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Abstract: Oceans cover more than 70 percent of the surface of our planet and are characterized
by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that
marine organisms produce a variety of compounds, derived from primary or secondary metabolism,
which may have antiviral activities. In particular, certain marine metabolites are active towards a
plethora of viruses. Multiple mechanisms of action have been found, as well as different targets.
This review gives an overview of the marine-derived compounds discovered in the last 10 years.
Even if marine organisms produce a wide variety of different compounds, there is only one compound
available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin.
The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the
need to further invest in this field, in order to shed light on marine compound potentiality and
discover new drugs from the sea.

Keywords: marine organisms; antiviral; marine natural products; viruses

1. Introduction

Oceans cover more than 70% of the surface of our planet [1]. The vast ocean extension and
its unique environments are characterized by huge taxonomic and chemical diversity of marine
organisms [2,3], and it has been classified, already in the 1980s, as the largest reservoir of natural
products to be evaluated for their activity as drugs [4]. Recently, several projects worldwide, such as
those funded by European Union under the FP7 and H2020 frameworks, focused on the exploitation
of marine organisms in order to identify new products for applications in different industrial sectors
(e.g., pharmaceutical, nutraceutical, cosmeceutical, aquaculture, and energy sectors) [5]. In addition,
many of these projects, under the topic “Blue growth”, focused on more environmental-friendly
approaches to drug discovery in order to identify new lead compounds for the treatment of human
pathologies without any negative impact on the marine environment and focusing on easily cultivable
organisms, especially microorganisms.

It is well documented that humans, animals, plants, fungi, and bacteria produce metabolites to
protect themselves against various pathogens. Viruses are the most abundant entities of the Ocean
and, although their existence has been known for many years, they have recently been recognized as
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important factors influencing microbial communities [6], causing marine organism mortality, and driving
global geochemical cycles [7]. In addition, various studies investigated if they can be responsible for
the decline of particular species, such as populations of sockeye (Oncorhynchus nerka) and Chinook
(Oncorhynchus tshawytscha) salmon in the Northeast Pacific [8]. Previously unknown viruses have been
found in dead and dying farmed salmon, highlighting their potential role in population dynamics of wild
fish stocks, and the threat they may pose to aquaculture [8]. Marine organisms are known to produce
antiviral compounds that can have pharmaceutical applications [9]. Despite the huge biological and
chemical biodiversity of marine organisms, only one marine derived compound with antiviral activity
reached the market until now, Vidarabine (Ara-A). Ara-A (a nucleoside extracted from a sponge), Food and
Drug Administration (FDA) approved in 1976, is actually used as antiviral drug against Herpes Simplex
Virus (HSV) (https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml).

In addition, actually there are only 12 marine compound-derived drugs available on the market,
and about 24 natural products in Phase I to Phase III clinical trials [2]. One compound out of 24, named
Griffithsin (a lectin extracted from a red algae), suggested for anti-HIV activity, is in clinical trials.
Viruses are known to produce damages to marine organisms, as well as to terrestrial animals and
plants, and causing damages to humans and economies.

Even if there have been several studies on understanding viral physiology and suitable treatments
and vaccines over the past half of century, still several infections, such as those due to Human
Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), and more recently coronavirus, affect a
substantial proportion of the world populations of different ages, causing thousands of deaths annually.
There are no definite vaccines against numerous viral infections (e.g., for the Measles virus [10]),
and further research is necessary to find effective antivirals as alternative therapies that could contribute
to outbreak containment and lead to eradication. In addition, the development of viral resistance to
antiviral drugs and side effects like toxicity have continuously stimulated the search of new antiviral
compounds. Common is the search for compounds with distinct/specific mechanisms of action,
good bioavailability and very low toxicity. Mechanisms of action of possible antiviral compounds
are various because they can block viruses at different stages of their life cycles (Common viral life
cycle stages are attachment, penetration, uncoating, replication, assembly, and release) [11]. However,
the comparison of marine natural product activity is sometimes difficult, because there are several
methods used to assess antiviral capacity (such as cell viability, syncytia formation, viral titration by
Real Time-qPCR and virus plaque reduction assay). The aim of this review is to summarize the last
10-year research on antiviral compounds isolated from marine organisms, from bacteria to vertebrates.

2. Marine Bacteria and Fungi

Bacteria and fungi are widely distributed in marine environments (from shallow water to deep
sea, even down to the polar ice covers), and synthesize a high number of structurally and functionally
diverse bioactive molecules. Although these compounds have been shown to have several bioactivities,
to date there are limited studies of microbial natural products with antiviral activity, especially in the
last ten years (Tables 1 and 2).

https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml
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Table 1. The table report antiviral compounds/extracts from marine bacteria. CHIKV, Chikungunya
virus; FNV, Fish Nodavirus; HSV-1, Herpes Simplex virus 1; WEEV, Western Equine Encephalitis virus;
EPS, exopolysaccharides.

Compound/Extract Organism Which Virus? Mechanism of Action Reference

Butenolides Streptomyces sp. Anti-adenoviral Undetermined [12]
Debromoaplysiatoxin;

3methoxydebromoaplysiatoxin Trichodesmium erythraeum CHIKV Target replication cycle after
viral entry [13]

Furan-2-yl acetate Streptomyces
VITSDK1 spp. FNV Undetermined [14]

EPS Pseudoalteromonas
sp. AM HSV-1 Undetermined [15]

Chlorinated compounds Leptolyngbya Influenza A and B viruses Inhibition neuraminidase
activity and replication. [16]

Antimycin A1a Streptomyces kaviengensis WEEV
inhibition of cellular

mitochondrial electron
transport chain

[17]

Table 2. The table report antiviral compounds/extracts from marine fungi. EV-71, Enterovirus 71; HIV,
Human Immunodeficiency virus; HSV-1, Herpes Simplex virus 1; PRRSV, Porcine Reproductive and
Respiratory virus; TMV, Tobacco Mosaic virus.

Compound/Extract Organism Which Virus? Mechanism of Action Reference

Grisephenone A Stachybotrys sp. EV-71 Not specified [18]
Norlichexanthone-3,6,8-Trihydroxy-

1-methylxanthone Stachybotrys sp. EV-71 Not specified [18]

Stachybogrisephenone B Stachybotrys sp. EV-71 Not specified [18]

Stachybotrins D Stachybotrys chartarum
MXH-X73 HIV-1 Not specified [19,20]

Arisugacin A Aspergillus terreus
SCSGAF0162 HSV-1 Not specified [21]

Aspergillipeptides D–E Aspergillus sp. SCSIO
41501 HSV-1 Not specified [22]

Aspernolide A Aspergillus terreus
SCSGAF0162 HSV-1 Not specified [21]

Balticolid Ascomycetous strain 222 HSV-1 Not specified [23]

11a-dehydroxyisoterreulactone A Aspergillus terreus
SCSGAF0162 HSV-1 Not specified [21]

Isobutyrolactone II Aspergillus terreus
SCSGAF0162 HSV-1 Not specified [21]

Simplicilliumtide J Simplicillium obclavatum
EIODSF 020 HSV-1 Not specified [24]

Verlamelins A-B Simplicillium obclavatum
EIODSF 020 HSV-1 Not specified [24]

Asperterrestide A Aspergillus terreus
SCSGAF0162

Influenza A (H1N1 and
H3N2) virus Not specified [25]

Cladosin C
Cladosporium

sphaerospermum
2005-01-E3

Influenza A (H1N1) virus Not specified [26]

Cordyol C Aspergillus sydowii
ZSDS1-F6 Influenza A (H3N2) virus Not specified [27]

Diorcinol Aspergillus sydowii
ZSDS1-F6 Influenza A (H3N2) virus Not specified [27]

(Z)-5-(Hydroxymenthyl)-2-(6′)-
methylhept-2′-en-2′-yl)-phenol

Aspergillus sydowii
ZSDS1-F6 Influenza A (H3N2) virus Not specified [27]

Rubrolide S Aspergillus terreus
OUCMDZ-1925 Influenza A (H1N1) virus Not specified [28]

Sorbicatechols A and B Penicillium chrysogenum
PJX-17 Influenza A (H1N1) virus Not specified [29]

Alterporriol Q Alternaria sp. ZJ-2008003 PRRSV Not specified [30]
Tetrahydroaltersolanol C Alternaria sp. ZJ-2008003 PRRSV Not specified [30]

AGI-B4 Neosartorya fischeri
1008F1 TMV Not specified [31]

3,4-dihydroxybenzoic acid Neosartorya fischeri
1008F1 TMV Not specified [31]

2-(4-hydroxybenzyl)
quinazolin-4(3H)-one

Penicillium oxalicum
0312F1 TMV Not specified [32]

Methyl 4-hydroxyphenylacetate Penicillium oxalicum
0312F1 TMV Not specified [32]

Penipanoid C–
2-(4-hydroxybenzoyl)
quinazolin-4(3H)-one

Penicillium oxalicum
0312F1 TMV Not specified [32]
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2.1. Marine Bacteria

Actinobacteria, especially from the genus Streptomyces, represent a rich source of biologically
active molecules [33–39]. Jakubiec-Krzesniak and collaborators [36] reported more than hundred
natural products from actinomycetes, which exhibit anti-infective activities, and more than 70% of these
metabolites were produced by Streptomyces strains. Moreover, approximately 40% of the described
metabolites were synthesized by species inhabiting marine ecosystems. Antiviral properties were found
for Antimycin A1a (Figure 1), a novel metabolite identified from the marine actinomycetes Streptomyces
kaviengensis, isolated from the coast of New Ireland, Papua New Guinea. This compound (an antimycin
A derivative) displays a significant activity against the Western Equine Encephalitis virus (WEEV),
with IC50 value of less than 4 nM and selectivity index (SI), measured as the ratio of 50% cytotoxic
(CC50) and inhibition (IC50) concentrations (SI = CC50/IC50), greater than 550 [17]. The encephalitic
alphaviruses directly infect neurons resulting in central nervous system inflammation and neuronal
destruction [40,41]. Similar to other antimycin A analogues, Antimycin A1a acts by inhibiting the
cellular mitochondrial electron transport chain, and consequently suppressing de novo pyrimidine
synthesis. Moreover, it is important to note that Antimycin A showed a broad spectrum of activity
against a wide range of RNA viruses, including members of the Togaviridae, Flaviviridae, Bunyaviridae,
Picornaviridae, and Paramyxoviridae families. These results indicated that marine actinomycetes are a
promising source for antiviral drug discovery, and that the mitochondrial electron transport could be a
possible target for the development of active antiviral compounds [17].
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Butenolide analogs 1a, 1b, 2, 3, and 4, exhibiting anti-adenoviral property, were isolated from
a marine Streptomyces strain (Streptomyces sp. AW28M48) collected from Vestfjorden, Norway [12].
Among these, the butenolide ketone 3 with a non-functionalized sidechain was the most promising
anti-adenoviral agent with EC50 (half maximal effective concentration) value of 91µM and no prominent
cytotoxicity. The pre-incubation of the cells with the butenolide ketone 3 led to the complete blockage
of viral replication, suggesting that this compound may act on a cellular target or process essential for
viral replication. It was suggested that its prophylactic administration could prevent the viral infection,
while, if administered after the infection, it could inhibit the spread of the infection to the cells not
yet infected. However, the mechanism of action of the butenolide analog 3 is currently unknown,
although it was demonstrated that the 2-furanone moiety in the structures of the isolated butenolides
is important for the antiviral activity [12].

