Bakkenolides and Caffeoylquinic Acids from the Aerial Portion of *Petasites japonicus* and Their Bacterial Neuraminidase Inhibition Ability

Hyun Sim Woo¹, Kyung-Chul Shin², Jeong Yoon Kim³, Yeong-Su Kim¹, Young Jun Ban³, Yu Jin Oh¹, Hae Jin Cho¹, Deok-Kun Oh² and Dae Wook Kim^{1,*}

- ¹ Plant Resource Industry Division, Forest Plant Industry Department, Baekdudaegan National Arboretum, Bonghwa-gun 26209, Korea; whs0428@bdna.or.kr (H.S.W.); yskim@bdna.or.kr (Y.-S.K.); oyj0705@bdna.or.kr (Y.J.O.); hjlife@bdna.or.kr (H.J.C.)
- ² Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-gu, Seoul 05029, Korea; hidex2@naver.com (K.-C.S.); deokkun@konkuk.ac.kr (D.-K.O.)
- ³ Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; yoon24@gnu.ac.kr (J.Y.K.); banyoung972@naver.com (Y.J.B.)
- * Correspondence: dwking@bdna.or.kr; Tel.: +82-54-679-2738; Fax: +82-54-679

Characterization Data

Figure S1-20: 1D and 2D NMR spectra of compounds 1-4

Figure S21-22: Isolation of bioactive compounds from the aerial portion of *P. japonicas* with preparative HPLC

Figure S23: HPLC profiles of extract and compounds present in the aerial portion of P. japonicus

Figure S24-25: Molecular docking study of inhibition of NA by inhibitors

Table S1: Molecular docking study of inhibition of NA by inhibitors

Figure S1. ¹H-NMR spectrum of compound 1 (CDCl₃ 700 MHz).

Figure S2. ¹³C-NMR spectrum of compound 1 (CDCl₃ 175 MHz).

Figure S3. ¹H-¹H COSY spectrum of compound 1.

Figure S5. HMBC spectrum of compound 1.

Bakkenolide B (1)

¹H-NMR (700 MHz, Chloroform-*d*) 5.91 (1H, dd, *J* = 7.2, 15 Hz, H-3'), 5.72 (1H, d, *J* = 11.2 Hz, H-9), 5.17 (1H, s, H-13a), 5.14 (1H, s, H-13b), 5.10 (1H, m, H-1), 4.63 (2H, m, H-12), 2.78 (1H, dd, *J* = 11.2, 5.0 Hz, H-10), 2.21 (1H, d, *J* = 14.3 Hz, H-6), 1.91 (1H, d, *J* = 14.3 Hz, H-6), 1.91 (3H, s, H-2"), 1.85 (3H, dd, *J* = 7.2, 1.6 Hz, H-4'), 1.78 (2H, m, H-2), 1.75 (3H, s, H-5'), 1.66 (1H, m, H-3), 1.55 (1H, m, H-4), 1.34 (1H, m, H-3), 1.09 (3H, s, H-15), 0.87 (3H, d, *J* = 6.8 Hz, H-14). ¹³C-NMR (175 MHz, Chloroform-*d*) 177.5 (C-8), 169.9 (C-1"), 167.3 (C-1'), 147.7 (C-11), 136.7 (C-3'), 128.2 (C-2'), 108.3 (C-13), 80.8 (C-9), 70.6 (C-12), 70.5 (C-1), 54.9 (C-7), 51.4 (C-10), 45.8 (C-6), 43.4 (C-5), 35.2 (C-4), 29.5 (C-3), 26.8 (C-2), 20.9 (C-2"), 20.3 (C-5'), 19.5 (C-15), 15.5 (C-14), 15.5 (C-4').

Figure S7. ¹³C-NMR spectrum of compound 2 (CDCl₃ 225 MHz).

Figure S8. ¹H-¹H COSY spectrum of compound 2.

Figure S10. HMBC spectrum of compound 2.

Bakkenolide D (2)

¹H-NMR (900 MHz, Chloroform-*d*) 7.04 (1H, d, J = 10.1 Hz, H-3'), 5.76 (1H, d, J = 11.2 Hz, H-9), 5.62 (1H, d, J = 10.14 Hz, H-2'), 5.21 (1H, s, H-13), 5.17 (1H, s, H-13), 5.15 (1H, m, H-1), 4.67 (2H, m, H-12), 2.75 (1H, dd, J = 11.2, 5.0 Hz, H-10), 2.39 (3H, s, H-4'), 2.24 (1H, d, J = 14.3 Hz, H-6), 2.02 (3H, s, H-2''), 1.95 (1H, d, J = 14.3 Hz, H-6), 1.84 (1H, m, H-2), 1.76 (1H, m, H-2), 1.67 (1H, dd, J = 14.1, 3.6 Hz, H-3), 1.57 (1H, m, H-4), 1.37 (1H, dd, J = 12.9, 3.7 Hz), H-3), 1.11 (3H, s, H-15), 0.90 (3H, d, H-14). ¹³C-NMR (225 MHz, Chloroform-*d*) 177.5 (C-8), 169.9 (C-1''), 165.6 (C-1'), 152.8 (C-3'), 147.8 (C-11), 112.4 (C-2'), 108.2 (C-13), 80.8 (C-9), 70.5 (C-12), 70.3 (C-1), 54.9 (C-7), 51.7 (C-10), 45.8 (C-6), 43.3 (C-5), 35.3 (C-4), 29.5 (C-3), 26.8 (C-2), 21.2 (C-2''), 19.5 (C-15), 19.2 (C-4'), 15.5 (C-14).

