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Abstract

:

Pathogens are able to deliver small-secreted, cysteine-rich proteins into plant cells to enable infection. The computational prediction of effector proteins remains one of the most challenging areas in the study of plant fungi interactions. At present, there are several bioinformatic programs that can help in the identification of these proteins; however, in most cases, these programs are managed independently. Here, we present EffHunter, an easy and fast bioinformatics tool for the identification of effectors. This predictor was used to identify putative effectors in 88 proteomes using characteristics such as size, cysteine residue content, secretion signal and transmembrane domains.
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1. Introduction


Fungal phytopathogens are a major threat to food security since they can cause devastating losses to important crops in agriculture.



These pathogenic fungi secrete diverse small proteins in the infection process which are pathogenicity or virulence determinants that manipulate the interaction, and thus are commonly referred to as “effectors” [1,2,3,4]. Small, secreted, cysteine-rich proteins constitute a common source of fungal effectors [3,5,6,7].



Fungal effector proteins are poorly conserved, and in contrast to oomycetes effectors, where the presence of conserved amino acid motifs (e.g., RxLR, dEER) has created profile Hidden Markov Models (HMM), the prediction of fungal effectors has been more challenging. In general, most fungal effectors do not share significant sequence similarity with each other, which can be attributed to rapid divergence and host specialization. However, they share structural properties such as a signal peptide for secretion, absence of transmembrane domains, presence of some motifs, small-medium molecular weight sizes and cysteine-rich content [8,9,10]. Additional fungal effector features have been reported for specific subclasses of effectors, for example, particular genomic locations such as gene clusters, gene-sparse regions or localization in dispensable chromosomes [11].



Major efforts have been devoted to in silico identification of secreted effectors in large-scale genome studies. Three principal approaches have been commonly used by different research groups: (a) analyzing proteomes in different bioinformatic programs that help to filter the secretome, for instance, SignalP 4.1 [12], WoLFPSORT [13] and TMHMM 2.0 [14]. The use of these programs is usually done in a separate manner and not as a package; (b) machine learning approaches, which can predict new effector proteins based on the extracted features of reported and confirmed effectors [15,16]; and (c) comparative genomics to search those effectors that belong to families, or to find rare ortholog effector candidates that might be transferred horizontally [17].



EffectorP 1.0 and 2.0, the first reported machine learning classifiers of fungal effectors [15,16], have been the most preferred fungal effector prediction tools used to date. Although these approaches are often successful at identifying effectors, criteria such as small size and enrichment in cysteine require thresholds manually set by researchers. Therefore, finding an easy and quick tool that led to adjusting the search criteria used for the prediction of effectors becomes a niche of opportunity.



The present work introduces EffHunter, a pipeline developed to integrate SignalP 4.1 [12], Phobius [18], TMHMM 2.0 [14] and WoLFPSORT [13] with Perl/Bioperl scripts for filtering protein size and cysteine content. Running the analysis in a single step, the sensitivity of the prediction was 70%, defined as the proportion of positives that are correctly identified, and a specificity of 100%, which is the proportion of negatives that are correctly identified. These values obtained were the same as those obtained with the step-by-step method of prediction and similar to EffectorP 2.0 values with a sensitivity of 68% and specificity of 98%.




2. Materials and Methods


2.1. Architecture of EffHunter Pipeline


EffHunter is based on the available software SignalP 4.1 [12], Phobius [18], TMHMM 2.0 [14] and WoLFPSORT [13] (Table 1). A set of Perl/Bioperl (v5.18.2) scripts was designed to perform these complementary tasks: the protein length analysis (≤400 amino acids), the cysteine count (≥4 cysteine residues) and connecting the individual steps into a single pipeline for proteome scale analysis. EffHunter works as follows: first, all the sequences are put in FASTA format, where each sequence is filtered with respect to the size indicated by the user, and the result is stored in a new FASTA file. Second, the first list obtained from the filter by protein size is submitted to the filter by number of cysteines; in this step, the user indicates the value to filter those proteins that have greater or equal to the number indicated. Once obtained, the proteins that meet the criteria are stored in a new FASTA file. Third, the retrieved sequences are searched for signal peptide signatures with SignalP 4.1 and Phobius programs. Fourth, the resulting FASTA file of protein sequences are searched for transmembrane domains with TMHMM 2.0, and then WoLFPSORT predicts the subcellular localization. Each analysis uses a FASTA file as input and generates an output in FASTA format too.