Antiviral activity was found in furan-2-yl acetate extracted from marine halophilic Streptomyces
VITSDK1 spp., isolated from sediment samples collected at the Marakkanam coast (India). The extracted
molecule exhibited activity against Fish Nodavirus (FNV), one of the most important viral pathogens
of cultured marine fishes, responsible for huge economic losses. After exposure to furan-2-yl acetate
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(20 µg mL−1), the replication of Sahul Indian Grouper Eye (SIGE) cell lines infected by FNV was
suppressed and the viral titer underwent a decline, from 4.3 to 2.45 log TCID50 mL−1. The results
suggested a strong connection between the viral capsid protein inhibition and the decline in viral
replication, although the mechanism of action has not yet been established [14].

In addition, we briefly report various bacterial extracts and mixture of compounds, such as
exopolysaccharides (EPS), sulfoglycolipids, and lectins, which have been shown to possess antiviral
activity. A marine EPS produced by Pseudoalteromonas sp. AM, isolated from a Red Sea sponge
(Huraghada, Egypt), was characterized. It was reported to have antiviral activity against HSV type
one (HSV-1), which led to the inhibition of 60.3% in the number of plaques after the treatment with
10% of the microbial EPS [15].

Tong and collaborators [42] showed that nine out of 38 microbial extracts obtained from marine
microorganisms (including bacteria) isolated from Hawaiian waters had antiviral activities. Among the
tested samples, three extracts, including the 482M(1) extract of bacterial origin, showed high inhibition
against a broad-spectrum of viruses (Table 1), thus showing that they could be used as potential
prophylactic agents, to prevent enveloped viruses infection, including HSV-1, Vesicular Stomatitis
virus (VSV), and Vaccinia virus.

Bacteria isolated from marine sponges were tested to evaluate their potential antiviral activity
against the Bovine Viral Diarrhea virus (BVDV), a surrogate model for antiviral assays for the
development of agents against HCV [43,44], which causes chronic infections that can lead to liver
cirrhosis and hepatocellular carcinoma in humans. Bacterial extracts obtained from the Bacillus sp.
isolated from the sponge Petromica citrina gave the best results [45].

In addition, marine cyanobacteria represent a prolific source of natural products. The great biodiversity
of cyanobacteria and of produced secondary metabolites assures that these microorganisms are able to
produce a large array of bioactive molecules, ranging from sulfo-glycolipids and lectins [46–48], to alkaloids,
lipopeptides, macrolides, sulphated polysaccharides, and other molecules [49]. Various compounds
from cyanobacteria are on the market or in clinical trials (https://www.midwestern.edu/departments/
marinepharmacology/clinical-pipeline.xml).

The tropical filamentous cyanobacterium Trichodesmium erythraeum has been demonstrated
able to produce a wide array of aplysiatoxins. Aplysiatoxin and related bioactive molecules,
such as oscillatoxins and nhatrangins, are polyketide toxins isolated from various cyanobacteria,
including Lyngbya majuscula, Schizothrix calcicola, and Oscillatoria nigroviridis [50–52]. Among them,
aplysiatoxin-related compounds, Debromoaplysiatoxin and 3-methoxydebromoaplysiatoxin (Figure 1)
displayed anti-Chikungunya virus (CHIKV) effects at concentrations that resulted in minimal
cytotoxicity [13]. The antiviral mechanism of action is probably to target a step in the CHIKV
replication cycle that occurs after viral entry.

Spirulina platensis (now Arthrospira platensis), a cyanobacterium able to live in both freshwater and
marine water, produces a wide range of bioactive compounds with antifungal, antiprotozoal, antiviral
and antibacterial activity [53–55]. Silva et al. [16] demonstrated that ethyl acetate extract, rich in sulphated
polysaccharide, of Leptolyngbya sp. is active against two Influenza viruses, A(H1N1)pdm09-WT and
A(H3N2)-WT, by inhibiting the neuraminidase activity and replication. The latter effect is probably due
to molecules capable of inhibiting different stages of the viral replicative cycle or thanks to the ability to
activate host cell restriction factors.

2.2. Marine Fungi

Marine fungi are a rich source of novel bioactive molecules, probably produced as defense
mechanisms. They produce a large number of marine natural products with promising biomedical
applications [38], and it is thought that some of these compounds have the potential to proceed in clinical
trials for future development of new drugs [56–58].

The antiviral potential of molecules isolated from marine-derived fungi, was highlighted after
the isolation of Stachyflin from Stachybotrys sp. RF-7260, that showed antiviral activity against

https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml
https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml
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Influenza A (H1N1) virus [59]. Until 2006, a limited number of antiviral compounds was identified
and reviewed [56]. On the contrary, after that, a large number of molecules with promising antiviral
activities against several viruses, were isolated from marine fungi (Table 2). Most of these bioactive
molecules were reviewed by Moghadamtousi and collaborators [60]; Aspergillus sp., Penicillium sp.,
Cladosporium sp., Stachybotrys sp., and Neosartorya sp resulted as the most important marine fungi
exploited for their antiviral potential.

Antiviral activity was found for three compounds, Stachybogrisephenone B, Grisephenone A,
and 3,6,8-Trihydroxy-1-methylxanthone (Figure 2), isolated from the cultures of the sponge-derived
fungus Stachybotrys sp. HH1 ZDDS1F1-2. These new sesquiterpenoid and xanthone derivatives
showed inhibitory activities against in vitro replication of Enterovirus 71 (EV-71), that provokes acute
neurological disease in children, with IC50 values of 30.1, 50.0 and 40.3 µM [18], suggesting that these
compounds could be promising candidates for drug discovery for EV-71 and related viruses, such as
Coxsackie virus (CVB3) [61].

Four novel compounds, including 11a-Dehydroxyisoterreulactone A, Arisugacin A, Isobutyrolactone
II and Aspernolide A (Figure 2), were produced from a marine fungus, Aspergillus terreus SCSGAF0162,
which was isolated from gorgonian corals Echinogorgia aurantiaca (South China Sea) [21]. These compounds
showed antiviral activity against HSV-1, with a IC50 values of 33.38, 12.76, 62.08, and 68.16µM, respectively.

Two marine-derived compounds with antiviral activity, Tetrahydroaltersolanol C and Alterporriol
Q (Figure 2), were obtained from the marine-derived fungus Alternaria sp. ZJ-2008003, isolated from a
Sarcophyton sp. soft coral (South China Sea). These compounds exhibited activity against the Porcine
Reproductive and Respiratory Syndrome virus (PRRSV), that infects pigs and causes respiratory illness
and a major problem in the reproduction of sows, with IC50 values of 65 and 39 µM, respectively [30].

A new compound, 2-(4-hydroxybenzoyl) quinazolin-4(3H)-one (Figure 2), and two known
compounds, 2-(4-hydroxybenzyl) quinazolin-4(3H)-one and Methyl 4-hydroxyphenylacetate (Figure 2),
showing antiviral activity, were isolated from the marine fungus Penicillium oxalicum 0312F1. The first
compound exhibited moderate inhibitory activity, the other two compounds had potent inhibitory
activity (with EC50 values 100.80 and 137.78 mg/mL, respectively) against Tobacco Mosaic virus (TMV),
a virus that infects more than 400 assorted plant species, including cucumber, potato, tomato, and
tobacco [32].

Potent inhibitory effect on the replication of TMV was also showed by two known compounds,
AGI-B4 and 3,4-Dihydroxybenzoic acid (Figure 2), isolated from the culture of a marine-derived fungus
Neosartorya fischeri 1008F1. Antiphytoviral test displayed effective activities, with IC50 0.26 mmol L−1

and 0.63 mmol L−1, respectively. AGI-B4 also showed inhibition of the cell proliferation of human
gastric cancer cell line SGC-7901 and hepatic cancer cells BEL-7404 [31].

A new 12-membered macrolide, Balticolid (Figure 2), was extracted from the fungal strain 222
belonging to the Ascomycota collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany.
At non-cytotoxic concentrations, Balticolid showed antiviral activity against HSV-1, with an IC50

value of 0.45 µM compared to 0.44 µM/aciclovir. Moreover, its structure was identified to be (3R,11R),
(4E,8E)-3-hydroxy-11-methyloxacyclododeca -4, 8-diene -1, 7-dione [23].

Stachybotrins D is a new phenylspirodrimane with antiviral activities, produced from the
marine fungus Stachybotrys chartarum MXH-X73, isolated from the sponge Xestospongia testudinaris
collected from Xisha Island, China [62]. It acts by targeting reverse transcriptase, a fundamental
enzyme in the Human Immunodeficiency virus (HIV) life cycle. This compound is a non-nucleoside
reverse transcriptase inhibitor (NNRTI) of both wild-type HIV-1 (with EC50 value of 8.4 µM) and five
NNRTI-resistant strains (with EC50 values ranging from 0.7- to 2.8-fold the value obtained against the
wild-type virus) [19].

