1 Supplementary Material

- CoRNeA: A pipeline to decrypt the inter protein interfaces from amino acid sequence
 information
- 4 Kriti Chopra¹, Bhawna Burdak¹, Kaushal Sharma², Ajit Kembhavi², Shekhar C. Mande³ and
- 5 Radha Chauhan 1*
- 6 1- National Centre for Cell Science, Pune.
- 7 2- Inter University Centre for Astronomy and Astrophysics, Pune
- 8 3- Council of Scientific and Industrial Research (CSIR), New Delhi

9 *Corresponding Author:

- 10 Dr. Radha Chauhan, Scientist 'E', National Centre for Cell Science, S.P. Pune University
- 11 Campus, Ganeshkhind, Pune 411007, Maharashtra, India.
- 12 Email: <u>radha.chauhan@nccs.res.in</u>
- 13 Phone: +91-20-25708255

14

- 16
- 17
- 18
- 19
- 20
- 21
- ~~

- 23
- 24

25

- 26 Figure S1: Flowchart depicting the feature generation for predicting pair of protein-
- 27 protein interaction interface residues

Amino Acid	Numeric Coding
V (Valine)	1
I (Isoleucine)	2
L (Leucine)	3
M (Methionine)	4
F (Phenylalanine)	5
W (Tryptophan)	6
Y (Tyrosine)	7
S (Serine)	8
T (Threonine)	9
N (Asparagine)	10
Q (Glutamine)	11
H (Histidine)	12
K (Lysine)	13
R (Arginine)	14
D (Aspartic Acid)	15
E (Glutamic acid)	16
A (Alanine)	17
G (Glycine)	18
P (Proline)	19
C (Cysteine)	20
- (Gap)	21
X (Non-Standard Amino Acid)	22

28 Table S1: Numeric Coding for amino acids used for co-evolution score calculations

30	Table S2: Comparison of known methods for PPI interface prediction with the new
31	hybrid method

Interface residues (PISA)			Various algorithms for finding contacts						
Nup107	Nup133	Distance(Å)	MI	DCA	Evfold	SCA	New Method (CMI)		
D 879	T 696	3.37	0.211	0.0139	0.0335	0.1601	0.804		
S 822	K 975	2.78	0.117	0.00569	0.0148	0.041	0.591		
E 884	K 975	2.69	0.117	0.00063	0.0135	0.0878	0.524		
D 917	K 966	2.53	0.0051	0.0031	0.0083	0.0497	0.642		
Y 921	K 966	3.37	0.1108	0.005	0.0193	0.1595	0.364		
E 922	R 962	3.18	0.389	0.0094	0.0129	0.1922	0.342		
K 894	D 982	3.82	0.174	0.0316	0.0032	0.0577	0.371		
R 898	A 980	3.28	0.0881	0.0063	0.0161	0.0101	0.233		
Q 902	Q 944	3.35	0.4174	0.0126	0.0064	0.378	0.159		

32 The interface residues for a test case as predicted by PISA. All values are rescaled between 0 and 1. MI:

33 Mutual information, DCA: Direct Coupling Analysis, SCA: Statistical Coupling Analysis.

40 Figure S2: Statistics for the Random Forest Classifier Model for predicting contact

- 41 **forming residue pairs without environmental features.** (A) Receiver-operator curve (ROC)
- 42 depicting Area under the curve (AUC) as 0.66 when the model is tested on the 75:25 data split.
- 43 (B) Confusion matrix for the tested model on 75:25 data split with a final accuracy of 80%

Figure S3: Statistics for the Random Forest Classifier Model for predicting contact forming residue pairs with environmental features. (A) Receiver-operator curve (ROC)

47 depicting Area under the curve (AUC) as 0.76 when the model is tested on the 75:25 data split.

