Supporting Information

Chemoenzymatic Synthesis and Biological Evaluation for Bioactive Molecules Derived from Bacterial Benzoyl Coenzyme A Ligase and Plant Type III Polyketide Synthase

Kamal Adhikari, I-Wen Lo, Chun-Liang Chen, Yung-Lin Wang, Kuan-Hung Lin, Saeid MalekZadeh, Rajesh Rattinam, Yi-Shan Li, Chang-Jer Wu and Tsung-Lin Li

Contents

Table S1: ¹ H (600MHz) and ¹³ C (150 MHz) NMR data of 4M5C-CoA 4
Table S2: ¹ H-NMR data of $1-7$ in DMSO- d_6^a
Table S3: ¹³ C-NMR data of $1-7^{a}$ in DMSO- $d_{6^{a}}$
Figure S1: LC trace of malonyl-CoA derivatives and cyclic ATP regenerating system.
7
Figure S2: HPLC-PDA-HRQTOF-ESI/MS spectra of the newly synthesized
polyketides products9
Figure S3: Chemical structure of carboxylic acids used as a substrate for BadA-
mutant (H333A/I334A) to synthesized the CoA derivatives9
Figure S4: Mass spectrum $[M+H]$ + of representative CoA derivatives12
Figure S5: The COSY and HMBC correlation of 4M5C-CoA13
Figure S6: The assignment, physic data, 2D-NMR (HMBC and COSY) correlations
of 1–713
Figure S7. ¹ H NMR of $4M5C-CoA$ in D ₂ O (600 MHz)14
Figure S8: 13 C NMR of 4M5C-CoA in D ₂ O (150 MHz)14
Figure S9: COSY spectrum of 4M5C-CoA in D ₂ O 15
Figure S10: HSQC spectrum of 4M5C-CoA in D ₂ O15
Figure S11. HMBC spectrum of 4M5C-CoA in D ₂ O 16
Figure S12: ¹ H NMR of compound 1 in DMSO- <i>d</i> ₆ (600 MHz) 16
Figure S13: ¹³ C NMR of compound 1 in DMSO- <i>d</i> ₆ (150 MHz) 17
Figure S14: HSQC spectrum of compound 1 in DMSO- <i>d</i> ₆ 17
Figure S15: HMBC spectrum of compound 1 in DMSO- <i>d</i> ₆ 18
Figure S16: ¹ H NMR of compound 2 in DMSO- <i>d</i> ₆ (600 MHz) 18
Figure S17: ¹³ C NMR of compound 2 in DMSO- <i>d</i> ₆ (150 MHz) 19
Figure S18: HSQC spectrum of compound 2 in DMSO- <i>d</i> ₆ 19
Figure S19: HMBC spectrum of compound 2 in DMSO- <i>d</i> ₆ 20
Figure S20: ¹ H NMR of compound 3 in DMSO- d_6 (600 MHz)20
Figure S21: ¹³ C NMR of compound 3 in DMSO- d_6 (150 MHz)21
Figure S22: HSQC spectrum of compound 3 in DMSO- <i>d</i> ₆ 21
Figure S23: HMBC spectrum of compound 3 in DMSO- <i>d</i> ₆ 22
Figure S24: ¹ H NMR of compound 4 in DMSO- <i>d</i> ₆ (600 MHz)22
Figure S25: ¹³ C NMR of compound 4 in DMSO- <i>d</i> ₆ (150 MHz)23
Figure S26: COSY spectrum of compound 4 in DMSO- <i>d</i> ₆ 23
Figure S27: HSQC spectrum of compound 4 in DMSO- <i>d</i> ₆ 24
Figure S28: HMBC spectrum of compound 4 in DMSO- <i>d</i> ₆ 24
Figure S29: ¹ H NMR of compound 5 in DMSO- <i>d</i> ₆ (600 MHz)25
Figure S30: ¹³ C NMR of compound 5 in DMSO- <i>d</i> ₆ (150 MHz)25