Rubrolide S (Figure 2) extracted from marine derived Aspergillus terreus OUCMDZ-1925, isolated
from the viscera of the barracuda Chelon haematocheilus in the Yellow River estuary, exhibited activity
against influenza A (H1N1) virus (IC50 value of 87.1 mM), comparable or superior to that of ribavirin
(positive control), and weak cytotoxic effects on the K562 cell line [28].
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Activities against Influenza virus A (H1N1) was also observed in two novel compounds isolated
from the marine sediment-derived fungus Penicillium chrysogenum PJX-17, Sorbicatechols A (Figure 2)
and B, with IC50 values of 85 and 113 µM, respectively [29].

Moreover, Cladosin C (Figure 2), isolated from the deep-sea derived fungus Cladosporium
sphaerospermum 2005-01-E3 collected in the Pacific Ocean, showed mild activity against influenza A
H1N1 virus, with an IC50 = 276 µM [26]. This activity is too weak to use cladosin C as drug, but it
could be used as lead compound to develop new and more efficient drugs. Three known compounds
extracted from the sponge-associated fungus Aspergillus sydowii ZSDS1-F6 (Xisha Islands of China),
(Z)-5-(Hydroxymenthyl)-2-(60)-methylhept-20-en-20-yl)-phenol, Diorcinol, and Cordyol C (Figure 2),
showed weak anti-H3N2 activity with IC50 values of 57.4, 66.5, and 78.5 mM, respectively [27].

Proteins and peptides from marine fungi have shown interesting antiviral activities, with minimal
human toxicity and less side effects than synthetic drugs [58]. A new cyclic tetrapeptide, Asperterrestide
A (Figure 2), isolated from the marine-derived fungus Aspergillus terreus SCSGAF0162, showed antiviral
activity toward two Influenza A virus strains (H1N1 and H3N2) (with IC50 values of 15 and 8.1 µM,
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respectively), probably due to the presence of a 3-OH-N-CH3-Phe moiety which is rare in nature [25].
Moreover, Aspergillipeptides D–E (Figure 2), isolated from a marine gorgonian-derived fungus
Aspergillus sp. SCSIO 41501, showed an evident antiviral effect versus HSV-1, with IC50 of 9.5 and
19.8 µM, respectively [22]. In addition, a new cyclic hexapeptide Simplicilliumtide J (Figure 2), together
with known analogues Verlamelins A and B, were isolated from the deep-sea-derived fungal strain
Simplicillium obclavatum EIODSF 020 and exhibited potent anti-HSV-1 activity (with IC50 values of 14.0,
16.7, and 15.6 µM, respectively), probably due to the presence of lactone linkage and a fatty acid chain
moiety [24].

3. Marine Microalgae

Marine microalgae produce a huge number of metabolites with biological activity [63], including
anticancer [64,65], anti-microbial [66], immunomodulatory [67], anti-diabetes [68], anti-tuberculosis [69],
anti-epilepsy [70], anti-hypertensive, anti-atherosclerosis, anti-osteoporosis [71], and anti-inflammatory [20,72]
activities. Even if microalgae are characterized by a huge biodiversity and amount of secondary metabolites, in
the last 10 years, only a small number of studies reported antiviral activity of microalgal compounds (Table 3).

Table 3. Antiviral compounds from microalgae. HSV, Herpes Simplex virus; VSV, Vescicular stomatitis
virus; EPS, exopolysaccharides; MGDG, monogalactosyl diacylglyceride.

Compound/Extract Organism Which Virus? Mechanism of Action Reference

EPS Porphyridium
cruentum

HSV, VSV and Vaccinia
virus

Reduction of virus-induced
cytopathogenicity [73]

MGDG Coccomyxa sp. KJ HSV Structural changes in
virus particles [74]

Marennine-like pigment Haslea karadagensis HSV Inhibition of plaque formation [75,76]
Polysaccharide-rich fraction DunaliellaSalina HSV Inhibition of plaque formation [62]

Sulfated polysaccharide
p-KG03

Gyrodinium
impudium

Influenza A virus
(H1N1) and (H3N2)

Targeting virus particle
attachment to cell surface

receptors and internalization
via virus–cell fusion

[77]

A monogalactosyl diacylglyceride (MGDG) (Figure 3A) isolated from the Trebouxiophyceae
Coccomyxa sp KJ (IPOD FERM BP-22254) was found to be active against HSV. MGDG reduced viral
activity in in vitro plaque assay of both HSV-1 (EC50 = 12–14 µg/mL) and Herpes Simplex virus 2
(HSV-2) (EC50 = 11 µg/mL) on African green monkey kidney cells (Vero cell line). Moreover, MGDG
reduced the virus particle diameter of treated HSV-2 strain (untreated HSV-2 ranged from 272 to 308 nm,
the virus particle diameter HSV-2 ranged from 66 to 118 nm) indicating changes in MGDG-treated
virus particles both in the viral envelope and viral capsids. In in vivo experiment MGDG also reduced
herpes symptom in treated mice [74].

EPS extracted from the Porphyridiophyceae Porphyridium cruentum have been found to reduce
virus-induced cytopathogenicy of HSV, VSV and Vaccinia virus in in vitro assay on human erythroleukemia
cell line (HEL), and the growth condition affected antiviral activity of extracted EPS [73]. A sulphated
polysaccharide, derived from the Dinophyceae Gyrodinium impudicum, named p-KG03, was found to
inhibit influenza A virus infection. In order to test antiviral activity of p-KG03, Madin-Darby Canine
Kidney (MDCK) cells were infected with different strains of influenza A virus, H1N1 PR8, H1N1 Tw,
and H3N2 and then treated in the presence of the sulphated polysaccharide. p-KG03 reduced plaque
formation (EC50 were 0.48 µg/mL versus H1N1 PR8 strain; 0.19 µg/mL versus H1N1 Tw strain; 0.22 µg/mL
versus H3N2). p-KG03 also reduced the viral nucleoprotein (NP) accumulation into the nucleus of
MDCK cells [77]. Santoyo et al. [62] also found antiviral activity of polysaccharide extracts from the
Chlorophyceae Dunaliella salina. Polysaccharides-rich extract of Dunaniella salina was tested to evaluate
antiviral activity against HSV-1. Plaque formation assay using Vero cells showed antiviral activity of
polysaccharides-rich extract with an EC50 of 85.34 µg/mL.

Marennine-like pigment from the Bacillariophycea Haslea karadagensis has been found to be active
against HSV [75,76]. Marennine is the responsible of the greening effect on oyster [76] and two different forms
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of the marennine pigment have been found. Intracellular (IMn) and extracellular (EMn) marennine, the two
forms of marennine, were different both in their molecular weights and in spectroscopic characteristics [75].
Marennine antiviral activity was tested by evaluating HSV-1 virus-induced cytopathogenicy [76] and
viral titer [75] on Vero cells. Marennine displayed effective anti-herpetic activity, IMn and EMn forms
reduced viral titer with similar EC50 values, 24 and 27 µg/mL, respectively [75]. On the contrary, EMn
affected cytopathogenicy in a more efficient manner respect to IMn form (EC50 values were 23 µg/mL and
62 µg/mL, respectively) [76].
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In addition, Silva et al. [16] tested crude organic extracts of the Dinophyceae Symbiodinium sp.,
the Raphidophyceae Chattonella sp. and Bacillariophyceae Nanofrustulum shiloi against Influenza A virus.
The organic extracts were able to inhibit viral replication and infectivity of influenza A virus, both H1N1
and H3N1 strain.

4. Seaweeds

Seaweeds, generally classified into red algae (Rhodophyta), brown algae (Ochrophyta, Phaeophyceae)
and green algae (Chlorophyta), are known for their potential activity against viral infections and, for this
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reason, applied in the formulation of medicated feeds for fish and invertebrates. Griffithsin, a protein
isolated for the first time from an aqueous extract of the red alga Griffithsia sp. [78], is the only compound
from macroalgae which reached clinical trials. Griffithsin is a lectin of 121 amino acids which has
demonstrated in vitro and in vivo antiviral activity with minimum host toxicity against a variety of
clinically relevant enveloped viruses (as reviewed by [79] and actually in clinical trials for HIV prevention
(https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml)). Most tests on
macroalgae were aimed at defining their activity against HSV and HIV viruses [80], but more recently
studies also concentrated on the activity against Influenza virus (Table 4) [81].

Table 4. Compounds with antiviral activity isolated from seaweeds. AIV, Avian Influenza virus; HSV-1,
Herpes Simplex virus-1; ISA, Infectious Salmon Anemia; NDV, Newcastle disease virus; SARS-CoV,
severe acute respiratory syndrome coronavirus replication; WSSV, White Spot Syndrome virus.

Compound/Extract Organism Which Virus? Mechanism of Action Reference

Sulfate polysaccharides Grateloupia filicina AIV Targeting virus particle
attachment to cell [81]

Sulfate polysaccharides Ulva pertusa AIV Targeting virus particle
attachment to cell [81]

Sulfate polysaccharides Sargassum
qingdaoense AIV Targeting virus particle

attachment to cell [81]

Sulfated glucuronorhamnan Monostroma nitidum Enteroviruses Targeting virus particle
attachment to cell [82]

Alginates and fucoidan Sargassum
naozhouense HSV-1 Targeting virus particle

attachment to cell [83]

Phlorofucofuroeckol Ulva clathrata Influenza A virus, H1N1,
H3N2 and H9N2

neuraminidases activity
inhibition [84]

EPA, fatty acids, omega w-3 Gracilaria chilensis ISA Inhibition of viral replication [85]

Ulvan Ulva clathrata NDV Inhibited cell–cell fusion via a
direct effect on the F0 protein [86]

Fucoidan Cladosiphon
okamuranus NDV Inhibited cell–cell fusion [86]

Diekol Ulva clathrata SARS-CoV Inhibition of SARS-CoV 3CLpro [87]

Ulvan Ulva sp and
Eteromorpha sp. WSSV Not reported [88]

Studies on the brown alga Eckolina cava (Laminariaceae) report several biological properties, such as
antioxidant [89], anticancer [90] and anti-inflammatory [91] properties. Ryu et al. [84] isolated the
phlorotannin phlorofucofuroeckol (Figure 3B) from E. cava. Phlorofucofuroeckol has been found to inhibit
neuraminidases activity of different Influenza A virus strains, H1N1, H3N2 and H9N2, with IC50 of 14.7,
20.7 and 22.7 µM, respectively. In addition, the phlorotannins diekol (Figure 3B) from E. cava showed
inhibitory effects on the cell-free cleavage activity of SARS-CoV 3CLpro (a chymotrypsin-like cysteine
protease essential for severe acute respiratory syndrome coronavirus replication, SARS-CoV [92]), with
IC50 of 2.7 µM [87].