Figure S11. ¹H-NMR spectrum of compound 3 (MeOD 700 MHz)

Figure S12. ¹³C-NMR spectrum of compound 3 (MeOD 175 MHz).

Figure S13. ¹H-¹H COSY spectrum of compound 3.

Figure S15. HMBC spectrum of compound 3.

1,5-Di-O-caffeoylquinic acid (3)

¹H-NMR (700 MHz, Methanol-*d*4) 7.64 (1H, d, *J* = 15.9 Hz, H-7'), 7.60 (1H, d, *J* = 15.9 Hz, H-7"), 7.08 (2H, s, H-2',2"), 6.97 (2H, m, H-6',6"), 6.81 (1H, s, H-5'), 6.79 (1H, s, H-5"), 6.38 (1H, d, *J* = 15.9 Hz, H-8'), 6.28 (1H, d, *J* = 15.9 Hz H-8"), 5.46 (1H, m, H-3), 5.42 (1H, m, H-5), 4.00 (1H, dd, *J* = 7.4, 2.8 Hz, H-4), 2.35 (1H, dd, *J* = 13.8, 3.0 Hz, H-6), 2.25 (2H, m, H-2), 2.19 (1H, m, H-6). ¹³C-NMR (175 MHz, Methanol-*d*4) 176.3 (C-7), 167.5 (C-9'), 167.0 (C-9"), 148.1 (C-4'), 148.0 (C-4"), 145.9 (C-7'), 145.7 (C-7"), 145.3 (C-3',3"), 126.5 (C-1'), 126.4 (C-1"), 121.7 (C-6',6"), 115.1 (C-5',5"), 114.2 (C-8'), 113.9 (C-2',2"), 113.7 (C-8"), 73.5 (C-1), 71.3 (C-3), 70.6 (C-5), 69.4 (C-4), 36.4 (C-2), 34.7 (C-6).

Figure S20. HMBC spectrum of compound 4.

5-O-Caffeoylquinic acid (4)

¹H-NMR (900 MHz, Methanol-*d*₄) 7.58 (1H, d, *J* = 15.9 Hz, H-7'), 7.07 (1H, d, *J* = 1.9 Hz, H-2'), 6.97 (2H, dd, *J* = 8.2, 1.8 Hz, H-6'), 6.80 (1H, d, *J* = 8.1 Hz, H-5'), 6.29 (1H, d, *J* = 15.9 Hz, H-8'), 5.36 (1H, m, H-5), 4.20 (1H, m, H-4), 3.75 (1H, dd, *J* = 8.6, 3.0 Hz, H-3), 2.18 (1H, m, H-6), 2.18 (1H, m, H-2), 2.08 (1H, m, H-2), 2.07 (1H, m, H-6). ¹³C-NMR (225 MHz, Methanol-*d*₄) 175.7 (C-7), 167.2 (C-9'), 148.2 (C-4'), 145.6 (C-7'), 145.4 (C-3'), 126.4 (C-1'), 121.6 (C-6'), 115.1 (C-5'), 113.9 (C-8'), 113.8 (C-2'), 74.9 (C-1), 72.3 (C-4), 70.6 (C-3), 70.1 (C-5), 37.6 (C-2), 36.9 (C-6).

Figure S21. Pattern of purified substance from bakkenolides (compound **1** and **2**) of PB3 on preparative HPLC. The fractions were detected by UV (210, 254, 280, and 310 nm) and RI detector.

Figure S22. Pattern of purified substance from caffeoylquinic acids (compound **3** and **4**) of PB5 on preparative HPLC. The fractions were detected by UV (210, 254, 280, and 310 nm) and RI detector.

Figure S23. Methanol crude extract and compounds (1–4) from the aerial portion of *P. japonicus* were analyzed using a RP-18 HPLC column and detected with UV detector at 310 nm.

Figure S24. Active site and predicted ligand binding sites of neuraminidase. Red spheres represent cavities in which the ligand can be docked.

Figure S25. Docking pose of bakkenolide D. 3D- and 2D-structures represent receptor-ligand interaction. Bakkenolide D was represented as yellow stick models.

	Site 1		Site 2		Site 8	
	C-DOCKER	Binding	C-DOCKER	Binding	C-DOCKER	Binding
Pose	Interaction	Energy	Interaction	Energy	Interaction	Energy
	Energy	(kcal mol-	Energy	(kcal mol-	Energy	(kcal mol-
	(kcal mol-1)	1)	(kcal mol-1)	1)	(kcal mol-1)	1)
1	-49.340	-69.603	-47.676	-49.772	-27.728	-35.507
2	-48.787	-62.790	-46.594	-48.940	-27.486	-32.543
3	-49.448	-64.977	-47.446	-56.250	-28.104	-33.309
4	-48.935	-74.346	-42.835	-61.653	-25.943	-20.786
5	-41.526	-71.955	-42.593	-43.141	-27.370	-29.821
6	-47.706	-71.269	-42.482	-70.948	-27.444	-39.227
7	-42.280	-71.460	-42.222	-67.113	-26.904	-27.708
8	-41.296	-74.407	-46.864	-32.758	-27.440	-40.170
9	-42.716	-78.460	-45.737	-16.861	-27.868	-39.431
10	-44.790	-71.720	-42.288	-34.620	-26.409	-34.657

Table S1. C-DOCKER interaction energy and binding energy of docking poses at predicted ligand binding sites.