# Bakkenolides and Caffeoylquinic Acids from the Aerial Portion of Petasites japonicus and Their Bacterial Neuraminidase Inhibition Ability 

Hyun Sim Woo ${ }^{1}$, Kyung-Chul Shin ${ }^{2}$, Jeong Yoon Kim ${ }^{3}$, Yeong-Su Kim ${ }^{1}$, Young Jun Ban ${ }^{3}$, Yu Jin Oh ${ }^{1}$, Hae Jin Cho ${ }^{1}$, Deok-Kun Oh ${ }^{2}$ and Dae Wook Kim ${ }^{1, *}$<br>${ }^{1}$ Plant Resource Industry Division, Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa-gun 26209, Korea; whs0428@bdna.or.kr (H.S.W.); yskim@bdna.or.kr (Y.-S.K.); oyj0705@bdna.or.kr (Y.J.O.); hjlife@bdna.or.kr (H.J.C.)<br>${ }^{2}$ Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; hidex2@naver.com (K.-C.S.); deokkun@konkuk.ac.kr (D.-K.O.)<br>${ }^{3}$ Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; yoon24@gnu.ac.kr (J.Y.K.); banyoung972@naver.com (Y.J.B.)<br>* Correspondence: dwking@bdna.or.kr; Tel.: +82-54-679-2738; Fax: +82-54-679

@ Characterization Data

Figure S1-20: 1D and 2D NMR spectra of compounds 1-4
Figure S21-22: Isolation of bioactive compounds from the aerial portion of $P$. japonicas with preparative HPLC

Figure S23: HPLC profiles of extract and compounds present in the aerial portion of $P$. japonicus
Figure S24-25: Molecular docking study of inhibition of NA by inhibitors
Table S1: Molecular docking study of inhibition of NA by inhibitors


Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3} 700 \mathrm{MHz}\right)$.


Figure S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{1}\left(\mathrm{CDCl}_{3} 175 \mathrm{MHz}\right)$.


Figure S3. ${ }^{1} \mathrm{H}-1{ }^{1} \mathrm{H}$ COSY spectrum of compound 1.


Figure 4. HSQC-DEPT spectrum of compound 1.


Figure S5. HMBC spectrum of compound 1.

Bakkenolide B (1)
${ }^{1} \mathrm{H}-\mathrm{NMR}(700 \mathrm{MHz}$, Chloroform-d) $\quad 5.91(1 \mathrm{H}, \mathrm{dd}, J=7.2,15 \mathrm{~Hz}, \mathrm{H}-3$ '), $5.72(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}$, H-9), $5.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13 \mathrm{a}), 5.14(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13 \mathrm{~b}), 5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.63(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 2.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $11.2,5.0 \mathrm{~Hz}, \mathrm{H}-10), 2.21(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{H}-6), 1.91(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{H}-6), 1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}\right), 1.85$ ( $3 \mathrm{H}, \mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, \mathrm{H}-4^{\prime}$ ), $1.78(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 4), $1.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-14) .{ }^{13} \mathrm{C}-\mathrm{NMR}(175 \mathrm{MHz}$, Chloroformd) 177.5 ( $\mathrm{C}-8$ ), 169.9 ( $\left.\mathrm{C}-1^{\prime \prime}\right), 167.3\left(\mathrm{C}-1^{\prime}\right), 147.7(\mathrm{C}-11), 136.7\left(\mathrm{C}-3^{\prime}\right), 128.2\left(\mathrm{C}-2^{\prime}\right), 108.3(\mathrm{C}-13), 80.8(\mathrm{C}-$ 9), 70.6 (C-12), 70.5 (C-1), 54.9 (C-7), 51.4 (C-10), 45.8 (C-6), 43.4 (C-5), 35.2 (C-4), 29.5 (C-3), 26.8 (C-2), 20.9 (C-2"), 20.3 (C-5'), 19.5 (C-15), 15.5 (C-14), 15.5 (C-4').


Figure S6. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $2\left(\mathrm{CDCl}_{3} 900 \mathrm{MHz}\right)$.


Figure S7. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $2\left(\mathrm{CDCl}_{3} 225 \mathrm{MHz}\right)$.


Figure S8. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{2}$.


Figure S9. HSQC-DEPT spectrum of compound 2.


Figure S10. HMBC spectrum of compound 2.
Bakkenolide D (2)
${ }^{1} \mathrm{H}-\mathrm{NMR}(900 \mathrm{MHz}$, Chloroform-d) $7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.1 \mathrm{~Hz}, \mathrm{H}-3$ '), $5.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, \mathrm{H}-9)$, $5.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.14 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.21(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 5.17(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13), 5.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 4.67(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 12), $2.75(1 \mathrm{H}, \mathrm{dd}, J=11.2,5.0 \mathrm{~Hz}, \mathrm{H}-10), 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 2.24(1 \mathrm{H}, \mathrm{d}, J=14.3 \mathrm{~Hz}, \mathrm{H}-6), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.2^{\prime \prime}\right), 1.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}, \mathrm{H}-6), 1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.67(1 \mathrm{H}, \mathrm{dd}, J=14.1,3.6 \mathrm{~Hz}$, $\mathrm{H}-3), 1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.37(1 \mathrm{H}, \mathrm{dd}, J=12.9,3.7 \mathrm{~Hz}), \mathrm{H}-3), 1.11(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-15), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{H}-14) .{ }^{13} \mathrm{C}-$ NMR (225 MHz, Chloroform-d) 177.5 (C-8), 169.9 (C-1"), 165.6 (C-1'), 152.8 (C-3'), 147.8 (C-11), 112.4 (C-2'), 108.2 (C-13), 80.8 (C-9), 70.5 (C-12), 70.3 (C-1), 54.9 (C-7), 51.7 (C-10), 45.8 (C-6), 43.3 (C5), 35.3 (C-4), 29.5 (C-3), 26.8 (C-2), 21.2 (C-2"), 19.5 (C-15), 19.2 (C-4'), 15.5 (C-14).


