-d.

– S28 –

Figure S25. The ¹H NMR spectrum of 23 in chloroform-d.

Figure S26. The ¹³C NMR spectrum of 23 in chloroform-d.

Figure S27. The ¹H NMR spectrum of 24 in chloroform-d.

Figure S28. The ¹³C NMR spectrum of 24 in chloroform-d.

ESI MS analysis of dimeric polyether ionophores

Figure S29. The ESI mass spectra of a mixture of 14, 15, 16 and 17 with $NaClO_4$ at cv = 30 V.

Figure S30. The ESI mass spectra of a mixture of 18, 19, 20 and 21 with $NaClO_4$ at cv = 30 V.

Figure S31. The ESI mass spectra of a mixture of 22, 23, and 24 with $NaClO_4$ at cv = 30 V.