Fish are subjected to several viral infections also in aquaculture practices, such as the viral Infectious
Salmon Anemia (ISA) occasionally spreading over vast areas [93]. Vaccines or probiotics have been
applied to attempt a reduction of economic damages. However, red seaweeds have been proposed
and used as a feed ingredient for their antiviral activity. Results [85] on Graciliaria chilensis added to
the diet of fish in concentrations as low as 10% demonstrated a clear antiviral activity salmon anemia
virus. In addition, macroalgae may contain adjuvant compounds supporting the antiviral activity of
other substances. For example, some algae are suitable as feed additives for anti-ISA virus, due to the
presence of macro- and micronutrients such as silicon, taurine (44.9% higher content when compared
to fish meal), eicosapentaenoic acid (EPA; in the case of lyophilized Pyropia columbina), and palmitic
acid (in lyophilized G. chilensis). These nutrients, largely present in various macroalgae, play important
roles in the immune system of vertebrates. Taurine, for example, is a strong antioxidant [94] and
protects tissues against oxidative damage. Silicons triggers lymphocyte proliferation and modulate
immune function through arginine [95]. The interaction between silicon and arginine affects immune
functions, while a silicon deficiency weakens the proliferation of lymphocites. Polyunsaturated fatty

https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml
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acids, instead, are important components of cell membranes and dietary requirements can only be met
with long-chain fatty acids docosahexaenoic acid (DHA) and EPA [96]. These fatty acids are precursors
of eicosanoids, prostaglandins, and leukotrienes involved in the immune and inflammatory responses
of fishes [97].

In addition White Spot Syndrome virus (WSSV), a pathogen causing a severe epidemic disease
in shrimp [98], has emerged as problem in aquaculture. Declarador et al. [88] supplemented shrimp
(Penaeus monodon) diet with the sulfated polysaccharide (SP) ulvan from Ulva sp and Eteromorpha sp.
Ulvan had immunostimulatory activity against WSSV in juvenile P. monodon.

The SP ulvan, from the green seaweed Ulva clathrata, and its mixture with a fucoidan (SP from
Cladosiphon okamuranus), were also found to have antiviral effects against the Newcastle Disease Virus
(NDV) which causes morbidity in poultry [86]. Ulvan antiviral activity was tested using syncytia
formation, exhibiting an IC50 of 0.1 µg/mL. It inhibited cell–cell fusion via a direct effect on the F0
protein but did not show any virucidal effect. Its combination with fucoidan had a reduced activity.

Brown algae, such as Sargassum naozhouense, have been used in Chinese medicine as antiviral
drugs as well. S. naozhouense also contains various bioactive polysaccharides [83] against viruses,
including HSV. Sargassum polysaccharides showed strong antiviral activity against HSV-1 strain F
at ≥12.5 µg/mL (EC50 = 8.92 µg/mL). In order to compare antiviral potential of the polysaccharides,
Peng et al. [83] used the antiviral drug Acyclovir (ACV) as a positive control and demonstrated that
S. naozhouense extracts conferred more than 75% cellular protection at 20 µg/mL. Similarly, fractions
extracted by various macroalgae collected along Brazilian coasts, containing glycolipids, exhibited
potent antiviral activity against HSV-1-ACV susceptible (ACVs) and HSV-1-ACV resistant (ACVr) and
presented low toxicity [80]. In particular, Phaeophyta (brown algae) produce several polysaccharides,
as alginates, laminarans, and fucoidans (Figure 3B) [99,100]. Fucoidans, found in seaweeds [101–107],
received a lot of attention due to their different antiviral activities [101,108]. Sulfated fucoidans from
Saccharina latissima appeared to be responsible of the inhibitory effect on various viruses such as HSV-1
and CVB3 [109]. SPs from three seaweeds (Grateloupia filicina, Ulva pertusa, and Sargassum qingdaoense,
i.e., Rhodophyta, Chlorophyta, and Ochrophyta, respectively) had immunomodulatory activity both
in vitro and in vivo, on Kunming mice model, against Avian influenza virus (AIV). G. filicina SP
exhibited the strongest anti-AIV activity [81]. Finally, polysaccharides from Sargassum naozhouense
(mainly alginates and fucoidan) exhibited strong antiviral activity against HSV-1 in vitro with EC50 of
8.92 µg/mL [83].

5. Marine Plants

In this section we consider marine plants both seagrasses and mangrove. Seagrasses are angiosperms
(floweringplants), evolvedfromterrestrialplantswhichhaveadaptedto live inmarineenvironments [110,111],
and that live fully submersed in the sea [112]. Seagrasses can form extensive meadows distributed along
temperate and tropical regions [113], influencing oxygen and carbon fluctuations in coastal areas [114],
whose physiology and population structure have been shown to be influenced by biotic and abiotic stressors,
including human effects and global changes [115–117]. Seagrasses, besides having an important ecological
role [118], have also been used as traditional medicine [119]. Mangrove forests are composed by halophytic
plants, and are mainly distributed in the tropical and subtropical regions [120,121]. The mangroves belonging
to the genus Sonneratia (family Sonneratiaceae) have been used as traditional medicines for the treatment of
several diseases [122].

5.1. Seagrasses

In the last decade, only a few numbers of compounds from seagrasses has been found to possess antiviral
activity (Table 5). Two different studies find out antiviral properties of Thalassodendtron ciliatum. T. ciliatum is a
common seagrass in the Red Sea, Tropical Indo-Pacific regions, Temperate Southern Ocean, the western part of
Indian Ocean [123]. Thalassodendrone (6′-O-rhamnosyl-(1′′′→6′′)-glucopyranosyl asebogenin) (Figure 3C)
has been reported to possess anti Influenza A virus activity. In order to evaluate the antiviral activity,
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MDCK cells were infected with Influenza A viruses and then treated in the presence of Thalassodendrone.
Antiviral activity was reported as reduction of virus-induced cytopathogenicy. Thalassodendrone reduced
cytopathogenicy with an IC50 of 1.96 µg/mL [124]. The phenolic compounds asebotin (2′,4,6′-trihydroxy-4′-
methoxydihydrochalcone 2′-O-β-d-glucopyranoside), quercetin-3-O-β-d-xylopyranoside and trans-caffeic
acid (Figure 3C) isolated from the same seagrass showed viral activity percentage reduction (96%, 70%,
and 53% respectively) by plaque formation assay against HSV-1 at 2 mM [125].

Table 5. The table report antiviral compounds/extracts from marine plants. HCV, Hepatitis C virus; HIV,
Human Immunodeficiency virus; HSV-1, Herpes Simplex virus 1; TBE, Tick-Borne Encephalitis virus.

Compound/Extract Organism Which Virus? Mechanism of Action Reference

Thalassiolin D—diosmetin
7-O-β-glucoside-2”-sulphate

Seagrass—
Thalassia hemprichii HCV Inhibition of HCV

NS3-NS4A protease [126]

Dimeric Alkylresorcinols Mangrove—
Sonneratia hainanensis HIV-1 HIV-1 integrase inhibition [127]

Asebotin, quercetin-3-O-β-d-
xylopyranoside trans-caffeic acid

Seagrass—
Thalassodendron ciliatum HSV-1 Inhibition of plaque formation [125]

Khayanolides Mangrove—
Xylocarpus moluccensis Influenza A virus (H1N1) Cytopathic effect inhibition [128]

6′-O-rhamnosyl-(1′′′→6′′)-
glucopyranosyl

asebogenin—Thalassodendrone

Seagrass—
Thalassodendron ciliatum Influenza A virus Reduce virus toxicity [124]

Triterpenoids Mangrove—
Sonneratia paracaseolaris Influenza A virus (H1N1) Cytopathic effect inhibition [129]

polyphenol complex Seagrass—Zosteraceae TBE virus Reduction of virus titer [130]

Hawas et al. [126] isolated Thalassiolin D (diosmetin 7-O-β-glucoside-2”-sulphate) (Figure 3C),
a flavone O-glucoside sulphate, from the seagrass Thalassia hemprichii. Thalassia sp. has already been
reported to be source of various flavonoids that displayed wide range of biological properties, such as
antibacterial [131] and anti-oxidative and skin-regenerating activities [132]. T. hemprichii is typically
from tropical Indo-Pacific regions and Red Sea [123]. Thalassiolin D has been found to inhibit HCV
protease, in in vitro assay, with an IC50 of 16 µM [126].

Antiviral activity of the polyphenol complex (PPC) from seagrasses of the Zosteraceae family
was also studied [130]. Zosteracea species have been found to be widely distributed along different
regions, such as temperate North Atlantic, temperate North Pacific, temperate Southern Ocean and
Mediterranean [123]. Polyphenol complex from Zosteraceae mainly consists of rosmarinic acid, luteolin,
and luteolin disulfate [133]. The polyphenol complex was tested against highly pathogenic strain
of the Tick-borne encephalitis (TBE) virus of the Far-Eastern subtype Dalinegorsk (Dal), on porcine
embryo kidney (SPEV) cells. Highest viral titer reduction was found in viral particles pretreatment in
the presence of PPC (IC50 80.8 µg/mL), when applied at the early stage of virus penetration PPC reduce
virus titer with an IC50 > 100 µg/mL. Moreover, no significant reduction in virus titer was observed
when SPEV cells were pretreated in the presence of PPC [130].