Figure S11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 3 (MeOD 700 MHz )


Figure S12. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{3}$ (MeOD 175 MHz ).


Figure S13. ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum of compound 3.


Figure S14. HSQC-DEPT spectrum of compound 3.


Figure S15. HMBC spectrum of compound 3.

## 1,5-Di-O-caffeoylquinic acid (3)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(700 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \quad 7.64$ ( $1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}$ ), 7.60 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}$ ), $7.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}, 2^{\prime \prime}\right), 6.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}, 6^{\prime \prime}\right), 6.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 6.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime \prime}\right), 6.38(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}$, $\left.\mathrm{H}-8^{\prime}\right), 6.28\left(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz} \mathrm{H}-8^{\prime \prime}\right), 5.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 4.00(1 \mathrm{H}, \mathrm{dd}, J=7.4,2.8 \mathrm{~Hz}$, $\mathrm{H}-4), 2.35(1 \mathrm{H}, \mathrm{dd}, J=13.8,3.0 \mathrm{~Hz}, \mathrm{H}-6), 2.25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6) .{ }^{13} \mathrm{C}-\mathrm{NMR}(175 \mathrm{MHz}$, Methanol- $d_{4}$ ) 176.3 (C-7), 167.5 (C-9'), 167.0 (C-9"), 148.1 (C-4'), 148.0 (C-4"), 145.9 (C-7'), 145.7 (C-
 113.7 (C-8"), 73.5 (C-1), 71.3 (C-3), 70.6 (C-5), 69.4 (C-4), 36.4 (C-2), 34.7 (C-6).


Figure S16. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 4 (MeOD 900 MHz ).


Figure S17. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $4\left(\mathrm{CDCl}_{3} 225 \mathrm{MHz}\right)$.


Figure S18. ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum of compound 4.


Figure S19. HSQC-DEPT spectrum of compound 4.


Figure S20. HMBC spectrum of compound 4.
5-O-Caffeoylquinic acid (4)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(900 \mathrm{MHz}\right.$, Methanol $\left.-d_{4}\right) \quad 7.58\left(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 7.07\left(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.97$ $\left(2 \mathrm{H}, \mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 6.80\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 6.29\left(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 5.36(1 \mathrm{H}, \mathrm{m}$, H-5), $4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.75(1 \mathrm{H}, \mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, \mathrm{H}-3), 2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.08$ (1H, m, H-2), 2.07 (1H, m, H-6). ${ }^{13} \mathrm{C}-\mathrm{NMR}(225 \mathrm{MHz}$, Methanol-d4) 175.7 (C-7), 167.2 (C-9'), 148.2 (C-4'), 145.6 (C-7'), 145.4 (C-3'), 126.4 (C-1'), 121.6 (C-6'), 115.1 (C-5'), 113.9 (C-8'), 113.8 (C-2'), 74.9 (C1), 72.3 (C-4), 70.6 (C-3), 70.1 (C-5), 37.6 (C-2), 36.9 (C-6).


Figure S21. Pattern of purified substance from bakkenolides (compound 1 and 2) of PB3 on preparative HPLC. The fractions were detected by UV (210, 254, 280, and 310 nm ) and RI detector.


Figure S22. Pattern of purified substance from caffeoylquinic acids (compound 3 and 4) of PB5 on preparative HPLC. The fractions were detected by UV ( $210,254,280$, and 310 nm ) and RI detector.


Figure S23. Methanol crude extract and compounds (1-4) from the aerial portion of $P$. japonicus were analyzed using a RP-18 HPLC column and detected with UV detector at 310 nm .


Figure S24. Active site and predicted ligand binding sites of neuraminidase. Red spheres represent cavities in which the ligand can be docked.


Figure S25. Docking pose of bakkenolide D. 3D- and 2D-structures represent receptor-ligand interaction. Bakkenolide D was represented as yellow stick models.

Table S1. C-DOCKER interaction energy and binding energy of docking poses at predicted ligand binding sites.

| Pose | Site 1 |  | Site 2 |  | Site 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C-DOCKER <br> Interaction <br> Energy <br> ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) | Binding Energy (kcal mol${ }^{1}$ ) | C-DOCKER <br> Interaction <br> Energy <br> ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) | Binding Energy (kcal mol1) | C-DOCKER <br> Interaction <br> Energy <br> ( $\mathrm{kcal} \mathrm{mol}^{-1}$ ) | Binding Energy (kcal mol1) |
| 1 | -49.340 | -69.603 | -47.676 | -49.772 | -27.728 | -35.507 |
| 2 | -48.787 | -62.790 | -46.594 | -48.940 | -27.486 | -32.543 |
| 3 | -49.448 | -64.977 | -47.446 | -56.250 | -28.104 | -33.309 |
| 4 | -48.935 | -74.346 | -42.835 | -61.653 | -25.943 | -20.786 |
| 5 | -41.526 | -71.955 | -42.593 | -43.141 | -27.370 | -29.821 |
| 6 | -47.706 | -71.269 | -42.482 | -70.948 | -27.444 | -39.227 |
| 7 | -42.280 | -71.460 | -42.222 | -67.113 | -26.904 | -27.708 |
| 8 | -41.296 | -74.407 | -46.864 | -32.758 | -27.440 | -40.170 |
| 9 | -42.716 | -78.460 | -45.737 | -16.861 | -27.868 | -39.431 |
| 10 | -44.790 | -71.720 | -42.288 | -34.620 | -26.409 | -34.657 |