Figure S31: COSY spectrum of compound 5 in DMSO- <i>d</i> ₆	26
Figure S32: HSQC spectrum of compound 5 in DMSO- <i>d</i> ₆	26
Figure S33: HMBC spectrum of compound 5 in DMSO- <i>d</i> ₆	27
Figure S34: ¹ H NMR of compound 6 in DMSO- <i>d</i> ₆ (600 MHz)	28
Figure S35: ¹³ C NMR of compound 6 in DMSO- <i>d</i> ₆ (150 MHz)	28
Figure S36: COSY spectrum of compound 6 in DMSO- <i>d</i> ₆	29
Figure S37: HSQC spectrum of compound 6 in DMSO-d ₆	29
Figure S38: HMBC spectrum of compound 6 in DMSO-d ₆	30
Figure S39: ¹ H NMR of compound 7 in DMSO- <i>d</i> ₆ (600 MHz)	31
Figure S40: ¹³ C NMR of compound 7 in DMSO- <i>d</i> ₆ (150 MHz)	31
Figure S41: COSY spectrum of compound 7 in DMSO- <i>d</i> ₆	32
Figure S42: HSQC spectrum of compound 7 in DMSO- <i>d</i> ₆	32
Figure S43: HMBC spectrum of compound 7 in DMSO- <i>d</i> ₆	33

Position No.	$\delta_{\!\!H}({ m mult},J{ m in}{ m Hz})^a$	$\delta_{ m C}$ (type) b	¹ H- ¹ H COSY correlations	¹ H- ¹³ C HMBC correlations
1	6.16 (d, 5.6)	87.4 (CH)	2	2, 1', 5'
2	4.85 (overlapping)	74.3 (CH)	1, 3	1
3	3.86 (m)	72.1 (CH)	2	4
4	4.60 (br s)	83.6 (CH)		1, 2, 5
5	4.02 (br d, 5.6)	65.2 (CH ₂)		3, 4
	4.28 (br s)			
6	3.60 (m)	72.0 (CH ₂)		7, 8, 15, 16
	3.86 (m)			
7		38.4 (C)		
8	4.03 (s)	74.1 (CH)		6, 7, 9, 15, 16
9		174.8 (C)		
10	3.47 (m)	35.4 (CH ₂)	11	9, 11, 12
	3.47 (m)			
11	2.45 (t, 6.8)	35.5 (CH ₂)	10	10, 12
	2.45 (t, 6.8)			
12		174.2 (C)		
13	3.44 (m)	38.6 (CH ₂)	14	12, 14
	3.44 (m)			
14	3.20 (m)	29.4 (CH ₂)	13	13, 1"
	3.20 (m)			
15	0.80 (s)	18.4 (CH ₃)		6, 7, 8, 16
16	0.93 (s)	20.9 (CH₃)		6, 7, 8, 15
1'	8.64 (s)	142.2 (CH)		2', 5'
2'		118.5 (C)		
3'		150.5 (C)		
4'	8.38 (s)	145.6 (CH)		3', 5'
5'		148.6 (C)		
1"		185.8 (C)		
2"		130.3 (C)		
3"	8.98 (s)	157.7 (CH)		2", 4"
4"		157.3 (C)		
5″	2.62 (s)	17.1(CH₃)		2", 4"

Table S1: 1 H (600MHz) and 13 C (150 MHz) NMR data of **4M5C-CoA**

^{*a*} The $\delta_{\rm H}$ values were measured in 600 MHz NMR.

 b The $\delta_{\rm C}$ values were measured in 150 MHz NMR.

No.	1	2	3	4	5	6	7
2	5.28 (s)	5.37 (s)	4.83 (s)	5.07 (s)	5.21 (s)	5.31 (s)	5.08 (s)
4	6.39 (s)	6.69 (s)	6.47 (s)	5.85 (s)	5.95 (s)	5.67 (s)	5.89 (s)
1'				2.41 (m)	2.40 (m)	1.98 (m)	3.78 (s)
				2.41 (m)	2.40 (m)	1.98 (m)	3.78 (s)
2′		8.03 (s)	7.96 (s)	1.24 (m)	1.23 (overlap)	1.23 (overlap)	
				1.24 (m)	1.23 (overlap)	1.23 (overlap)	
3′	9.15 (s)			1.55 (m)	1.29 (m)	1.27 (m)	7.34 (d, 7.8)
				1.55 (m)	1.29 (m)	1.27 (m)	
4′	2.59 (s)	2.71 (s)		2.62 (m)	1.57 (m)	1.23 (overlap)	7.59 (d, 7.8)
				2.62 (m)	1.57 (m)	1.23 (overlap)	
5′					2.56 (m)	1.54 (m)	
					2.56 (m)	1.54 (m)	
6'				7.08 (overlap)		2.53 (overlap)	7.59 (d, 7.8)
						2.53 (overlap)	
7'				7.22 (overlap)	7.17 (d, 7.5)		7.34 (d, 7.8)
8′					7.25 (d, 7.5)	7.16 (d, 7.5)	
9'				7.22 (overlap)	7.15 (t, 7.5)	7.24 (d, 7.5)	7.64 (d, 7.5)
10′				7.08 (overlap) 7.25 (d, 7.5		7.15 (t, 7.5)	7.45 (dd, 7.5,
							7.6)
11'					7.17 (d, 7.5)	7.24 (d, 7.5)	7.34 (t, 7.6)
12'						7.16 (d, 7.5)	7.45 (dd, 7.5,
							7.6)
13'							7.64 (d, 7.5)

