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Abstract: Computational prediction of ion channels facilitates the identification of putative ion
channels from protein sequences. Several predictors of ion channels and their types were developed
in the last quindecennial. While they offer reasonably accurate predictions, they also suffer a
few shortcomings including lack of availability, parallel prediction mode, single-label prediction
(inability to predict multiple channel subtypes), and incomplete scope (inability to predict subtypes
of the voltage-gated channels). We developed a first-of-its-kind PSIONplusm method that performs
sequential multi-label prediction of ion channels and their subtypes for both voltage-gated and
ligand-gated channels. PSIONplusm sequentially combines the outputs produced by three support
vector machine-based models from the PSIONplus predictor and is available as a webserver. Empirical
tests show that PSIONplusm outperforms current methods for the multi-label prediction of the ion
channel subtypes. This includes the existing single-label methods that are available to the users,
a naïve multi-label predictor that combines results produced by multiple single-label methods,
and methods that make predictions based on sequence alignment and domain annotations. We also
found that the current methods (including PSIONplusm) fail to accurately predict a few of the least
frequently occurring ion channel subtypes. Thus, new predictors should be developed when a larger
quantity of annotated ion channels will be available to train predictive models.

Keywords: ion channel; ion channel type; voltage-gated ion channel; ligand-gated ion channel;
sequential prediction; multi-label prediction

1. Introduction

Ion channels are integral membrane proteins that regulate the flow of anions and voltage potential
across cellular membranes. They are typically classified into two broad types according to their gating
mechanism: voltage-gated [1] vs. ligand-gated [2]. Ion channels can also be categorized based on
the type of the passing ions into several subtypes: potassium (K+), sodium (Na+), calcium (Ca2+),
and anion channels [1–3]. Some of the ion channels are selective to specific ions while others may
transport multiple ion types. These channels are associated with a wide range of pathologies including
cardiac arrhythmias, epilepsy, hyperthermia, and hyperinsulinism [4] and offer an opportunity to
regulate and combat several types of cancer [5–7]. Many of the ion channels are considered as potent
and promising drug targets [8–11]. Correspondingly, as many as 15% of the protein drug targets in
the human proteome are ion channels [12]. Moreover, over 400 putative ion channels were already
identified in human and they are estimated to account for as much as 1% of the protein coding genes
in human [11]. The number of the annotated ion channel proteins has grown rapidly in recent years,
from about 400 in the mid-1990s to close to 3000 by 2015 [13]. However, thousands of ion channels
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remain to be identified among the over 175 million of the already sequenced proteins (source: UniProt
release 2019_11 [14]).

The practical importance of ion channels as drug targets combined with the need to identify them
in the vast collections of unannotated protein sequences motivates the development of computational
methods that predict ion channels directly from protein chains. Several such predictors were developed
in the last quindecennial. They include three methods that narrowly focus on the prediction of
subfamilies of the voltage-gated potassium channels [15–17]. We focus on a more generic prediction
that identifies both voltage- and ligand-gated channels and which considers several subtypes including
potassium, calcium, sodium, and chloride. Six of these predictors were published so far. The first
method that was released in 2006, VGIchan, predicts ion channels and four of their subtypes: potassium,
sodium, calcium, and chloride [18]. However, VGIchan does not identify the channel type (voltage- vs.
ligand-gated). IonchanPred 1.0 that was published in 2011 predicts ion channels, their types and four
major subtypes of the voltage-gated ion channels: potassium, sodium, calcium, and anions [19]. This
predictor was recently upgraded to a new version, IonchanPred 2.0, which boasts improved predictive
performance and which focuses on the same two types of ion channels and the four subtypes of the
voltage-gated ion channels [20]. The other three predictors, which include the method by Tiwari and
Srivastava [21], the method by Han et al. [22], and PSIONplus [23], address the prediction of ion
channels, their types (voltage- vs. ligand-gated) and the four subtypes of the voltage-gated channels
(potassium, sodium, calcium, and anions). These predictors use sophisticated machine learning
algorithms, such as support vector machines [18–20,22,23] and random forest [21,22], and secure
relatively good predictive performance [13].