5.2. Mangroves

Several types of compounds have been found in mangroves (Sonneratiaceae) such as flavonoids,
aromatic compounds, steroids, triterpenoids and alkaloids [134], and they have shown antioxidant [135]
and cytotoxic activities [136]. The mangrove Sonneratia hainanensis, typical from Chinese coasts, has been
found to possess several dimeric alkylresorcinols [127] (ARs, amphiphilic 1,3-dihydroxy-5-alkylbenzene
homologues) that have shown to be a promising class of active secondary metabolites [137–139].
Two dimeric ARs, named integracins A and B, have been shown to have HIV-1 integrase inhibitory
activities, with IC50 values of 3.2 and 6.1 µM, respectively [127]. Gong et al. [129] tested antiviral
activity of triterpenoids isolated from Sonneratia paracaseolaris, a mangrove typically from China [140].
The isolated compound Paracaseolin A (1b,3b-dihydroxy botulin) was tested against influenza A H1N1
virus and the inhibition of viral activity was evaluated by cytopathic effect of the virus on MDCK
cells. Paracaseolin A inhibited viral cytopathic activity with an IC50 value of 28.4 µg/mL. Xylocarpus
moluccensis (Meliaceae) is a common mangrove from South Thailand [128], that produce several
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limonoids (modified tetranortriterpenoids) [141,142]. Khayanolides (Figure 3C), a class of limonoids,
were isolated from the mangrove X. moluccensis. Three isolated khayanolides, named Thaixylomolins I,
K, and M, exhibited anti-H1N1 activities, with IC50 values of 77.1, 113.5, and 121.5µM, respectively [128].
Even if a huge number of secondary metabolites have been extracted from mangroves [119,122,125],
only a small number of studies reported antiviral compounds (Table 5).

6. Marine Invertebrates

So far, lots of antiviral agents have been described from marine invertebrates [9,17,113,143–146],
where the most promising organisms are represented by marine sponges [147]. Despite the numbers of
antivirals found from marine invertebrates, only a few of them are on clinical trials or have been approved
for drug marketing [148]. The antiviral compounds described in the last decade are listed in Tables 6–11.

Table 6. The table report antiviral compounds/extracts from marine sponges. HBV, Hepatitis B virus;
HCV, Hepatitis C virus; HIV-1, Human Immunodeficiency virus type 1; HSV-1, Herpes Simplex virus 1;
SINV, Sindbis virus; TMV, Tobacco Mosaic virus.

Compound/Extract Species Which Virus? Mechanism of Action Reference

Metachromin A Dactylospongia metachromia HBV Inhibition of HBV core
promoter activity [149]

Polybrominated
diphenyl ethers Dysidea sp. HBV Inhibition of HBV core

promoter activity [150]

Manoalide Luffariella variabilis HCV Binding to a conserved helicase
motif of the NS3 viral protein [151]

Psammaplin A Psammaplysilla sp.,
Poecillastra sp. and Jaspis sp. HCV Block of viral NS3 RNA helicase

and ATPase activities [152]

Aaptamine alkaloids Aaptos aaptos HIV-1 Not specified [153]

Baculiferins C, E–H and K–N Iotrochota baculifera HIV-1 Interaction with Vif,
APOBEC3G and gp41 proteins [154]

Bengamide A Jaspis cf. coriacea HIV-1 Interaction with LTR NF-κB
response elements [155]

Mirabamides E-H Stelletta clavosa HIV-1 Not specified [156]
Stellettapeptins A-B Stelletta sp. HIV-1 Not specified [157]

Manzamine A Haliclona and
Acanthostrongylophora genera HSV-1 Not specified [158]

TSH fraction, halistanol
sulfate and

halistanol sulfate C
Petromica citrina HSV-1

Inhibition of viral
attachment/penetration and

reduction of ICP27 and gD levels
[159]

Pateamine A Mycale sp. SINV Block of viral mRNA translation
by targeting eIF4A complex [160]

Nortopsentins Spongosorites ruetzleri TMV Not specified [161]

Table 7. The table report antiviral compounds/extracts from mollusks. EBV, Epstein-Barr virus; HIV-1,
Human Immunodeficiency virus type 1; HSV-1, Herpes Simplex virus 1; HSV-2, Herpes Simplex virus
2; OsHV-1, Ostreid herpesvirus 1; VHSV, Viral Hemorrhagic Septicemia virus.

Compound/Extrasct Species Which Virus? Mechanism of Action Reference

RvH and the functional
units RvH1-a/RvH2-e Rapana venosa EBV Not specified [162,163]

Three hemocyanin fractions Haliotis rubra HIV-1
Binding to the viral surface

through gD, gB, and gC
glycoproteins

[164]

Cavortins Crassotea gigas HSV-1 Not specified [165]
Hemolymph Haliotis laevigata HSV-1 Not specified [166]

Myticin C, modified and
nanoencapsulated Mytilus galloprovincialis OsHV-1, HSV-1/HSV-2 Not specified [167]

Hemolymph and Myticin C Mytilus galloprovincialis VHSV Not specified [168]
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Table 8. The table report antiviral compounds/extracts from cnidarians, CHIKV, Chikungunya virus;
HCMV, Human Cytomegalovirus; HSV-1, Herpes Simplex virus 1; RSV, Respiratory Syncytial virus.

Compound/Extract Species Which Virus? Mechanism of Action Reference

Norcembranoids and
sesquiterpenoid Sinularia kavarattiensis CHIKV Not specified [169]

Briacavatolides C-F Briareum excavatum HCMV Not specified [170,171]
Durumolide J Lobophytum durum HCMV Not specified [172]

Ehrenbergol C and acetyl
ehrenberoxide B Sarcophyton ehrenbergi HCMV Not specified [173]

Gyrosanols A and B Sinularia gyrosa HCMV Not specified [174]
Hipposterone N Isis hippuris HCMV Not specified [175]
Secocembranoid Lobophytum crassum HCMV Not specified [176]
Zoanthoxanthins Echinogorgia pseudossapo HSV-1 Not specified [177]

Polyhydroxylated sterol and
ceramide derivatives Sinularia candidula Influenza A virus (H5N1) Not specified [178]

Polyhydroxylated steroids Sarcophyton sp. Influenza A virus (H1N1) Not specified [179]
Echrebsteroids A–C Echinogorgia rebekka RSV Not specified [180]

Table 9. The table report antiviral compounds/extracts from crustaceans. FCV-F9, Feline Calicivirus F9;
WSSV, White Spot Syndrome virus; VP28, viral envelope protein.

Compound/Extract Species Which Virus? Mechanism of Action Reference

Chitosan Several crustacean
species

MS2/phi X174 phages and
FCV-F9 Not specified [181]

Crustin, Sp-Crus6 Scylla paramamosain WSSV Not specified [182]

Hemocyanin, LvHcL48 Litopenaeus vannamei WSSV Interaction to the viral
envelope protein VP28 [183]

Hemocyte proteins, Sp-ALFs Scylla paramamosain WSSV Not specified [184]
Peroxinectin analog, Sp-PX Scylla paramamosain WSSV Not specified [185]

Scygonadin Scylla paramamosain WSSV Not specified [186]
SWD, LvSWD3 Litopenaeus vannamei WSSV Not specified [187]

β-thymosin-repeat proteins Marsupenaeus japonicus WSSV Not specified [188]

Table 10. The table report antiviral compounds/extracts from echinoderms. HBV, Hepatitis B virus;
HIV-1, Human immunodeficiency virus type 1; HSV-1, Herpes simplex virus 1; HSV-2, Herpes simplex
virus 2, PrV, Pseudorabies virus; PLA2, phospholipase A2.

Compound/Extract Species Which Virus? Mechanism of Action Reference

Acidic mucopolysaccharide, SJAMP Stichopus japonicus HBV Not specified [189]
AP-PLA2 from crude venom Acanthaster planci HIV-1 Not specified [190]

Comaparvin Capillaster multiradiatus HIV-1 Not specified [191]
Seven hydrolysates Cucumaria frondosa HSV-1 Not specified [192]

Sulfated sterols Echinoderms from
cold waters HSV-1, HSV-2 and PrV Not specified [193]

Table 11. The table report antiviral compounds/extracts from tunicates. HIV-1, Human Immunodeficiency
virus 1; HSV-1, Herpes simplex virus 1; JEV, Japanese Encephalitis virus; IPV, Inactivated Polio vaccine;
TMV, Tobacco Mosaic virus.

Compound/Extract Species Which Virus? Mechanism of Action Reference

Prunolide A and Cadiolide B Synoicum prunum and
Botryllus sp. JEV Not specified [194]

Mollamide F, Molleurea A
and Mollamide E Didemnum molle HIV-1 Inhibition of viral replication

and HIV-1 integrase [195]

Eudistomin C Ritterella sigillinoides HSV-1 and IPV-1
Interaction to the

uS11-containing small
ribosomal subunit

[196]

Polycarpaurines A and C Polycarpa aurata TMV Not specified [197]