Table S2: ¹H-NMR data of 1–7 in DMSO-*d*₆^{*a*}

^{*a*} The $\delta_{\rm H}$ (mult, J in Hz) values were measured in 600 MHz NMR.

Ne	1	2	2	4		6	
NO.	L	2	3	4	5	0	/
1	173.6 (C)	173.3 (C)	164.3 (C)	undetected (C)	164.1 (C)	undetected (C)	163.6 (C)
2	89.3 (CH)	89.8 (CH)	88.5 (CH)	86.3 (CH)	88.3 (CH)	86.5 (CH)	87.8 (CH)
3	undetected ^b	155.7 (C)	undetected (C)	undetected (C)	171.5 (C)	170.2 (C)	undetected (C)
	(C)						
4	100.8 (CH)	98.8 (CH)	107.1 (CH)	101.2 (CH)	99.9 (CH)	102.3 (CH)	101.9 (CH)
5	undetected (C)	undetected (C)	undetected (C)	165.1 (C)	166.3(C)	166.5 (C)	undetected (C)
1′	152.8 (C)	145.6 (C)	151.8 (C)	32.6 (CH ₂)	32.8 (CH ₂)	34.4 (CH ₂)	38.5 (CH ₂)
2'	123.7 (C)	120.4 (CH)	121.1 (CH)	20.7 (CH ₂)	27.2 (CH ₂)	20.6 (CH ₂)	134.5 (C)
3'	154.8 (CH)	167.3 (C)	146.4 (C)	30.4 (CH ₂)	27.9 (CH ₂)	28.4 (CH ₂)	129.7 (CH)
4'	17.4 (CH₃)	18.9 (CH₃)		33.8 (CH ₂)	30.6 (CH ₂)	29.0 (CH ₂)	126.5 (CH)
5′				139.1 (C)	35.0 (CH ₂)	30.9 (CH ₂)	138.5 (C)
6'				130.0 (CH)	142.2 (C)	35.1 (CH ₂)	126.5 (CH)
7′				114.9 (CH)	128.3 (CH)	142.4 (C)	129.7 (CH)
8'				159.7 (C)	128.3 (CH)	128.2 (CH)	140.0 (C)
9'				114.9 (CH)	125.7 (CH)	128.2 (CH)	126.6 (CH)
10'				130.0(CH)	128.3 (CH)	125.6 (CH)	128.8 (CH)
11'					128.3 (CH)	128.2 (CH)	127.3 (CH)
12'						128.2 (CH)	128.8 (CH)
13'							126.6 (CH)

Table S3: ¹³C-NMR data of **1–7**^a in DMSO-*d*₆^a

^{*a*} The $\delta_{\rm C}$ (type) values were measured in 150 MHz NMR.

^b The chemical shifts cannot be observed were noted "undetected"

Figure S1: LC trace of malonyl-CoA derivatives and cyclic ATP regenerating system. (A) Chemo-enzymatic synthesis of malonyl-CoA and its derivatives (I) malonyl-CoA (II) fluoro-malonyl-CoA (III) butyl-malonyl-CoA (IV) methyl-malonyl-CoA CoA by RtMCS (B) Cyclic ATP regenerating myokinase/pyruvate kinase-PEP system.

Figure S2: HPLC-PDA-HRQTOF-ESI/MS spectra of the newly synthesized polyketides products.

Figure S3: Chemical structure of carboxylic acids used as a substrate for BadA-mutant (H333A/I334A) to synthesized the CoA derivatives.