A recent survey points to three major drawbacks of the current methods [13]. First, only three
of the six tools, IonchanPred2.0 [20], VGIchan [18] and PSIONplus [23], are available to the end user.
The lack of available implementations renders the other three tools practically unusable. The survey
states that the provision of the implementation or webserver should be required at the time the
corresponding article is published [13]. Second, each of the six current methods is composed of three
separate predictive models that make predictions in parallel, i.e., a given input sequence is predicted as
ion channel vs. non-ion channel; as voltage- vs. ligand-gated channel; and as one of the four subtypes
of the voltage-gated channels. This means that the prediction of channel type must be performed
for the known ion channels since the outcomes are limited to only the voltage- vs. ligand-gated
channels. Similarly, the prediction of the subtypes must be performed only for the known voltage-gated
channels. This type of parallel prediction is inconvenient since end users must run the three models
manually one after another. Moreover, the corresponding empirical assessment that was published
with these tools is potentially misleading as it also runs the tests in parallel, where the predictors
of the channel types (voltage-gated channel subtypes) are evaluated on the already pre-selected ion
channels (voltage-gated channels). The more appropriate prediction should be executed sequentially
in three steps, where the input protein sequence is first predicted as non-ion channels vs. ion channels,
followed by the second step which predicts the channel type for the putative ion channels, and
concluding with the prediction of the voltage-gated channel type for the putative voltage-gated channel
predicted in the second step. Such sequential test regimes may result in an accumulation of errors
along the subsequent steps. A recent comparative survey evaluated the current methods using the
sequential regime and concluded that the most accurate PSIONplus offers modest levels of predictive
performance [13]. Third, the current tools predict a single outcome for each input protein sequence,
while in fact some of the channels may transport multiple types of ions. This requires a multi-label
prediction where a given method can output multiple ion channel subtypes. The survey reveals that
combining outputs generated by multiple current single-label predictors does not offer an accurate
solution since they often produce the same subtype or their combined predictions are inaccurate when
they differ [13]. Thus, the authors conclude that novel approaches that are specifically designed to
make the multi-label predictions are needed. Moreover, the fourth problem of the current approaches,
which was not covered in the survey, is that they do not consider the subtypes of the ligand-gated
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channels. They categorize the ion channels into two types: voltage- vs. ligand-gated, and further
subdivide the voltage-gated channels into four subtypes: sodium, calcium, potassium and anion
carrying [13,19–23]. However, they do not annotate the subtypes of the ligand-gated channels.

We propose a new computational method, PSIONplusm, for the sequence-based prediction of
ion channels, their types and subtypes that addresses the four abovementioned issues. PSIONplusm

builds on the top of arguably the most accurate current method [13], PSIONplus [23]. It performs
the prediction in a sequential manner, makes multi-label predictions that allow to identify channels
that transport multiple ion types, and covers the subtypes for both the voltage-gated and the
ligand-gated channels. Moreover, PSIONplusm is available as a free-to-use and user-friendly webserver
at https://yanglab.nankai.edu.cn/PSIONplusm/. The corresponding standalone code can be obtained
from https://github.com/cliffgao/PSIONplusm.

2. Materials and Methods

2.1. Benchmark Dataset and Annotation of Ion Channel Types and Subtypes

We used a recently introduced protocol to collect and annotate the benchmark dataset [13]. The ion
channels were collected from UniProt [14] by using the gene ontology (GO) [24,25] molecular function
annotations. We used the high-quality manually reviewed annotations of the relevant GO terms
(“ligand-gated ion channel activity” and “voltage-gated ion channel activity”) and keywords (“sodium”,
“potassium”, “calcium”, and “anion”), and/or annotations of UniprotKB keywords (“voltage-gated”,
“ligand-gated”, “sodium”, “potassium”, “calcium” and “anion”). We also collected the non-ion
channels that cover other types of membrane proteins by using the manually reviewed GO molecular
function term “membrane” and cellular component term “membrane“, and by excluding proteins
that use keyword “channel” in the GO molecular function annotation. Consistent with the recent
comparative review [13], we used such non-ion channels to verify whether the ion channel predictors
can accurately differentiate between the ion channels and the other types of membrane proteins.
Importantly, we ensured that these ion channels and non-ion channels share low sequence similarity,
<30%, with the training datasets of IonchanPred 2.0 and PSIONplus—the two current predictors of
ion channel types and subtypes that are available to the end users—to facilitate a robust empirical
evaluation of these methods. To this end, we used CD-HIT [26,27] with the sequence identity cut-off 30%
to cluster our annotated membrane proteins together with the training datasets of the two predictors.
The clusters that include any of the training proteins were deleted and we used the remaining ion
channels and non-ion channels to develop the benchmark dataset. This way, the benchmark proteins
share <30% similarity with the training proteins, while they may still share higher levels of similarity
with other benchmark proteins. Further details can be found in [13].

Next, we manually verified and extended the annotations of the ion channels and their
types/subtypes for the remaining ion channels. As we discussed in the introduction, the current
predictors do not consider the subtypes of the ligand-gated channels and they assume that each
channel is categorized into a single subtype. We addressed both problems by annotating each ion
channel into one of the two types and one of more of the four subtypes, thus also allowing for multiple
subtype annotations. We removed the proteins without complete labels, for which we were not
able to identify the type or the subtype. Altogether, we collected 110 ion channels for which we
have completed type and subtype annotations. We also included a size-matched set of 111 non-ion
channels. These 221 proteins are dissimilar to the training datasets of IonchanPred 2.0 and PSIONplus.
We summarize this dataset Table 1. The dataset includes 29 proteins with multiple labels (multiple
subtype annotations) and the corresponding average and median cardinality of the labels are 1.32 and
1, respectively. The complete list of the 221 proteins together with the annotations is provided in the
Supplementary Materials.

https://yanglab.nankai.edu.cn/PSIONplusm/
https://github.com/cliffgao/PSIONplusm
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Table 1. Summary of the benchmark multi-label dataset.