6.1. Sponges

Since the first sponge-derived antiviral drug, Ara-A (Figure 4), was discovered as an anti-HSV-1,
KOS strain agent [198,199], a great interest was addressed to marine sponges for exploring new
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pharmaceuticals [147,200]. Palem et al. [158] evaluated an anti HSV-1 activity in the sponge-derived
alkaloid, Manzamine A, firstly isolated by Sakai et al. [201] as an antitumor compound. To test the
antiviral capability, a recombinant virus, expressing the enhanced green fluorescent protein (EGFP),
HSV-1 EGFP, was used to infect Seruminstitut Rabbit Cornea (SIRC) cells. The results showed a
reduction of GFP expressing SIRC cells in those treated with manzamine A (1 µM) and, in addition,
the viral release, quantified by a plaque assay, was reduced by 1011-fold. Moreover, the n-butanol
fraction (BF), the halistanol-enriched fraction (TSH fraction) and the TSH isolated compounds halistanol
sulfate and halistanol sulfate C, obtained from the crude extract of Petromica citrina, were tested against
HSV-1 virus. The TSH fraction was the most active on HSV-1 replication (SI = 15.33) in comparison to
halistanol sulfate (SI = 2.46) and halistanol sulfate C (SI = 1.95). Since a good synergism was detected
between halistanol sulfate and halistanol sulfate C, the anti-HSV-1 efficacy of TSH fraction probably
could depend on the cooperation of the two halistanol sulfates [159].Biomolecules 2020, 10, x 19 of 38 
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Fan et al. [154] demonstrated a strong activity of several pyrrole alkaloids from the Chinese marine
sponge Iotrochota baculifera against another group of viruses, the HIV type 1 (HIV1). Thanks to in vitro
tests on the HIV-1 susceptible MT4 and the single life cycle MAGI cells (HeLa-CD4-LTR-b-gal cell
line), the mechanism of these compounds, Baculiferins C, E–H and K–N, (Figure 4) was described as a
strong interaction with three main targets: (i) HIV-1 trans-membrane protein (gp41), (ii) HIV-1 viral
infectivity factor (Vif) and (iii) human innate intracellular anti-viral factor (APOBEC3G). SPs, isolated
from three sponges, Erylus discophorus, Cliona celata and Stelletta sp., were also tested for anti-HIV-1
activity. In addition, four depsipeptides (Mirabamides E–H, Figure 4) isolated from species belonging
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to Stelletta genus, showed promising results. Increasing concentrations of Mirabamides E-H displayed
a strong inhibition of viral replication in genital epithelial cell model (TZM-bl target cells, constitutively
expressing CD4 and CCR5 HIV-1 receptors), with IC50 values of 40 nM for Mirabamide H, 65 nM for
Mirabamides F–G) and 120 nM for Mirabamide E [156]. Additional depsipeptides, Stellettapeptins
A-B (Figure 4), isolated from the same genera were also analyzed. Bioactivity testing on human T-cell
line (CEM-SS) infected with HIV-1RF virus was performed and a significant reduction of the HIV-1
cytopathic effect (EC50 = 23 and 27 nM) was observed in samples treated with the sponge-derived
depsipeptides [157]. Furthermore, Yu et al. [153] found an anti-HIV-1 activity in several aaptamine
alkaloids, isolated from Aaptos aaptos species. Among eight compounds tested, two of them revealed a
good inhibition of HIV-1 (77.3–88%) at 10 µM. Recently, Bengamide A (Figure 4), firstly isolated by
Quinoa et al. [202] from Jaspis cf. coriacea, has been shown to be potent anti-HIV-1 agent. In particular,
treatments of CD4+ T-lymphocyte cell line encoding for a GFP reporter and infected with HIV-1NL4.3,
induced a good inhibition of viral replication, with EC50 values of 0.015 µM [155]. Moreover, HIV-1
LTR NF-κB response elements were demonstrated to be necessary for Bengamide A activity, since
treated Jurkat T cells coding for an LTR-driven luciferase construct and mutated NF-κB elements
(pLTRmNF-κB-RL) were less responsive in terms of luciferase activity (EC50 > 3 µM) [155].

Several sponge-derived compounds were efficient antiviral agents against human hepatitis such
as, HCV, Hepatitis B virus (HBV) and Hepatitis A virus (HAV). A sesterterpenoid antibiotic isolated
from the sponge Luffariella variabilis [203], Manoalide (Figure 4), was investigated for HCV activity [151].
This compound acted as a potent inhibitor of the NS3 RNA helicase and NTPase activity (IC50 of 15
and 70 µM, respectively,) essential for the replication of viral genomic RNA. The results suggested that
manoalide was able to bind a conserved helicase motif of the NS3 viral protein, interfering with its
ATPase function [151]. The same authors found an additional HCV-NS3 antagonist, the sponge-derived
Psammaplin A (Figure 4) [152,204]. In particular, they demonstrated that, this brominated tyrosine
derivative, blocks the NS3 RNA helicase (IC50 = 17 µM) and ATPase (IC50 = 32 µM) activities but,
although the viral replication was inhibited in HCV replicon cells, a low SI index was calculated.
For this reason, a possible chemical modification was suggested in order to improve the anti-HCV
efficacy [152]. An anti-HCV activity was also evaluated in the extracts and fractions of two marine
sponges, Homaxinella tanitai and Microxina subtilis.

A group of diverse samples collected from the coral reefs of Indonesia were screened against
the HBV core promoter activity, which is fundamental for viral replication [150]. More specifically,
two polybrominated diphenyl ethers (PBDEs), isolated from Dysidea sp., were found potent inhibitors
when incubated with pGL4.18 CURS_BC_AeUS transfected Huh7 cells encoding for the HBV promoter
regions. In addition, the anti-HBV activity was also confirmed by Real Time-qPCR approach and MTS
assay [150]. To extend their knowledge on sponge-derived anti-HBV agents, Yamashita et al. [149]
further investigated several compounds for identifying those able to inhibit the HBV core promoter.
Among fifteen terpenes tested, metachromin A (Figure 4), a merosesquiterpene purified from
Dactylospongia metachromia, was considered a good antiviral agent by inhibiting the core promoter and
viral replication with EC50 value of 0.8 µM (SI = 19.6). Studying the anti-HBV activity of metachromin
A derivatives and analogues, the hydroquinone group and the double bonds of C-5 and C-9 were
found essential for HBV core promoter blocking [149]

González-Almela et al. [160] focused on a diverse family of viruses, the Sindbis virus (SINV),
transmitted by mosquitoes causing the sindbis fever in humans. Pateamine A (PatA) (Figure 4), a natural
compound synthetized by the sponge Mycale sp., was a potent suppressor of SINV subgenomic mRNA
(sgmRNA) translation by targeting eIF4A complex, composed of the cap-binding factor eIF4E, the helicase
and ATPase enzyme eIF4A and the scaffolding protein IF4G. Particularly, Baby Hamster Kidney (BHK)
fibroblast cells were infected with SINV virus and treated with PatA (100 nM). Immunoblotting using
specific monoclonal antibodies revealed that PatA inhibited the synthesis of early nonstructural proteins
(nsP1 and nsP2), leading to the block of viral RNA replication and transcription. However, SINV virus
was sensitive to PatA at early stages of viral infection, while a significant decrease of PatA efficacy was
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observed when treatment was applied during late viral processes [160]. In a recent study, a group of
alkaloids, called nortopsentins (Figure 4), isolated from Spongosorites ruetzleri, displayed in vitro and
in vivo antiviral activity against TMV and some of them were more active than the plant virucide ribavirin
at 500 µg/mL. Since chemical modifications were able to compromise or revert the antiviral activity,
these sponge-derived alkaloids were demonstrated to be very sensitive to substituents [161].

In addition, several extracts from sponges have been found to have antiviral activity. Methanol
extracts and n-butanol fractions of nine sponges were analyzed for anti-HSV-1 activity and the most
promising samples were those obtained from the Haliclona (Halichoclona) sp. and P. citrina species [205].
The organic extracts of Aka cachacrouense, Niphates erecta, and Dragmacidon reticulatum, were reported to
possess moderate activity against HSV1 [206]. The ethyl acetate extracts of H. tanitai and M. subtilis
showed antiviral activities against HCV [207], while, the crude extracts of Callyspongia crassa and
Callyspongia siphonella [208], and of Grayella cyathophora revealed anti-HAV activity [209].

6.2. Mollusks

Several antiviral compounds, especially hemocyanins [210], were described from mollusks and
many of them have diverse mechanisms of action against human pathogens [211,212]. The antimicrobial
peptide, Myticin class C (Myt C), mostly found in the hemocytes of the mussel Mytilus galloprovincialis,
was tested for its activity against the Viral Hemorrhagic Septicemia virus (VHSV) and Infectious
pancreatic necrosis virus (IPNV) [168]. CHSE-214 (Chinook salmon embryo) cells were transfected
with a plasmid encoding for MytC-eGFP sequences and then infected with VHSV virus. The viral
replication was evaluated by Real Time-qPCR using specific primer for the N protein of VHSV and for
the segment A of the IPNV genome. The results showed that a significant inhibition of VHSV replication
(about 75–85%) was induced by Myt C, while no significant effects were detected for IPNV virus [168].
The hemolymph of M. galloprovincialis and Myt C peptide also inhibited the replication of the ostreid
herpesvirus 1 (OsHV-1) in the hemocytes of oysters [167]. In addition, when Myt C was modified or
nanoencapsulated, a potent HSV-1/HSV-2 was found. In fact, significant SI values (>8.21 for HSV-1 and
>10.5 for HSV-2) were measured in treatments with the modified Myt-Tat, which was supplied with 13
additional C-terminal amino acid residues corresponding to the HIV-1 cell-penetrating peptide (CPP).
Significative SI values (>7.69 and >8.32 for HSV-1 and HSV-2, respectively) obtained with encapsulated
Myt C into commercially nanovesicles confirmed that the antiviral activity depended on the efficient
penetration inside the viral cells [167].

Dang et al. [213] used the hemolymph and peptide fractions, from the abalone, Haliotis laevigata,
for an antiviral screening against HSV-1. Vero cells in vitro tests revealed that the abalone hemolymph
significantly reduced the viral plaque number and size [213]. The hemolymph serum and three
hemocyanin fractions (R1, R2, and R3) of the other abalone species, Haliotis rubra, were tested against
HSV-1 infection. The antiviral efficacy of the three fractions was higher than the total serum with
SI values of 9.9 (R1), 12 (R2), 9.7 (R3), and 2.6 (serum). Moreover, hemocyanin directly binds the
viral surface through the glycoproteins gD, gB, and gC, inhibiting its entry in the host cell [164].
Since Zanjani et al. [214] found that a synthetic formulation of hemocyanin with the disaccharide
trehalose was stable and with a long shelf life, being this abalone-derived compound a good candidate
for pharmacological applications. The anti-HSV-1 capability of the H. rubra was influenced by water
temperature, since the highest activity was found in February (26.5 ◦C; plaque reduction = 63.76%),
while the lowest in September (12.5 ◦C; plaque reduction = 46.04%). These data were confirmed by
in vitro experiments, which demonstrated a greater activity at 24 ◦C (plaque reduction = 72.5%) than
18 ◦C (plaque reduction = 40%) after seven days of incubation [215]. A comparative study on the
abalones H. laevigata, H. rubra and their hybrid was also performed. Plaque reduction assays in HSV-1
infected Vero cells treated with the hemolymph showed no significant differences between H. laevigata,
H. rubra and the hybrid. Interestingly, a higher anti-HSV-1 activity was observed in the hemolymph
from wild individuals than farmed ones [166].
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A different work published by Green et al. [165], described the anti-HSV-1 activity of protein
fractions obtained from the hemolymph of the Pacific oyster Crassotea gigas. The most active fraction,
evaluated by Vero cells plaque assay, was then analyzed through LC/MS-MS approaches, which showed
the presence of the typical glycoproteins called cavortins. The Hemocyanin RvH extracted from another
mollusc, the marine snail Rapana venosa, was investigated for its activity against Epstein-Barr virus
(EBV) on the lymphoblastoid B-cells Raji line. PCR approaches showed that RvH reduced the number
of genomic equivalents of EBV DNA with 50% inhibitory dose (ID50) of 1 µg/mL [162]. Two structural
subunits (RvH1 and RvH2) of R. venosa hemocyanin, including the functional units RvH1-a and
RvH2-e, were also active against EBV virus, reducing the viral replication (at 1, 10, and 100 µg/mL) in
lymphoblastoid cells of B-phenotype (Raji, B95-8 and Namalwa) [163].