EffHunter is distributed as a compressed file in ZIP format. The source code is available for download at https://www.cicy.mx/unidad-de-biotecnologia/investigador/blondy-beatriz-canto-canche and https://github.com/GisCarreon/EffHunter_v.1.0 GitHub repository. Docker image is available at https://hub.docker.com/r/giscarreon/ubuntu-effhunter. Once the EffHunter_1.0 directory has been uncompressed, it shows the bin directory, in which the empty subdirectories SignalP, Phobius, TMHMM and WoLFPSORT are located. The user must download each program from the platforms indicated in Table 1 and uncompress and install them in each empty subdirectory mentioned above for the correct execution of EffHunter. To use EffHunter pipeline, the code indicates the necessary path to install each program and to compile and take the modules. The command to execute EffHunter once it is installed in a linux/unix terminal is sh ./EffHunter.sh.




2.2. Validation of EffHunter Pipeline in ab Initio Approach


EffHunter was challenged using different protein databases designated as positive and negative control sets. The positive data set (Table 2) contained a total of 150 effector proteins (Supplementary data set S1), of which 94 effectors were collected from the literature by Sperchneider et al. [15], and the other 56 were effector candidates retrieved from the Pathogen-Host Interaction database (PHI-base) (Supplementary Table S1). These databases comprise, to date, more than 4000 proteins involved in pathogenicity, from more than 260 plant and animal pathogens; 70% of them being phytopathogens [19,20]. The search for protein effectors in the PHI base for the positive data set was done using the following criteria: length ≤400 amino acids [5,21,22,23,24,25], ≥4 cysteine residues [26,27], presence of signal peptide and lack of transmembrane domains [1,27,28].



The capability of EffHunter pipeline to exclude non-effectors was challenged with a large list of negative control proteins (4530 proteins). The negative control set comprises well-known families of proteins, ABC transporter proteins (2329) (Supplementary data set S2) [29,30], Cyt P450 proteins (476) (Supplementary data set S3) [31], and 1725 proteins classified as major facilitator transporters (MFTS) (Supplementary data set S4) [32,33,34]. The set of negative controls comprises varied proteins: from 73 to 5000 amino acids; from 0 to 74 cysteines; from 0 to 23 TMDs; with or without signal peptide. The great variability makes these proteins a robust set of negative controls. In addition, none are extracellular, and more importantly, no member of these protein families has been described as a fungal effector. The fasta sequences of all of these candidates were downloaded from the GenBank at NCBI (https://www.ncbi.nlm.nih.gov/); positive and negative controls were pooled in a single database containing in total 4680 proteins (Supplementary data set S5).



The search for effectors in this database was performed in the traditional way using each program separately by sequential analyses and in a single step, using the EffHunter pipeline with the command described above.



To assess the predictive ability of the EffHunter prediction, the variables sensitivity, specificity, precision and accuracy were calculated to measure the performance of the EffHunter pipeline:
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Sensitivity is defined as the proportion of positives that are correctly identified. Specificity is the proportion of negatives that were correctly identified. Precision or positive predictive value, PPV, is a measure which captures the proportion of positive predictions that are true. Accuracy analysis can be used to evaluate the overall performance of a method. In the equations, TP, true positives; TN, true negatives; FP, false positives; and FN, false negatives. Recall is defined as the proportion of the positives that are successfully retrieved. F1 Score is widely used to measure the success of binary classifier and compare performance of different software/pipelines. F1 Score reaches it best value at 1 and the worst score at 0 [16,25,28,35,36,37].




2.3. Validation of EffHunter Pipeline in Comparative Approach


Criteria to identify effectors are largely discrepant in the literature; therefore, in order to continue the evaluation of EffHunter, its predictions were compared with three published fungal effector datasets. Each dataset was obtained by using different strategies to identify the effectoromes.



Two approaches were followed. In the first one, we compared EffHunter prediction with previous reports of effector prediction, by sequential/separate analyses with different bioinformatics programs (Table 3). Reports were for Blumeria graminis f. sp. hordei [38], Pseudocercospora fijiensis [39] and Mycosphaerella graminicola [40]. It is important to emphasize that in those reports, different combinations of bioinformatic tools were used. Details about such tools are provided in Table 4.



For Blumeria graminis f. sp. hordei and Pseudocercospora fijiensis, EffHunter analyses ran on the same bioinformatic databases used by the authors, but for Mycosphaerella graminicola, EffHunter ran on the nonredundant dataset of proteins for this pathogen at JGI (https://mycocosm.jgi.doe.gov/Mycfi2/Mycfi2.home.html) because the database reported by authors is not publicly available. In the search for effectors, the length cutoff was set equal to that used in each one of these reports, respectively.