Protein Type Ion Channel Type Ion Channel Subtype Number of Proteins

Ion channels

Voltage-gated

Sodium (Na+) 19
Potassium (K+) 26
Calcium (Ca2+) 28

Anions 22

Ligand-gated

Sodium (Na+) 20
Potassium (K+) 18
Calcium (Ca2+) 41

Anions 6

Non-ion channels (other types of membrane proteins) 111

Total number of proteins 221

2.2. Sequential Multi-Label Prediction

As we discuss in the introduction, the current methods perform parallel prediction of the
single-label ion channels, ion channel types and voltage-gated channel subtypes [13]. In other words,
the input protein sequence is independently predicted as ion channel vs. non-ion channel, as voltage-
vs. ligand-gated channel, and as one of the four subtypes of the voltage-gated channels. Given that the
prediction of the ion channel types and subtypes is limited to the two and four outcomes, respectively,
this approach to prediction assumes that the input protein is a known ion channel when being predicted
for the channel types, and is a known voltage-gated channel when being predicted for the channel
subtype (Figure 1A). These assumptions are impractical when the end users want to predict types and
subtypes of the channels for uncharacterized sequences.
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their types and subtypes. The solid lines denote inputs while dashed black lines denote putative
annotations generated by predictive models.

A practical way to perform this prediction is to predict the channels, their types and subtypes in
three sequential steps [13]. First, the input protein sequences should be predicted as either non-ion
channels or ion channels. Second, the putative ion channels predicted in the first step should be
processed to predict their types. Third, the channel subtypes should be predicted for the putative
voltage-gated channels that were predicted in the second step. The third step is currently limited to the
prediction of the subtypes for the voltage-gated channels because this is how the current predictors
operate [13,19–23] (Figure 1B). The approach implemented by PSIONplusm extends the sequential
prediction to cover the subtypes of the ligand-gated channels (Figure 1C).
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Moreover, in contrast to the current tools that are limited to the prediction of a single channel
subtype [13,19–23], PSIONplusm predicts multiple subtypes of the ion channels. This type of prediction
can be accomplished in three ways: (1) by combining results produced by multiple current ion channel
predictors; (2) by combining multiple new predictors where each individual new predictor targets
a specific subtype of channels; and (3) by developing a new single multi-label predictor. As we
mention in the introduction, the first approach was recently tested empirically showing relatively poor
predictive performance [13]. The second approach was used in a related context to predict residues
that interact with multiple types of ligands: DNA, RNA, and proteins [28–36]. In this case different
predictive models were used to predict residues that bind to specific types of ligands, and these
methods were combined together to effectively predict interaction with the multiple types of ligands
for the same residue [29,30,35]. However, this architecture is not compatible with the hierarchical
nature of the annotations of the ion channels where both types of channels are categorized into the
same set of subtypes. This would require the development of eight models, which is prohibitive
given the limited amount of the available training data. The third option is to design one predictor
that produces multiple outcomes for the same input protein sequence [37]. Several such multi-label
models that predict protein and gene functions [38–40] and subcellular locations [41–43] were released
recently. Our design is inspired by the latter approach, where we use a single model to generate
multi-label predictions (to cover multiple subtypes of the ion channels) in the sequential manner shown
in Figure 1C.

2.3. Evaluation of the Predictive Performance

The assessment of predictive performance of the predictors of ion channels and their types and
subtypes typically relies on several metrics that include accuracy, sensitivity (also called recall and true
positive rate), precision and F1 [13,19–23].

Given a multi-label dataset D that includes |D| samples (pi, li) where i = 1, . . . |D|, pi denotes ith
protein annotated with label(s) li ⊆ L = {non-ion channel, ligand-gated potassium channel, ligand-gated
sodium channel, ligand-gated calcium channel, ligand-gated anion channel, voltage-gated potassium
channel, voltage-gated sodium channel, voltage-gated calcium channel, voltage-gated anion channel},
H that is a multi-label predictor where zi = H(pi) is the set of labels predicted by H for protein pi, we use
the following set of metrics:

Accuracy = 1
|D|
∑|D|

i=1
|li∩zi |
|li∪zi |

; Precision = 1
|D|
∑|D|

i=1
|li∩zi |
|zi |

; Recall = 1
|D|
∑|D|

i=1
|li∩zi |
|li |

; F1 = 2Recall∗Precision
Recall+Precision (1)