6.3. Cnidarians

Among Antozoa, soft corals, especially those belonging to the Alcyoniidae family, are recognized
as a rich source of a large variety of bioactive molecules, ranging from sesquiterpenes to diterpenes,
polyhydroxylated steroids, and polyamine metabolites [38,216], with cytotoxic, anti-inflammatory and
antimicrobial activities [216]. Studies carried out on Sinularia gyrosa led to the discovery of interesting
antiviral compounds, such as an unusual norcembrane-type diterpenoid and three new gyrosanols [216].
Two of these gyrosanols (Gyrosanols A, Figure 5, and B), structurally related to compounds identified
in other Antozoans [217–220] showed antiviral activity against Human cytomegalovirus (HCMV)
with an IC50 value of 6,6 µM [174]. In addition, a Durumolide J-like (Figure 5) compound identified
in Lobophytum durum and a Secocembranoid (Figure 5) isolated from Lobophytum crassum exhibited
significant antiviral activity against HCMV with IC50 values of 14.3 µM [172] and 12.7 µM [176],
respectively. Lobophyton is not the only soft coral able to produce anti-HCMV compounds. In fact,
the acetone extract of Sarcophyton ehrenbergi, sampled along Taiwan shores, was found rich in antiviral
diterpenoids and two of them, called Ehrenbergol C and Ehrenberoxide B (Figure 5), demonstrated an
antiviral activity toward HCMV with IC50 values of 52.8 and 21.9 µM, respectively [173]. An activity
against HCMV was also observed from the polyoxygenated steroid Hipposterone N (Figure 5),
isolated from the wide distributed gorgonian Isis hippuris (EC50 values of 6.0 µg/mL) [175] and in
Briacavatolides C (Figure 5) and F, two briarane-type diterpenoids isolated from acetone extract of
Briareum excavatum, which showed IC50 of 18 µM (Briacavatolides C) and a 50% effective dose (ED50)
of 22 µM (Briacavatolides F) [170,171].
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Sinularia and Sarcophyton species produced an interesting bioactive compound with antiviral properties
against various influenza strains. A polyhydroxylated sterol together with three new ceramide derivatives
were isolated from Sinularia candidula, a soft coral living in the Egyptian Red Sea. These compounds
exhibited selective antiviral activity against the orthomyxovirus of the avian influenza H5N1, revealed by
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plaque reduction assay in MDCK cells [178]. Activity against orthomyxovirus (H1N1) were displayed from
two polyhydroxylated steroids produced by Sarcophyton sp. collected in the South China Sea, with IC50

values of 19.6, 38.6, and 73.06 µM, in comparison with the positive control ribavirin (IC50 = 102.21 µM) [179].
Eunicea and Pseudopterogorgia gorgonian species are rich sources of bioactive compounds, such as

sesquiterpenes, cembranoid, and fuscoside diterpenes, which showed an antiviral activity through an
unrecognized mechanism of action in addition to the well-known anti-inflammatory and anti-bacterial
potential. Investigations on Echinogorgia rebekka led to the identification of three echrebsteroids (Figure 5),
showing moderate (Echrebsteroid A, IC50 = 0.78 µM) and strong antiviral activity (Echrebsteroids B and
C, IC50 = 0.19 µM) against the Respiratory syncytial virus (RSV) in human laryngeal carcinoma (Hep-2)
cells [180]. From a strictly related species, Echinogorgia pseudossapo, anti-HSV-1 compounds were
also isolated and characterized. In particular, the compound pseudozoanthoxanthins III and another
zoanthoxanthin alkaloid (Figure 5) displayed interesting activities against HSV-1 [177]. Moreover,
anti-HSV-1 activity of the extracts from three additional gorgonian species, Eunicea succinea, Eunicea fusca,
and Pseudopterogorgia elisabethae was evaluated. In particular, these diterpens-rich octocorals showed
antiviral activity with IC50 values ranging from 50 to 62.5 µg/mL [206].

In addition, organic extracts of Lobophyton microlobulatum and Sarcophyton auritum showed anti-CHIKV
activity [221], as well as Sinularia kavarattiensis, whose activity was probably due to a synergic effect
of various norcembranoids and sesquiterpenoids (isolated in the biological active enriched chloroform
extract) with various levels of inhibition on the CHIKV virus replicon in BHK21 cell line [169]. Finally,
Cassiopia andromeda lipophilic fraction showed a potent inhibitory activity against HIV-1 protease [222].
In the same investigation, a moderate inhibition of HIV-1 protease was shown by the lipophilic fractions of
the soft corals Sinularia heterospiculata, Lithophyllum arboreum, and Sinularia maxima.

6.4. Crustaceans

Among crustaceans, several studies focused on potential antiviral agents against the White spot
syndrome virus (WSSV), which is a viral pathogen causing a severe epidemic disease in farmed animals [98].
Several molecules, especially antimicrobial peptides (AMPs), involved in crustacean immune response, were
considered as anti-WSSV agents. The hemocyte proteins (Sp-ALFs) from the mud crab, Scylla paramamosain,
were found potent anti-WSSV compounds when tested in hematopoietic tissue (Hpt) cell cultures from the
freshwater crayfish, Cherax quandricarinatus. In fact, Real Time-qPCR analyses revealed that the mRNA
levels of an early gene involved in WSSV replication (IE1), significantly decreased when Hpt cells were
infected with WSSV viruses pre-treated with Sp-ALFs proteins [184]. A similar work investigated the
anti-WSSV capability of Scygonadin, an AMPs from the crub S. paramamosain. A recombinant peptide was
firstly expressed in the yeast Pichia pastoris and then tested on Hpt cells with scygonadin at 25 µM or 50
µM. After 3 h of incubation with scygonadin-WSSV mixtures, a dose-dependent down-regulation of IE1
transcripts was detected [186]. Du et al. [185] described a novel Peroxinectin (PX) analog (Sp-PX) from
the same crub species S. paramamosain, which showed antiviral properties. Gills injections of plasmids
encoding for a WSSV sequence induced a strong up-regulation (about 10-fold increase) in the hemocytes
(12 h post-injection, hpi), revealed by Real Time-qPCR analyses using specific primers for Sp-PX gene.
Interestingly, Sp-PX was found down-regulated at 96 hpi, stimulating the hypothesis that Sp-PX played a
crucial role in the crub immune response during the early stage of WSSV infection. Recently, the same
authors further explored the role of a family of crustacean AMPs, called crustins. A recombinant crustin,
Sp-Crus6, was pre-incubated with WSSV viruses and injected in S. paramamosain crub gills. As a result, a
decrease of virion load was observed at 48, 72, and 96 hpi, detected by Real Time-qPCR amplification of
WSSV fragment [182].

Another group of compounds, β-thymosin-repeat proteins (mjthm4, mjthm3, and mjthm2), firstly
described in the freshwater crayfish Procambarus clarkii as antiviral agents released in response to
WSSV infections [223], were also found from the shrimp Marsupenaeus japonicus. Real Time-qPCR
revealed a significative up-regulation of β-thymosin transcripts in the hepatopancreas of shrimps
injected with WSSV viruses, reaching the highest values at 6 hpi (3.28-, 3.54-, 3.71-fold) [188]. The single
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whey acidic protein (WAP) domain (SWD)-containing proteins, a family of AMPs, were studied from
Litopenaeus vannamei, for its possible role in the antiviral immunity. In particular, RNA interference
(iRNA) of a novel SWD (LvSWD3) protein accelerated the death of WSSV infected shrimps and
significantly increased the viral load at 48 and 72 hpi in the shrimp muscle. To confirm the antiviral
activity, a recombinant LvSWD3 was expressed in Escherichia coli hosts and then used to treat shrimps.
As hypothesized by iRNA approach, the recombinant protein displayed antiviral capabilities, since a
viral load reduction in the muscle of infected shrimps was observed [187]. A shrimp hemocyanin
derived peptide, LvHcL48, was also evaluated in vitro and in vivo for its antiviral activity in L. vannamei.
Treatments of hemocyte cultures with LvHcL48 peptide-WSSV mixtures significantly attenuated the
transcription of two WSSV genes (wsv069 and wsv421). These results were confirmed by in vivo
experiments, demonstrating that WSSV pre-treated viruses with LvHcL48 peptides decreased the
wsv069/wsv421 mRNA levels at 6, 12, and 24 hpi compared to the control group (PBS + WSSV).
In addition, Far-Western blotting assay on WSSV lysates demonstrated that LvHcL48 was able to
interact to the viral envelope protein VP28 [183].

Antiviral activity of the crustacean-related compound, chitosan, on human Norovirus and enteric
virus surrogates, plus Feline Calicivirus (FCV-F9), Murine Norovirus (MNV-1) and two bacteriophages
(MS2 and phiX174) was also evaluated. Chitosan is a marine polysaccharide of crustacean’s exoskeleton
with a potent antimicrobial agent against both Gram-negative and Gram-positive bacteria [224]. Plaque
reduction assays, performed in host cells infected with virus/chitosan mixtures, revealed that chitosan
was mostly active on MS2/phi X174 phages and FCV-F9, and, in some cases, the molecular weight
(MW) of chitosan and medium pH strongly influenced the antiviral capability, suggesting that further
studies were needed before proposing this polysaccharide for pharmacological applications [181].