(B) Confusion matrix for the tested model on 75:25 data split with a final accuracy of 86%

51 Figure S4: Feature Importance obtained from Random Forest Classifier without 52 environmental features.

Relative Solvent Accessibility (RSA) and Co-evolution Scores (CMI) as two of the most
important features in training the model. RSA: Relative Solvent Accessibility. CMI:
Conditional Mutual Information. CP: Contact Potential. SCM: Structure Compatibility
Matrix. CPB: Contact Potential for Buried residues. CPE: Contact Potential for Exposed
residues. CC: Charge Compatibility. HCM: Hydropathy Compatibility Matrix. SSP:
Secondary Structure Prediction.

Table S3: Evaluation of different kernel matrix derived random forest classifier on
 different test datasets

PDB ID	Type of secondary structure	Best Kernel Matrix	Number of true positive labelled	Actual true positives predicted with best kernel matrix
1GCQ	Loop:Loop Loop:Sheet	5*5	81	25
1Y8R	Helix:Helix Loop:Loop	3*3	157	23
4YDU	Helix:Helix	3*3	86	23
5YVT	Helix:Helix Sheet:Sheet Loop:Loop	5*5	164	64
3CQC	Helix:Helix	3*3	48	13

Protein	Accuracy	Precision	Recall	F1 score	Precision	Recall	F1 score	AUCROC
Complex	(%)	(macro)	(macro)	(macro)	(weighted)	(weighted)	(weighted)	
1A2K	82	0.51	0.75	0.47	0.99	0.82	0.89	0.75
1B6C	95	0.50	0.48	0.49	1.00	0.95	0.97	0.484
1BUH	84	0.50	0.51	0.46	0.99	0.84	0.91	0.51
1E6E	98	0.50	0.53	0.50	0.99	0.98	0.98	0.53
1E 96	84	0.51	0.76	0.47	1.00	0.84	0.91	0.76
1GRN	91	0.51	0.69	0.49	1.00	0.91	0.95	0.69
1GXD	90	0.50	0.60	0.48	1.00	0.90	0.95	0.6
1H1V	87	0.50	0.63	0.47	1.00	0.87	0.93	0.63
1H9D	78	0.50	0.42	0.44	0.98	0.78	0.87	0.42
1HE8	93	0.50	0.66	0.48	1.00	0.93	0.96	0.66
1I2M	91	0.50	0.58	0.48	0.99	0.91	0.95	0.58
1I4D	84	0.50	0.60	0.46	1.00	0.84	0.91	0.6
1IB1	91	0.50	0.57	0.48	0.99	0.91	0.95	0.57
1IBR	91	0.50	0.74	0.48	1.00	0.91	0.95	0.74
1JWH	95	0.50	0.47	0.49	1.00	0.95	0.97	0.47
1K5D	93	0.50	0.53	0.49	0.98	0.93	0.95	0.53
1KTZ	86	0.50	0.43	0.46	0.99	0.86	0.92	0.43
1LFD	89	0.52	0.75	0.50	0.99	0.89	0.93	0.75
1NVU	96	0.50	0.54	0.50	0.99	0.96	0.98	0.54
1NW9	98	0.50	0.50	0.50	0.99	0.98	0.98	0.5
10PH	97	0.50	0.55	0.49	1.00	0.97	0.98	0.55
1RV6	78	0.50	0.55	0.44	0.99	0.78	0.87	0.55
1S1Q	69	0.51	0.74	0.43	0.99	0.69	0.80	0.74
1WQ1	90	0.51	0.82	0.49	1.00	0.90	0.95	0.82
1XD3	80	0.50	0.62	0.46	0.99	0.80	0.88	0.62
1XQS	94	0.51	0.59	0.50	0.99	0.94	0.96	0.59
1Z0K	87	0.51	0.63	0.49	0.98	0.87	0.92	0.63
2C0L	96	0.50	0.54	0.5	0.99	0.96	0.98	0.54
2HLE	95	0.51	0.56	0.51	0.99	0.95	0.97	0.56
200B	70	0.50	0.49	0.42	0.98	0.70	0.82	0.49
20ZA	96	0.50	0.49	0.49	1.00	0.96	0.98	0.49
2PCC	84	0.50	0.74	0.46	1.00	0.84	0.91	0.74
3AAA	92	0.50	0.55	0.49	0.99	0.92	0.95	0.55
3CPH	90	0.50	0.71	0.48	1.00	0.90	0.95	0.71
3DAW	87	0.50	0.65	0.47	1.00	0.87	0.93	0.65
3F1P	94	0.50	0.47	0.48	0.99	0.94	0.96	0.47
3H2V	90	0.50	0.53	0.48	0.99	0.90	0.94	0.53
3K75	96	0.50	0.50	0.49	1.00	0.96	0.98	0.5
3R9A	98	0.50	0.58	0.50	1.00	0.98	0.99	0.58
5C3L_AB	94	0.50	0.57	0.49	1.00	0.94	0.97	0.57
5C3L_AC	88	0.50	0.52	0.49	0.97	0.88	0.92	0.52
5C3L_BC	91	0.50	0.55	0.48	0.99	0.91	0.95	0.55