2.4. Architecture of the PSIONplusm Predictor

We design PSIONplusm by extending the currently most accurate method [13], PSIONplus [23],
to make sequential multi-label predictions that cover the four subtypes of ligand-gated and
voltage-gated channels. PSIONplus consists of three support vector machine (SVM)-based models:
PSIONION that predicts ion channels vs. non-ion channels; PSIONVLG that predicts voltage-gated
ion channels vs. ligand-gated ion channels, and PSIONVGS that predicts the four subtypes of the
voltage-gated ion channels. We use these three models sequentially by passing the resulting predictions
into the subsequent models (Figure 2). These predictions are aggregated to produce the multi-label
outputs as follows. PSIONplusm predicts the non-ion channel if PSIONplus predicts this label.
Otherwise, we sort the PSIONplus’s ion channel subtype scores (which are computed by multiplying
the propensities generated by the PSIONVLG and PSIONVGS models) and we output a subset of the
predicted subtypes with the same type as the highest scoring subtype that has non-zero channel
subtype scores. This means that we use the PSIONVGS’s predictions of the four subtypes to predict the
subtypes of both the voltage-gate and the ligand-gated channels. This is possible since the PSIONVGS

model works in parallel to the PSIONVLG model. We limit our predictions to the subtypes with the
non-zero scores to eliminate subtypes that were excluded by PSIONplus. We further limit the predicted
subtypes to the same type of the channel (selected as the type that secures the highest score) given that
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empirical tests on the benchmark dataset reveal that this leads to favorable predictive performance.
In other words, we start with the highest scoring subtype predicted by PSIONplus and we add lower
ranked (according to the sort) subtype only if it has the same channel type and different subtype.
The corresponding architecture of PSIONplusm is shown in Figure 2. We emphasize that we did
not re-train the original PSIONplus model and that the entire predictive process is parameterless.
Correspondingly we did not need a training dataset to develop the PSIONplusm, other than the training
dataset that was originally used to train PSIONplus.
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3. Results

3.1. Ion Channels and Their Types and Subtypes Are Hard to Predict Directly from the Sequence

A recent study showed that predictions that rely on sequence similarity computed with BLAST
are inferior to the results generated by PSIONplus [23]. These predictions are based on the pairwise
alignments of a given test sequence against the sequences from the training dataset of PSIONplus.
This way, both PSIONplus and the alignment-based predictor rely on the same set of training proteins,
i.e., annotated ion channels. The alignment-based predictor transfers the ion channel annotations
from the most similar training sequence given that it is sufficiently similar, otherwise the non-ion
channel label is predicted. The minimal level of similarity was empirically optimized to maximize
the predictive performance. The underlying reason for the lower predictive performance of the
BLAST-based predictions is the fact that the test proteins share low similarity with the training proteins,
simulating the expected scenario where novel ion channels (i.e., channels that are dissimilar to the
currently known ion channels) are being predicted.

We consider an alternative approach that predicts ion channels and their types/subtypes directly
from the sequence. We exploit evolutionary relationships between the known/training ion channels
and the test proteins that we detect via presence of the same domains. First, we use the protocol
from Section 2.1 to annotate the ion channels and their types/subtypes for the training dataset of
PSIONplus [23]. We remove the training proteins that we could not find in the current version of
UniProt and those for which the annotation could not be completed, i.e., the subtype information is
unavailable. We managed to annotate 466 proteins from the original set of 598 training proteins. We
note that this dataset shares low similarity to our benchmark dataset. Second, we collect the Pfam
domains [44] for the 466 training proteins and the 221 proteins from our benchmark dataset. Table 2
summarizes this step by listing how many of these proteins have at least one Pfam domain. We find
that between 77% (for the voltage gated anion channels in the benchmark dataset) and 100% of proteins
(for all ligand gated channels in both datasets, and the voltage gated sodium and potassium channels
in the training dataset) have annotated domains. The average fraction of proteins that have Pfam
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domain, which is computed across the nine labels and both datasets, equals 96.7%. Third, we make
predictions using the Pfam domains, given that they are available for the significant majority of the
training and test proteins. For each of the eight ion channel subtypes we collect the domains that are
present in the corresponding training proteins, creating eight training domain sets. A test protein is
predicted with a given label (ion channel type and subtype) if at least one of its domains is present in
the corresponding training domain set. The test proteins that lack domain annotations and that have
domains that do not overlap with any of the eight training domain sets are predicted as the non-ion
channels. This procedure generates the multi-label predictions since some of the test proteins may
have domains that are present in multiple training domain sets.