6.5. Echinoderms

Marine organisms belonging to Echinodermata are also rich source of bioactive compounds although
a low chemical diversity has been recorded compared to other phyla [38]. Echinoderm-derived natural
products were mostly sulfated compounds that can be classified into two mayor groups, aromatics and
saponins. In the last decade, saponins isolated from sea cucumbers are receiving a greater attention
due to their interesting biological features [225,226]. Conversely, aromatic sulfated compounds
were mostly reported in crinoids and ophiuroids as pigments deriving from anthraquinones or
naphthoquinones [227].

The phospholipase A2 (AP-PLA2) from the sea star Acanthaster planci was evaluated for its
anti-HIV-1 activity. In particular, treatments with AP-PLA2 significantly reduced the number of
infected phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMC). Moreover,
Real Time-qPCR and gel electrophoresis revealed that the expression of the HIV group-specific antigen
(Gag) strongly decreased in treated PBMC cells. The decline of infection rates was also confirmed by
immunofluorescence approaches [190].

Seven known naphthopyrones and a novel pyrano[2,3-f]chromene were recently isolated from the
water/ethanol extract of the Australian crinoid Capillaster multiradiatus and tested for HIV-1 potential.
Among all compounds, comaparvin (Figure 6A) displayed the highest activity in HIV-1NL4.3 infected
CEM-GXR cell lines, evaluated by GFP fluorescence after 72 h of treatment. Comaparvin showed EC50

values of 7.5 µM, while the other compounds reached EC50 values ranging from 14.5 to 25.5 µM [191].
A family of sulfated sterols isolated from cold water echinoderms together with their synthetic

derivatives and analogues [228–230] were tested on HSV-1, HSV-2 and Pseudorabies virus (PrV) strains.
Among the twelve sterols investigated, disodium 2b,3a-dihydroxy-6E-hydroximine-5a-cholestane-2,3-
disulfate was the most effective, with a broad spectrum of action since viral plaques were significantly
reduced in Vero cells infected with all viral strains (EC50 values of 16.5, 17.9, 17.2 µg/mL). Unfortunately,
two hemorrhagic-fever-causing viruses, Junín virus (JUNV) and Dengue virus (DENV), for which no
therapies are still available, the active sulfated steroid did not show any reduction, with higher EC50

values (>25 µg/mL) [193].
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The acidic mucopolysaccharide (SJAMP) from another sea cucumber species, Stichopus japonicus,
was tested in vivo for anti-HBV activity. HBV-DNA serum levels induced a dose-dependent reduction
detected by Real Time-qPCR, when mice were injected with increasing concentrations of SJAMP.
The histologic sections of liver tissues also showed a conspicuous number of inflammatory cells in the
interstitium and a visible increase of neutrophilic leukocytes and vacuoles [189].Biomolecules 2020, 10, x 24 of 38 
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Moreover, extracts from echinoderms were found to possess antiviral activity. The anti-HIV-1
activity was observed in the methanol and diethyl ether extracts from the sea cucumber, Holothuria
leucospilota [231]. The water extract of the sea cucumber Holothuria sp. was found active against HSV-1
virus [232]. Finally, anti-HSV-1 activity was also observed in hydrolysates and solvent extractions from
the pharyngeal bulb and internal organs of Cucumaria frondosa [192].

6.6. Tunicates

The first ascidian metabolite, geranyl hydroquinone, isolated from Aplidium sp., displayed chemo-
protective activity in leukemia, rous sarcoma and breast cancer treatments [233,234]. Since then, numerous
new bioactive compounds, mostly anticancer agents, have been discovered from tunicates [235–238]. For
instance, tunicate-derived compounds include trabectedin and its analogue lurbinectedin were clinically
approved for antitumor therapies [239]. Regarding tunicates-derived antiviral products, few recent
works were reported in literature. Two new cyclopeptides, mollamides E and F (Figure 6B), and a
new tris-phenethyl urea, molleurea A (Figure 6B), from the methanol extract of Didemnum molle, were
tested for HIV-1 activity. Mollamide F and molleurea A reduced viral replication in HIV-1 infected
cells with IC50 values of 78 and 60 µM, respectively, whereas mollamide E was only active on HIV-1
integrase (IC50 = 39 µM) [195]. The crude extract and a furanone metabolite, rubrolide R, isolated from
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the ascidian Synoicum, together with the known compounds rubrolide A, cadiolide B and prunolide
A (Figure 6B), were tested against the Japanese encephalitis virus (JEV). Among these compounds,
prunolide A and cadiolide B, previously isolated from Synoicum prunum [240] and Botryllus sp. [241],
showed antiviral properties in Vero cells against the JEV at 1.7 and 1.4 µM respectively [194]. A diverse
group of alkaloids, polycarpaurines A and C (Figure 6B), isolated from Polycarpa aurata were evaluated
against TMV virus and compared to the commercial virucide ribavirin. In vitro and in vivo experiments
of polycarpines and synthetic derivatives displayed controversial outcomes, since the presence of
sulfur groups increased the antiviral activity in cells, while the highest in vivo anti-TMV efficacies
were recorded when tested compounds lacking in S atoms [197]. The mechanism of action of another
antiviral agent, eudistomin C (EudiC) (Figure 6B), extracted from the New Zealand ascidian Ritterella
sigillinoides [242] was described by Ota et al. [196]. The activity against HSV-1 and Polio vaccine Type I
viruses was correlated to the block of protein translation by interacting to the uS11-containing small
ribosomal subunit in yeast [196].

6.7. Other Invertebrates

Additional antiviral activities were also found from the peanut worm Sipunculus nudus. This marine
organism, belonging to Sipuncula phylum, is considered by traditional Chinese medicine a rich source
of beneficial compounds used to treat a variety of diseases and for anti-aging purposes. Su et al. [243]
tested the water-soluble polysaccharides (SNP) extracted from S. nudus for antiviral activity against HBV
virus in human hepatoblastoma cell lines (Hep-G2/2.15), having a stable HBV expression. Treatments
with increasing concentrations of SNP compounds (1, 0.5, 0.25, and 0.13 mg/mL) significantly dropped
down the expression of HBV-DNA and Hepatitis B surface antigen (HBsAg) after 48 h of incubation.
In addition to antiviral evidences, the relative transcripts of pro-apoptotic genes increased the expression
of pro-apoptotic proteins TNF-α, caspase-3, and Bax in dose- and time-dependent manner, confirming
that these marine-derived compounds were also able to induce apoptotic events in Hep-G2/2.15 cells.

7. Marine Vertebrates

In the last 10 years, few studies reported antiviral activities from marine vertebrate, and all of
them mainly focused on peptides from fishes. The mucosal tissue of the fish is where the first encounter
between virus and host begins and several mechanisms act against pathogens in the mucus layer such
as mucus shedding and reproduction, mucosal antibodies, and antiviral peptides [244–246]. Antifreeze
peptides (AFPs) from marine polar fishes have high similarity to the AMPs, both in structural and
physical-chemical properties [247]. A modified antifreeze peptides (AFPs) from marine polar fish
Pleuronectes americanus, named Pa-MAP (multiple active peptides), has been shown to possess promising
biological activities. In order to test antiviral properties of Pa-MAP, Vero cells were infected with HSV-1
or HSV-2, and treated with the linear peptide. Pa-MAP reduced viral titer in the media of treated cells
and reduced virus titer of both HSV-1 and HSV-2 after infection of Vero cells. Pa-MAP induced 82% of
HSV-1 titer reduction at a concentration of 45 µM and 90% of HSV-2 at 23 µM [248]. Further studies
reported that Pa-MAP was able to damage viral particles thus affecting the viral adsorption [249].

PLA2 from the venom of red lionfish (Pterois volitans, PV) has been found to possess anti-HIV activity.
P. volitans is a nocturanal predator species that have native habitats in the Indo-Pacific oceans [250].
PV-PLA2 was tested on simian retrovirus-2-infected human cell line A549 cells (SRV2-A549). Analysis of
antiretroviral activity with were performed by Real Time-qPCR and cycle threshold (Ct) value was used
to evaluate the number of viruses in the sample. PV-PLA2 has been shown to affect antiretroviral activity
of SRV2, suggesting that PV-PLA2 can be a good anti-HIV drug candidate [251]. PLA2 from other source
has been also found to have antiretroviral activity against HIV [190,252,253].

8. Conclusions

Marine organisms are well-known to produce compounds with potential pharmaceutical
applications [2]. This review show that marine organisms can produce a plethora of compounds with
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antiviral activities (i.e., against HIV, HSV, HHV, Influenza A virus, Vaccinia virus, SRV-2, HAV, HBV, HCV;
EBV, Enterovirus, HCMV, JEV, TMV, PrV, WSSV, MS2, CHIKV, OsHV, SINV, TBE, PRRSV, EV-71, FIPV,
MHV, BVDV, KHV, WEEV,). Different classes of compounds have been found, such as carbohydrates,
exopolysaccharides, lipids, peptides, alkaloids, polyphenols, steroids, polyketides, terpenoids and
zoanthoxanthins. However, until now only one marine derived compound with antiviral activity
reached the market, Ara-A (against Herpes Simplex Virus) and another one, Griffithsin, is in clinical
trials (against HIV). Actually, the pipeline from the identification of a compound with a certain
bioactivity till the production of an approved drug involves pre-clinical tests, clinical trials in humans,
and approval by FDA. This pipeline generally last 10–15 years, costing millions of dollars [254] and
with less than 12% of the potential drugs receiving final approval [255] (Figure 7).Biomolecules 2020, 10, x 26 of 38 
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Recent COVID-19 pandemic event demonstrated the need of further necessity to invest in the
search of new marine natural products with antiviral activity [256], as well as to explore the immense
marine environment because several organisms are still underexplored. In view of using eco-friendly and
eco-sustainable approaches to drug discovery (in line with the European perspective of a Blue Economy
based on marine resources), microorganisms, especially those easily cultivable, have been considered
emerging and promising sources of novel bioactives. In fact, isolation from macrorganisms should require
massive collection practices. To overcome this problem, various approaches have been considered, from
chemical synthesis to heterologous expression and production [257]. In addition, recent efforts have
been also focused to discover new culturing methods to growth those that are considered “uncultivable
organisms” and to isolate new [5] compounds from them. The ocean represents a huge untapped source
of marine natural products with antiviral and other possible bioactivities useful for environment and
human health.
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