61 Table S4: Leave-one-out method for testing random forest component of CoRNeA

Protein	Accuracy	Precision	Recall	F1 score	Precision	Recall	F1 score	AUC ROC
Complex	(%)	(macro)	(macro)	(macro)	(weighted)	(weighted)	(weighted)	
1A2K	82	0.51	0.89	0.48	1.00	0.97	0.89	0.89
1B6C	96	0.52	0.94	0.52	1.00	0.96	0.98	0.94
1BUH	84	0.52	0.87	0.49	0.99	0.84	0.91	0.87
1E6E	98	0.55	0.88	0.59	1.00	0.98	0.99	0.88
1E 96	86	0.51	0.91	0.48	1.00	0.86	0.92	0.91
1GRN	92	0.52	0.9	0.51	1.00	0.92	0.96	0.9
1GXD	93	0.51	0.89	0.49	1.00	0.93	0.96	0.89
1H1V	91	0.5	0.86	0.48	1.00	0.91	0.95	0.86
1H9D	79	0.52	0.83	0.48	0.99	0.79	0.88	0.83
1HE8	94	0.51	0.92	0.49	1.00	0.94	0.97	0.92
1I2M	89	0.51	0.91	0.5	1.00	0.89	0.94	0.91
1I4D	85	0.51	0.88	0.47	1.00	0.85	0.91	0.88
1IB1	87	0.51	0.89	0.49	1.00	0.87	0.93	0.89
1IBR	94	0.51	0.92	0.5	1.00	0.94	0.97	0.92
1JWH	96	0.51	0.9	0.51	1.00	0.96	0.98	0.9
1K5D	85	0.52	0.89	0.5	0.99	0.85	0.91	0.89
1KTZ	84	0.52	0.89	0.49	0.99	0.84	0.91	0.89
1LFD	88	0.53	0.92	0.52	0.99	0.88	0.93	0.92
1NVU	95	0.52	0.92	0.53	1.00	0.95	0.97	0.92
1NW9	93	0.54	0.92	0.55	0.99	0.93	0.96	0.92
1OPH	98	0.52	0.94	0.54	1.00	0.98	0.99	0.94
1RV6	79	0.51	0.86	0.46	0.99	0.79	0.88	0.86
1S1Q	67	0.52	0.84	0.43	0.99	0.67	0.79	0.84
1WQ1	91	0.51	0.94	0.49	1.00	0.91	0.95	0.94
1XD3	81	0.51	0.87	0.47	0.99	0.81	0.89	0.87
1XQS	93	0.52	0.89	0.53	1.00	0.93	0.96	0.89
1Z0K	87	0.53	0.89	0.53	0.99	0.87	0.92	0.89
2C0L	96	0.53	0.89	0.54	1.00	0.96	0.98	0.89
2HLE	94	0.54	0.91	0.56	0.99	0.94	0.96	0.91
200B	70	0.51	0.81	0.44	0.99	0.70	0.81	0.81
20ZA	96	0.52	0.92	0.53	1.00	0.96	0.98	0.92
2PCC	90	0.51	0.92	0.49	1.00	0.90	0.95	0.92
3AAA	88	0.52	0.88	0.51	0.99	0.88	0.93	0.88
3CPH	92	0.51	0.94	0.49	1.00	0.92	0.95	0.94
3DAW	89	0.51	0.91	0.49	1.00	0.89	0.94	0.91
3F1P	95	0.53	0.87	0.54	1.00	0.95	0.97	0.87
3H2V	89	0.52	0.89	0.52	0.99	0.89	0.94	0.89
3K75	97	0.52	0.92	0.53	1.00	0.97	0.98	0.92
3R9A	98	0.52	0.92	0.53	1.00	0.98	0.99	0.92
5C3L_AB	94	0.51	0.92	0.5	1.00	0.94	0.97	0.92
5C3L_AC	68	0.52	0.8	0.44	0.99	0.68	0.80	0.8
5C3L_BC	82	0.51	0.85	0.47	1.00	0.82	0.90	0.85