Table 2 summarizes the results generated by the above domain-based predictor. The predictive
performance is quantified with an average of the correct prediction rates over proteins with a given
label. The rate is computed as the number of correctly predicted labels divided by the number of all
predicted labels for a given benchmark sequence. We observe that Pfam domains are semi-accurately
predicted only in the voltage-gated sodium channels and the ligand-gated sodium and potassium
channels. Several channel types, such as the voltage-gated calcium and anion channels and the
ligand gated calcium and anion channels, are poorly predicted. This is because these channels in the
benchmark dataset rarely share domains with the channels in the training dataset. We also assess
the predictive performance of the overall multi-label predictions on the entire benchmark dataset.
The corresponding accuracy = 19.8, precision = 20.1, recall = 26.5, and F1 = 22.8. To compare, a random
predictor, which is computed by shuffling the actual labels (annotations of ion channels and their types
and subtypes) among the benchmark proteins, secures accuracy = 30.6, precision = 31.6, recall = 31.6,
and F1 = 31.6. This experiment reveals that the domain-based predictor does not offer a viable solution
for the prediction of ion channels and their types/subtypes. The underlying reason why neither
the alignment-based nor the domain-based approaches provide accurate results stems from the low
numbers of the currently know channels that do not cover a much larger and likely more diverse set of
ion channels sequences that await annotation, which we represent here by the benchmark dataset. The
machine learning predictors, such as PSIONplus, IonchanPred2.0 and VGIchan, offer a more viable
alternative, as shown in the recent studies [13,23]. Instead of using sequence similarity or presence of
common domains, they exploit similarity in the multi-dimensional space defined by physiochemical
characteristics of the sequences. For instance, PSIONplus utilizes information about the hydrophilicity,
hydrophobicity, polarity, transfer free energy and putative secondary structure, solvent accessibility,
intrinsic disorder to make the predictions [23].

Table 2. Coverage by Pfam domains and the average rate of correct predictions for the domain-based
prediction of ion channels and their subtypes. The right-most column is the average of the correct
prediction rates across proteins with a given label, where the rate is computed as the number of correctly
predicted labels divided by the number of all predicted labels.

Prediction Target/Label
% of Proteins with at Least One Pfam Domain Average Rate of Correct

Predictions on
Benchmark Dataset

PSIONplus Training
Dataset Benchmark Dataset

Non-ion channels 93.0% 95.5% 92.8%

Voltage-gated sodium channels 100.0% 94.7% 58.9%

Voltage-gated potassium channels 100.0% 96.2% 49.4%

Voltage-gated calcium channels 96.6% 96.4% 14.3%

Voltage-gated anion channels 90.9% 77.3% 13.6%

Ligand-gated sodium channels 100.0% 100.0% 64.8%

Ligand-gated potassium channels 100.0% 100.0% 71.7%

Ligand-gated calcium channels 100.0% 100.0% 4.9%

Ligand-gated anion channels 100.0% 100.0% 0.0%
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3.2. Comparative Assessment of PSIONplusm

We compare PSIONplusm with IonchanPred 2.0 and PSIONplus, which are the only two
other methods that predict ion channel types and subtypes and that are available to the end users.
We also produce an alternative version of the multi-label predictor by combining the outputs from
IonchanPred2.0 and PSIONplus; this approach is denoted as IonchanPred2.0+PSIONplus. Moreover,
we contrast results produced by these four methods against the random predictor implemented by
shuffling the actual labels (annotations of ion channels and their types and subtypes) in the benchmark
dataset. We assess the predictive performance of the sequential prediction on the benchmark
dataset. This dataset is dissimilar (<30% sequence similarity) to the training datasets of PSIONplus,
IonchanPred2.0, and PSIONplusm; the latter method relies on the same training dataset as PSIONplus.
Table 3 provides a comprehensive set of metrics for the overall multi-label prediction (the top row),
and for the prediction of the nine individual outcomes (ion channels and the eight subtypes of the
ligand- and voltage-gated channels). Figure 3 summarizes the key metrics for the overall prediction
(in panel A) and for the individual outcomes (panel B).

Table 3. Evaluation of the sequential prediction of ion channels and their subtypes on the benchmark
dataset. The random predictor is implemented by shuffling the actual labels; we report the average
based on 1000 repetitions. The IonchannelPred2.0+PSIONplus is a multi-label prediction that combines
outputs generated by these two methods. The best values for each row (a given quality index and
outcome) are shown in bold font.

Prediction Target/Label Measure
Predictors

Random IonchanPred2.0 PSIONplus IonchanPred2.0+ PSIONplus PSIONplusm

Overall (multi-label
prediction of ion channels
and their types)