The second approach was a comparison between the resulting list of protein effectors produced by EffHunter with those of Sonah et al. [10], since the authors used the bioinformatics tool, SECRETOOL [41], a program that integrates the use of SignalP 4.1, TMHMM 2.0 and WoLFPSORT to analyze and identify secreted proteins. Using SECRETOOL, the authors predicted effectoromes in 12 proteomes: Alternaria brassisicola, Blumeria graminis, Cladosporium fulvum, Colletrotrichum gramnicola, Fusarium oxysporum, Leptosphaeria maculans, Magnaporthe oryzae, Mycosphaerella graminicola, Ustilago maydis, Puccinia graminis f. sp. tritici, Pyrenophora tritici-repentis and Phytophthora infestans. Comparison among in silico identification of effectors by EffHunter, SECRETOOL and EffectorP 2.0 was carried out for these pathogens. For this and further analyses, cutoff size was fixed at ≤400 amino acids and the cysteine residues ≥4 in EffHunter analyses.



As a final test for validation, the predictive performance and limitations of EffHunter were compared with EffectorP 2.0 on noncanonical effectors (which are effectors hard to predict), such as SAD1, Mg3LysM, BEC1054, BEC1011, BEC1019, CSEP0055, Bcg1, CSEP0105, SIS1, Xyla, PIIN 08944, AvrPm3 and AvrSr35.




2.4. Prediction of Effector Proteins in Fungal Genomes


Deduced proteomes from 87 fungi and 4 oomycetes were downloaded from the databases of Broad Institute and Joint Genome Institute (https://jgi.doe.gov/) [42] and from the resource for genome-scale data, Ensembl Genomes (https://fungi.ensembl.org/index.html), developed by the EBI and the Welcome Trust Sanger Institute [43] (Supplementary Table S2).





3. Results


3.1. EffHunter: A Pipeline to Predict Fungal Effectors Proteins


The EffHunter pipeline was constructed for the in silico identification effectors in fungal proteomes. The architecture of EffHunter consists of four modules: (1) analysis of the protein length and cysteine count, (2) detection of signal peptide, (3) transmembrane domains and (4) subcellular localization.



Length estimation and the counting of cysteines in each protein are performed by a set of Perl/Bioperl scripts on the subject proteins; the programs listed in Table 1 accomplished the other bioinformatics analysis.



The EffHunter pipeline compiles the SignalP 4.1, Phobius, TMHMM 2.0 and WoLFPSORT programs, together with a set of scripts in Perl, to execute the analyses of length and content of cysteine residues in a single step for each polypeptide sequence of fungal proteomes (Figure 1).



The analysis with the EffHunter pipeline involves the automatic sequential analysis of the FASTA file output from the previous module until the creation of the final output file.




3.2. Validation ab Initio


The evaluation of EffHunter’sperformance was done by employing the positive data set (Table 2), comprising 56 effectors available in the PHI-database and the 94 effectors used for the initial positive training of EffectorP 2.0 [15]. The final list comprises 150 protein effectors, which include 140 effectors from fungi and 10 protein effectors from oomycetes (Supplementary data set S1).



As negative controls, a subset of 4530 proteins was used, comprising P450 proteins, MFTS and ABC transporters, most of them large, integral membrane proteins. The set of negative controls comprises a large number of proteins to challenge EffHunter, in order to prevent false positive identification as much as possible. Using the same data set with positive and negative controls, we compared our pipeline with EffectorP 2.0, a machine learning classifier for fungal effector prediction.



EffHunter positively identified 105 from 150 effectors (70%); meanwhile, 45 were false negatives (30%). The missing 45 effectors could not be identified because some of them contain transmembrane domains or less than four cysteine residues, two criteria that EffHunter uses for the prediction. From the total subset of proteins evaluated (4680), no false positive was retrieved (Table 3). Sequential analyses with the programs and scripts that make up EffHunter produced the same results as the automatic analysis with EffHunter (Table 3), showing that the pipeline worked as expected.