67 Table S5: Testing of 42 protein complexes on 42 complex trained model

Figure S5: Network analysis for PDB ID 1GCQ. (A) Intra-protein network for Chain A/B of 1GCQ obtained from top 5% co-evolving intra residue pairs. (B) Intra-protein network for Chain C of 1GCQ obtained from top 5% co-evolving intra residue pairs. (C) Inter-protein network for 1GCQ obtained from random forest classifier. (D) Inter-protein network for 1GCQ after removing intra-protein network nodes and all nodes having relative solvent accessibility as 0.

84 Table S6: Pairwise true contacts predicted for PDB ID 1GCQ Chain A with Chain C and

Residue	Residue	Convolution	Distance	Residue	Residue	Convolution	Distance
number (Chain	number (Choin	value	(A)	number (Chain P)	number (Choin	value	(A)
(Chann	(Chann			(Chan D)	(Chann		
A)	<u>(12</u>	7	2.52	170	(5)	7	2.2
208	612	7	3.55	1/9	652	/	3.3
192	611	/	3.6	165	655	8	4.66
208	611	8	3.62	1/9	655	9	6.7
194	608	1	3.7	164	657	1	7.2
209	607	8	3.7	179	653	7	7.5
209	610	11	3.9	179	654	8	8.9
193	610	9	4	179	629	8	9.8
193	611	7	4.17				
208	610	9	4.39				
209	609	11	4.78				
165	608	7	4.8				
209	611	9	4.9				
209	608	9	5.13				
207	611	8	5.2				
209	651	7	6.8				
164	607	9	7.15				
193	609	9	7.3				
207	610	9	7.47				
164	608	11	7.49				
179	606	9	7.6				
192	609	9	7.7				
209	612	7	7.8				
179	607	12	8.5				
165	609	8	8.7				
193	608	7	8.8				
165	610	7	8.9				
209	653	7	9.3				
192	608	7	9.6				
179	608	12	9.8				

85 Chain B with Chain C within a distance cutoff of 10 Å.

94 Table S7: Top 10% pairs predicted for Nup93-Nup205

Nup205	Nup93	Convolution Score	No of pairs in the predicted regions
1932-1936	86-99	272	57
1932-1936	101-117	234	54
1013-1014	86-109	100	30
1945-1948	44-48	82	16
1801-1805	44-48	71	15
749-751	86-97	66	18
1935-1939	448-452	65	16
1928-1930	87-94	65	17
682-684	109-115	63	21
1937-1940	44-48	63	14
1696-1700	44-48	59	15
1250-1252	87-93	55	17
1250-1252	109-113	45	15