F1 31.6 40.3 +/− a 54.1 +/− 52.5 +/− 55.7 +

Accuracy 30.6 37.3 +/− 50.2 +/+ 46.6 +/− 47.1 +

Precision 31.6 43.9 +/− 58.8 +/+ 53.4 +/= 53.4 +

Recall 31.6 37.3 +/− 50.2 +/− 51.6 +/− 58.3 +

Ion vs. Non-ion channels
F1 50.2 70.4 +/− 76.0 +/= 76.0 +/= 76.0 +

Precision 0.2 81.2 +/= 81.4 +/= 81.4 +/= 81.4 +

Recall 50.2 62.2 +/− 71.2 +/= 71.2 +/= 71.2 +

Voltage-gated sodium
channels

F1 8.6 0.0 =/- 0.0 =/- 0.0 =/- 9.7 =

Precision 8.6 0.0 =/- 0.0 =/- 0.0 =/- 7.0 =

Recall 8.6 0.0 =/- 0.0 =/- 0.0 =/- 15.8 =

Voltage-gated potassium
channels

F1 11.8 34.3 +/− 54.3 +/+ 38.3 +/− 43.6 +

Precision 11.8 22.8 =/- 40.0 +/+ 24.5 +/− 29.3 +

Recall 11.8 69.2 +/− 84.6 +/= 88.5 +/+ 84.6 +

Voltage-gated calcium
channels

F1 12.7 22.6 =/- 26.4 +/− 31.0 +/− 34.2 +

Precision 12.7 24.0 =/= 28.0 +/= 25.6 +/− 27.1 +

Recall 12.7 21.4 =/- 25.0 =/- 39.3 +/− 46.4 +

Voltage-gated anion channels
F1 10.0 19.4 =/- 27.6 +/− 26.7 +/− 35.3 +

Precision 10.0 33.3 +/= 57.1 +/+ 50.0 +/+ 26.1 +

Recall 10.0 13.6 =/- 18.2 =/- 18.2 =/- 54.5 +

Ligand-gated sodium
channels

F1 9.0 0.0 =/= 9.1 =/= 9.1 =/= 6.6 =

Precision 9.0 0.0 =/- 50.0 +/+ 50.0 +/+ 4.9 =

Recall 9.0 0.0 =/- 5.0 =/- 5.0 =/- 10.0 =

Ligand-gated potassium
channels

F1 8.1 7.7 =/+ 5.7 =/+ 5.4 =/+ 3.4 =

Precision 8.1 12.5 =/+ 5.9 =/+ 5.3 =/+ 2.4 =

Recall 8.1 5.6 =/= 5.6 =/= 5.6 =/= 5.6 =

Ligand-gated calcium
channels

F1 18.5 0.0 −/− 55.2 +/= 48.5 +/− 53.7 +

Precision 18.5 0.0 −/− 94.1 +/+ 64.0 +/+ 53.7 +

Recall 18.5 0.0 −/− 39.0 +/− 39.0 +/− 53.7 +

Ligand-gated anion channels
F1 2.7 0.0 =/= 0.0 =/= 0.0 =/= 0.0 =

Precision 2.7 0.0 =/= 0.0 =/= 0.0 =/= 0.0 =

Recall 2.7 0.0 =/= 0.0 =/= 0.0 =/= 0.0 =

a we report statistical significance of the differences between the random prediction and each of the four predictors
of ion channels, and also between the PSIONplusm and the other three predictors of ion channels, where +, −,
and = denote that a given predictor is significantly, significantly worse, and not significantly different to the other
method. For instance, +/− for the overall prediction and F1 for IonchannelPred 2.0 means F1 of IonchannelPred
2.0 is significantly better than the F1 of the random predictor and significantly worse than the F1 of PSIONplusm.
Comparison to the random predictor is based on 99.9% confidence interval over the 1000 repetitions (p-value < 0.001).
Comparison with PSIONplusm is based on 100 tests on randomly selected 50% of the benchmark proteins to ensure
that the differences are robust across a diverse set of datasets. The significance was measured using paired t-test and
the differences are assumed significant if p-value < 0.001.
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Figure 3. Predictive performance for the sequential prediction with PSIONplusm,
IonchanPred2.0, PSIONplus, combination of predictions from IonchanPred2.0 and PSIONplus
(IonchanPred2.0+PSIONplus) and the random predictor (implemented by shuffling of actual labels) on
the benchmark dataset. Panel (A) summarizes the values of F1, precision, and recall metrics for the
multi-label prediction of channels and their types. Panel (B) shows F1 values for individual outcomes
including the prediction of ion channels and their 8 types/subtypes. Annotations above the bars
denote the statistical significance of the differences between the random prediction and each of the four
predictors, where +, −, and = denote that a given predictor is significantly better, significantly worse,
and not significantly different to the random predictor. The thick horizontal black lines identify the ion
channel predictors that outperform the random predictor and which are statistically significantly better
than the other channel predictors for a given label. We assume that the difference is significant when
p-value < 0.001. Calculation of significance is explained in the footnote in Table 3.

3.2.1. Assessment of the Overall Multi-label Prediction of the Ion Channels and Their Types
and Subtypes

Our empirical analysis reveals that the four considered here predictors (PSIONplusm, IonchanPred
2.0, PSIONplus, and IonchanPred2.0+PSIONplus) secure statistically significantly better F1 values
when compared against the random predictor (p-value < 0.001; Figure 3A). The same significant
improvements are present for the precision, recall and accuracy (p-value < 0.001; Figure 3A and the top
row in Table 3). This suggests that these methods provide useful information to identify ion channels,
their types and subtypes.