EffectorP 2.0 identified 166 effectors; 102 of them were true effectors (68%), but 48 true effectors were missing, i.e., 32% of false negatives. The larger difference observed between both predictors was the number of false positives, e.g., 64 for EffectorP 2.0 (41 ABC transporters, 22 cytochrome P450, and 1 MFTS) and none for EffHunter. Furthermore, sensitivities are similar (76% and 75%), but specificity was larger for EffHunter (100%) in comparison with 98% for EffectorP 2.0. Precision of EffHunter was 100% vs. 97% for EffectorP 2.0. Accuracy value was 99% for EffHunter and 97% for EffectorP 2.0 (Table 3).



In addition, following the strategy of Sonah et al. [10], i.e., using the pipeline SECRETOOL and then selecting proteins with maximum length of 300 amino acids, 72 true effectors were recognized and 78 true effectors were discarded (false negatives). No false positive was retrieved in this prediction.



Estimation of the F1 score for these predictions was carried out considering their results on the same set of 4680 proteins (containing 150 true effectors and 4530 negative controls). The scores were 0.57 for EffectorP v1.0, 0.64 for EffectorP v2.0, and SECRETOOL/300 amino acids and finally, for EffHunter, 0.82. These results support EffHunter as a good predictor for fungal canonical effectors.



EffHunter and EffectorP 2.0 shared 61 candidates. Non-shared predicted candidates were 44 for EffHunter and 41 for EffectorP 2.0 (Figure 2a). All of the 44 EffHunter specific candidates meet the established criteria for effector prediction. From the 41 candidates predicted only by EffectorP 2.0, 9% have no signal peptide, 26% have TMDs and 87% have less than four cysteine residues (Figure 2b). Since effectors are so diverse, it is ambiguous how many of the specific candidates of each predictor are true effectors, but candidates of Effhunter highly meet its own established criteria. The algebraic sum in Figure 1 is greater than 100% because some candidates have two or more characteristics, e.g., no signal peptide and have TMD at the same time.




3.3. Validation of EffHunter with Fungal Proteomes and Comparison with Other Effector Prediction Tools


EffHunter is versatile and allows the user to set cutoff values for the protein sequence length and number of cysteine residues. To continue the validation of EffHunter in the prediction of effector proteins, additional analysis was carried out on a few economically important plant pathogens whose effectoromes have been previously analyzed. Parameters and software used in each case are described in Table 4. For EffHunter, the length of proteins was set according to the reported criterion in each case. The number of cysteines was fixed at ≥4 per protein since is difficult to set a proper percentage, as the number of cysteines varies with the size of the protein.



In the plant pathogen Blumeria graminis f. sp. hordei, EffHunter predicted 490 effector candidates in comparison with the 494 reported by Liang et al. [38] using diverse criteria presented in Table 4; 404 of them were common in both predictions. EffHunter identified 82 proteins which were not retrieved by the other study. These 82 proteins were then analyzed with different programs that are not included in EffHunter but were used by other authors (i.e., TargetP 1.1 [45] and big-PI [46]). In addition, the analysis of Liang et al. [38] used one additional criterion, searching for secreted proteins that show similarity only with proteins from powdery mildews. These analyses identified 12 false positives in EffHunter candidates because they did not meet this additional criterion, but 70 of them met all the author’s criteria. On the contrary, Liang et al. [38] identified 86 candidates, which were not recognized by EffHunter. Sixty-two of them were larger than 400 amino acids; 19 had no signal peptide and 5 were predicted as GPI-anchored. Therefore, these 86 candidates identified by Liang et al. [38] seem to be false positives according to their own criteria (Table 4).



The second comparison was with a list of candidate effectors reported by Chang et al. [39] from Pseudocercospora fijiensis, the causal agent of black Sigatoka disease in banana and plantain. Chang et al. [39] reported 105 candidate effectors for the fungus, while EffHunter predicted 136, with 78 of them shared between both analyses. From the 27 candidates exclusive of the results of Chang et al., 15 appear to be false positives since they do not meet some of their criteria; 12 were ambiguous. Ambiguity arises because both predictions have different settings for some criteria (i.e., they accepted one TMD in the proteins, but EffHunter does not). Since effectors are so diverse, the criterion of having one or no TMD has a similar probability of being acceptable. In the ambiguous candidates, seven have one TMD and five candidates have only two cysteines in their sequence, but they present the 2% cysteine because those are peptides with 60 amino acids or less. EffHunter parameters filtered those proteins. EffHunter predicted 58 effectors that were not enlisted in the reference data; 32 of them may be false negatives for the reference since they meet all their parameters. Sixteen EffHunter candidates were probably false positive, and 10 were ambiguous (Table 4).