Figure S4: Mass spectrum [M+H]+ of representative CoA derivatives. (a) 2methylthiazole-4-carboxyl-CoA (2M4C-CoA) (b) 2-methylthiazole-5-carboxyl-CoA (2M5C-CoA) (c) 4-methylthiazole-5-carboxyl-CoA (4M5C-CoA) (d) 4methylthiazole-2-carboxyl-CoA (4M2C-CoA) (e) 2-chloro-1,3-thiazole-4-carboxyl-CoA (2Cl4C-CoA) (f) 2-chloro-1,3-thiazole-5-carboxyl-CoA 2Cl5C-CoA (g) 2aminothiazole-4-carboxyl-CoA (2A4C-CoA) (h) 2-aminothiazole-5-carboxyl-CoA (2A5C-CoA) (i) 2-bromo-4-methylthiazole-5-carboxyl-CoA (2Br4M5C-CoA) (j) 2bromo-5-methylthiazole-4-carboxyl-CoA (2Br5M4C-CoA) (k) p-coumaroyl-CoA (pC-CoA) (l) 3-(p-tolyl)propanol-CoA (3P-CoA) (m) dihydrocinnamoyl-CoA (HC-CoA)

Figure S5: The COSY and HMBC correlation of 4M5C-CoA

Figure S6: The assignment, physic data, 2D-NMR (HMBC and COSY) correlations of 1–7. The COSY correlations were presented in bold lines while the HMBC correlations were shown red arrows.

Figure S7. ¹H NMR of **4M5C-CoA** in D₂O (600 MHz)

Figure S8: ¹³C NMR of 4M5C-CoA in D₂O (150 MHz)

Figure S9: COSY spectrum of 4M5C-CoA in D₂O

Figure S10: HSQC spectrum of 4M5C-CoA in D₂O

Figure S11. HMBC spectrum of 4M5C-CoA in D₂O

Figure S12: ¹H NMR of compound **1** in DMSO-*d*₆ (600 MHz)

Figure S13: ¹³C NMR of compound **1** in DMSO-*d*₆ (150 MHz)

Figure S14: HSQC spectrum of compound 1 in DMSO-d₆

Figure S15: HMBC spectrum of compound 1 in DMSO-d₆

²⁰¹⁹⁰⁹²¹_KML_3_DMSO.1.fid — 1GRC_1D_1H-ZG_zg30 DMSO /opt/nmrdata/tlli tlli 11

Figure S16: ¹H NMR of compound **2** in DMSO-*d*₆ (600 MHz)

Figure S18: HSQC spectrum of compound 2 in DMSO-d₆

Figure S19: HMBC spectrum of compound 2 in DMSO-d₆

Figure S20: ¹H NMR of compound **3** in DMSO-*d*₆ (600 MHz)

Figure S21:¹³C NMR of compound **3** in DMSO-*d*₆ (150 MHz)

Figure S22: HSQC spectrum of compound 3 in DMSO-d₆

Figure S23: HMBC spectrum of compound 3 in DMSO-d₆

Figure S24: ¹H NMR of compound **4** in DMSO-*d*₆ (600 MHz)

Figure S25: ¹³C NMR of compound 4 in DMSO-*d*₆ (150 MHz)

Figure S26: COSY spectrum of compound 4 in DMSO-d₆

Figure S27: HSQC spectrum of compound 4 in DMSO-d₆

Figure S28: HMBC spectrum of compound 4 in DMSO-d₆

Figure S30: ¹³C NMR of compound **5** in DMSO-*d*₆ (150 MHz)

Figure S31: COSY spectrum of compound 5 in DMSO-d₆

Figure S32: HSQC spectrum of compound 5 in DMSO-d₆

Figure S33: HMBC spectrum of compound 5 in DMSO-*d*₆

Figure S35: ¹³C NMR of compound **6** in DMSO-*d*₆ (150 MHz)

Figure S36: COSY spectrum of compound 6 in DMSO-d₆

Figure S37: HSQC spectrum of compound **6** in DMSO-*d*₆ 29

Figure S38: HMBC spectrum of compound 6 in DMSO-d₆

Figure S39: ¹H NMR of compound 7 in DMSO-*d*₆ (600 MHz)

Figure S40: ¹³C NMR of compound 7 in DMSO-*d*₆ (150 MHz)

Figure S41: COSY spectrum of compound 7 in DMSO-d₆

Figure S42: HSQC spectrum of compound 7 in DMSO-d₆

Figure S43: HMBC spectrum of compound 7 in DMSO-*d*₆