The two single-label predictors, IonchanPred2.0 and PSIONplus, are outperformed by the
multi-label PSIONplusm. Table 3 (top row) reveals that PSIONplusm secures F1 = 55.7% compared to
54.1% for PSIONplus and 40.3% for IonchanPred2.0; these improvements are statistically significant
(p-value < 0.001). While PSIONplus offers higher precision than PSIONplusm (58.8% vs. 53.4%), the
new predictor has significantly higher recall (58.3% vs. 50.2%; p-value < 0.001); see Figure 3A. This is
because PSIONplusm’s multi-label output covers more ion channel subtypes, resulting in the improved
recall. The PSIONplusm’s precision of 53.4% and recall of 58.3% mean that 53.4% of its predictions
are correct and that it correctly predicts 58.3% of the native labels. These are relatively good levels of
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predictive performance given that this problem concerns nine labels/outcomes and that the random
predictor provides precision = 31.6% and recall = 31.6%. In short, our empirical analysis shows that
the first-of-its-kind multi-label PSIONplusm provides useful predictions that are significantly better
than the outputs produced by the current single-label predictors.

We also evaluate an alternative multi-label predictor generated as a simple union of the
results produced by the two single-label predictors (IonchanPred2.0+PSIONplus). This approach is
significantly outperformed by PSIONplusm in F1 (55.7% vs. 52.5%; p-value < 0.001) and recall (58.3%
vs. 51.6%; p-value < 0.001), while maintaining the same precision of 53.4% (Figure 3A and the top row
in Table 3). Moreover, this simple multi-label predictor has lower F1, lower precision, and a slightly
higher recall when contrasted with PSIONplus. Overall, we conclude that this alternative multi-label
predictor does not produce improvements compared to the original single-label predictors, which is in
agreement with the observations in [13].

3.2.2. Assessment of the Prediction of the Ion Channels

The metrics for the prediction of the ion channels are summarized in the first set of bars in Figure 3B
and in the second row in Table 3. We show that the four predictors (PSIONplusm, IonchanPred 2.0,
PSIONplus, and IonchanPred2.0+PSIONplus) are significantly better than the random predictor in F1,
precision, and recall (p-value < 0.001). Moreover, PSIONplusm and PSIONplus have equivalent levels of
predictive performance while offering significant improvements over IonchanPred 2.0 (p-value < 0.001)
with F1 = 76.0% vs. 70.4% and recall = 71.2% vs. 62.2%. The difference between PSIONplus and
IonchanPred 2.0 is consistent with the results reported in [13]. We conclude that both PSIONplusm and
PSIONplus accurately identify ion channels from the protein sequences.

3.2.3. Assessment of the Prediction of the Ion Channel Subtypes

The metrics for the prediction of the ion channel subtypes are summarized in Figure 3B (except
for the first set of bars) and in the third and subsequent rows in Table 3.

First, we observe that all considered methods (PSIONplusm, IonchanPred 2.0, PSIONplus,
and IonchanPred2.0+PSIONplus) fail to accurately predict the following four subtypes of the ion
channels: voltage-gated sodium channels, ligand-gated sodium channels, ligand-gated potassium
channels, and ligand-gated anion channels. Their predictive performance is equivalent to that of the
random predictor (Table 3). A potential reason could be related to the fact that these subtypes of ion
channels have the lowest counts in the benchmark dataset (Table 1), and likely also in the datasets
used to train the current predictors. Moreover, for PSIONplusm, another reason is likely related to
the fact that the scores from PSIONplus that we use to implement the predictions of the subtypes of
the ligand-gated channels in PSIONplusm were originally optimized to predict the subtypes of the
voltage-gated channels.

Second, only PSIONplusm provides consistently and significantly higher predictive performance
measured with F1, precision, and recall when compared with the random predictor for the other four
subtypes of the ion channels: voltage-gated potassium channels, voltage-gated calcium channels,
voltage-gated anion channels, and ligand-gated calcium channels (p-value < 0.001; Table 3). Other
predictors offer a more spotty performance, where IonchanPred 2.0 improves only for the voltage-gated
potassium channels, PSIONplus for the voltage-gated potassium channels and the ligand-gated calcium
channels, and the combination method (IonchanPred2.0+PSIONplus) for the voltage-gated potassium
channels, voltage-gated calcium channels and ligand-gated calcium channels.