The third comparison was with a list of deduced effectors from Mycosphaerella graminicola, a fungus causing septoria leaf blotch in wheat [40]. In addition to some software previously mentioned (i.e., SignalP 3.0, TargetP 1.1, big-PI, WoLFPSORT), these authors included in their analysis the use of LocDB [47], ProtComp v8.0 and PotLocDB [48] and designed a script to set cysteine at 5%. The list of candidates was filtered to exclude those proteins that have any functional annotation. They reported 171 effector candidates vs. 183 by EffHunter.



One hundred ten were common in both results; among the 61 candidates exclusive for the reference, 60 failed to meet some of the authors’ criteria (they may represent false positives), but one was true positive for their result and false negative for EffHunter. Curiously, this protein (ID 82029) is not present in the nonredundant set of M. graminicola proteins in the JGI database. For this reason, EffHunter did not analyze it.



EffHunter predicted 74 candidates in addition to the common set. Fifty of these candidates are true positives, according to all criteria from authors, including the search for candidates with no relation with proteins with functional annotation. These 50 candidates are true effector candidates for EffHunter and false negatives for the reference. It is probable that EffHunter had 24 false positives since four have GPI, ProtComp predicts seven non-extracellular proteins, and 13 have homology with proteins with functional annotation in Pfam. EffHunter does not include the search of GPI, the ProtComp program and the Pfam database in the pipeline.



In summary, EffHunter performed well in these comparisons. In the three cases, the number of true positives was higher, and the false positives were lower with EffHunter. The number of false negatives for EffHunter was negligible; meanwhile, in the other reports, it was 14% in the Liang et al. [38] effectorome prediction for B. graminis f. sp. hordei, 30% in Chang et al. [39] prediction for P. fijiensis and 29% in Morais do Amaral et al. [40] prediction for M. graminicola, supporting the robust and reliable prediction by EffHunter.



In another report, Sonah et al. [10] used the bioinformatics tool SECRETOOL on 12 proteomes [41] to obtain the respective secretomes and then retrieve the small proteins (≤300 amino acids), proteins that they classified as effectors (Table 5). One of these pathogens (M. graminicola) was analyzed also by Morais do Amaral et al. [40] and compared here with EffHunter (Table 4), which is interesting because this expands the comparison among the different predictive tools for fungal effectors. Comparison among effectoromes predicted by SECRETOOL, EffHunter and EffectorP 2.0 was conducted for these pathogens (Table 5). Sonah et al. [10] did not provide a link to the databases that they used; as such, the first attempt in our analyses was conducted on total proteomes of these species. EffHunter works properly on total proteomes, but we observed an elevated number of false positives with EffectorP 2.0. Using a total proteome as input, EffectorP 2.0 identified 1663 candidates for C. fulvum vs. 151 candidates with a secretome as input (data not shown). For this reason, the secretome for each pathogen was first obtained submitting the proteomes to the SignalP 4.1to reduce the number of false positives for the EffectorP 2.0 analysis. Table 5 shows the prediction of effectors by the three programs. The numbers of effectors are similar between Sonah et al. [10] predictions and EffHunter; in general, EffectorP 2.0 predicted in some cases a lower number of candidates than EffHunter and SECRETOOL [10].



For example, in the case of Puccinia graminis f. sp. tritici, 659 effector candidates were predicted by EffHunter, 612 reported by SECRETOOL and 605 predicted by EffectorP 2.0. In the latter, 110 proteins have one or more transmembrane domains and cannot be classified as positive or negative, but as ambiguous. In the list of 94 validated effectors shown in Table 2 [15], 11 have one TMD and 83 have no TMD. In general, in each effectorome, EffectorP 2.0 retrieved few candidates with no signal peptide or possessing transmembrane domains. False positives or false negatives from Sonah et al. [10] could not be calculated because of the lack of the datasets of their sequences. Step-by-step analyses of all candidates retrieved by EffHunter showed that they meet all EffHunter criteria, suggesting no false positives in our sets of putative effectors.



To further evaluate EffHunter, its performance on nonconventional known effectors of five species of phytopathogens was analyzed and compared with EffectorP 2.0 (Table 6). PIIN 08944 and AvrSr355 are elusive effectors, and neither EffHunter nor EffectorP 2.0 can recognize them. SAD1 and BEC1054 are not recognized by EffHunter, but they are predicted as effectors by EffectorP 2.0. On the contrary, EffHunter recognizes Mg3LysM, BEC1019 and CSEP0105, which are not recognized by EffectorP 2.0. These results show that EffHunter has strengths and limitations, as does EffectorP 2.0, which is currently the predictive tool for fungal effectors most widely used in the literature. Even with this limitation, EffHunter’s performance is acceptable to search for effectors in fungal proteomes and has the characteristic of being able to perform the analyses on total proteomes without prior filtering of the protein set to retrieve the secretome. The results show that EffHunter is a tool that makes the search for effectors friendly, making it a better tool.