Third, PSIONplusm is significantly better (based on the F1 value) than the other three methods
(IonchanPred 2.0, PSIONplus, and IonchanPred2.0+PSIONplus) for the prediction of the voltage-gated
calcium channels and voltage-gated anion channels (p-value < 0.001). Moreover, both PSIONplusm

and PSIONplus are significantly better than IonchanPred2.0 for the prediction of the ligand-gated
calcium channels (p-value < 0.001), while PSIONplus is the best for the prediction of the voltage-gated
potassium channels (p-value < 0.001) (Figure 3B).
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Overall, we conclude that PSIONplusm is the best alternative among the methods considered here
including IonchanPred 2.0, PSIONplus, the domain-based predictor, and the sequence alignment-based
approach, given that the latter method was empirically shown to be outperformed by PSIONplus [23].
Moreover, our empirical results suggest that new multi-label predictors are needed, particularly for
the prediction of the voltage-gated sodium channels, ligand-gated sodium channels, ligand-gated
potassium channels, and ligand-gated anion channels. The development of these methods may require
a more comprehensive data curation to acquire larger sets of these subtypes of the ion channels.

4. PSIONplusm Webserver

PSIONplusm predictor is freely available to the end users as a webserver located at
https://yanglab.nankai.edu.cn/PSIONplusm/. Figure 4 shows the web interface of this webserver.

PSIONplusm webserver needs the FASTA-formatted protein sequence as the only input.
The webserver offers an option to select one of the five available predictive models (Figure 4A):
(1) PSIONplus for the prediction of ion channel vs. non-ion channel; (2) PSIONplus for the prediction
of voltage-gated vs. ligand-gated ion channels (assuming that the input sequence is an ion channel);
(3) PSIONplus for the prediction of the four subtypes of the voltage-gated ion channels (assuming
that the input sequence is a voltage-gated ion channel); (4) PSIONplus for the sequential single-label
prediction of the ion channels and ion channel types and subtypes; and finally (5) PSIONplusm for the
sequential multi-label prediction of the ion channels and ion channel types and subtypes. By default,
the webserver performs the predictions using the PSIONplusm model.

The computations are performed on the server side and the results are returned to the user in the
browser window (Figure 4B). The entire prediction process takes about 2 to 3 min.
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5. Discussion and Conclusions

The prediction of the ion channels and their types/subtypes offers a viable and efficient way to
identify putative ion channels in the vast databases of protein sequences. While the current methods
were shown to offer reasonably accurate predictions [13,20,22,23], they suffer a number of drawbacks
including the lack of availability, parallel prediction modes, an inability to predict multiple channel
subtypes (they perform single-label prediction), and a lack of support for the prediction of the subtypes
of the voltage-gated channels. Our new predictor, PSIONplusm, addresses these issues by performing
sequential multi-label prediction of ion channels and their subtypes for both voltage-gated and
ligand-gated ion channels. PSIONplusm is freely available as a convenient to use webserver located at
https://yanglab.nankai.edu.cn/PSIONplusm/. We also provide the standalone version of this predictor
via its GitHub page at https://github.com/cliffgao/PSIONplusm.

We test and empirically compare PSIONplusm with the current methods that are available to the end
users (IonchanPred2.0, PSIONplus, a simple multi-label approach that combines results from these two
methods: IonchanPred2.0+PSIONplus, and the domain-based approach) on a new benchmark dataset
that shares low similarity with the training datasets used to build these predictors. We demonstrate that
PSIONplusm significantly outperforms the other methods in the overall test that considers multi-label
prediction of all channel subtypes. We also show that the alternative multi-label predictor that combines
results produced by IonchanPred2.0 and PSIONplus underperforms compared to the single-label
PSIONplus and the multi-label PSIONplusm. Further analysis reveals that PSIONplusm produces
the most accurate predictions for the voltage-gated calcium channels and the voltage-gated anion
channels, and together with PSIONplus for the prediction of the ion channels and the ligand-gated
calcium channels.

However, we also found that all considered methods (PSIONplusm, IonchanPred 2.0, and
PSIONplus) have difficulty with the prediction of the voltage-gated sodium channels, ligand-gated
sodium channels, ligand-gated potassium channels, and ligand-gated anion channels. Their predictive
performance for these ion channel subtypes is equivalent to a random predictor. This is likely
connected with the fact that these channel subtypes are the least frequent in the current training and
benchmark datasets.

We recommend that novel multi-label predictors should be built to provide improved predictions,
particularly for the currently poorly predicted ion channel subtypes. There are at least two potential
avenues for the development of the future methods. First, while PSIONplusm combines multiple
single-label SVM models, it would be beneficial to investigate the application of multi-label models [37].
Such approaches were recently applied for several related prediction problems including enzyme
type [45], protein functions [38], and subcellular locations prediction [42,43]. Second, new and larger
training datasets should be developed as new annotations of ion channels become available in the
future. In other words, the efforts to develop novel methods will require a careful and comprehensive
curation of new datasets that include larger numbers of proteins that uniformly cover different channel
subtypes and that provide a comprehensive representation for the non-channel proteins.

https://yanglab.nankai.edu.cn/PSIONplusm/
https://yanglab.nankai.edu.cn/PSIONplusm/
https://github.com/cliffgao/PSIONplusm
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