3.4. Prediction of Effector Proteins in Several Fungal and Oomycetes Proteomes with EffHunter


The prediction of candidate effectors with EffHunter was carried out on 95 proteomes downloaded from the JGI Genome Institute Mycocosm and FungiEsembl platform (Supplementary Table S2).



Since effectors have been defined as pathogenicity-related proteins, effectoromes were compared among 40 phytopathogens with different lifestyles: 9 species of biotrophs (blue bars), 20 species of hemibiotrophs (green bars) and 11 species of nectrotrophs (red bars). In general, the highest number of predicted effectors was in the group of hemibiotrophs (close to 400 on average), with the lower number in the necrotrophs (around 200 effectors), followed the biotrophic group (around 300 effectors). In each group, there are fungi with an expanded or contracted set of effectors, such as the necrotroph Penicillum digitatum, the hemibiotrophs Verticillium dahliae and the oomycete Phytophthora capsici, and the biotrophs Blumeria graminis f. sp. tritici and Ustilago maydis, with smaller effectoromes than the rest.



The performance of EffHunter predicts expanded effectoromes in Melampsora larici-populina, Puccinia graminis f. sp. tritici, Colletotrichum higginsianum, Fusarium oxysporum f. sp. lycopersici, Magnaporte oryzae and Phytophthora sojae (Figure 3 and Supplementary Table S3).



In Figure 3, the graphic shows the number of effectors predicted in different types of fungi: yeast, brown and white rot fungi, ectomycorrhiza, opportunistic, mycoparasites, human pathogens, plant pathogens, entomopathogens and saprotrophs (Supplementary Table S4).



The lowest numbers of effectors were predicted in yeast. Curiously, the number of effectors in human pathogens was lower than in the nonpathogenic group, such as ectomycorrhiza and saprotrophs, revealing that pathogens have diversity in the number of predicted effectors. The number of effectors predicted in other pathogens was congruently larger. The groups of fungi with more effectors were plant pathogens and entomopathogens. However, it is not exclusive for pathogens to have the largest effectoromes, because in the case of saprotrophs, EffHunter predicted a similar number of effectors than in phytopathogens and entomopathogens.





4. Discussion


Effectors are key molecules in pathology since they enable the pathogen to modify host cell structure, physiology and metabolism to permit pathogen growth and colonization in the host. Most of the available knowledge has emerged from the study of plant–pathogen interactions where it has been discovered that effectors play diverse functions. Many effectors work as plant immunosuppressors, but others can trigger sugar transport in benefit of the pathogen [60], block or inactivate plant receptors preventing its detection [61] or, on the contrary, activate the immune plant receptors to kill the host [62]. Research on effectors is at its peak, and surely many other roles of effectors remain to be discovered.



In agriculture, fungal diseases cause major losses in several high-value crops such as bananas, coffee, cacao, legumes and spices, provoking ~20% of annual crop yield losses worldwide [63]. Effector proteins are potential biotechnological tools to assist in developing disease control strategies, for example, to select effector-assisted tolerant or resistant plants in breeding programs [64] or to identify plant targets and protein cognates for genetic engineering [65].



High-throughput technologies can currently provide us with high-quality transcriptomes from plant–pathogen interaction and pathogen genomes, meaning powerful data output for effector discovery. However, although progress has been achieved in functional validation of effectors, and multiple candidates can be tested [66], the experimental validation requires experience in genetic engineering. Moreover, this validation is expensive and time-consuming. Currently, less than 200 effectors have been identified and characterized [15]. Hence, robust effector mining from genomic data is key.



EffHunter is a pipeline created in our group by integrating SignalP 4.1, Phobius, WoLFPSORT, TMHMM 2.0 and two scripts for filtering small size (≤400 amino acids) and cysteine-rich (≥ 4) proteins. EffHunter identifies canonical effectors, i.e., secreted, apoplastic, small size and cysteine-rich. To test EffHunter, we used a positive subset of 94 effectors for the initial positive training of EffectorP 2.0 [15] and 56 effectors available in the PHI-database. A large set of negative controls (4530 proteins) was used to challenge EffHunter. No protein in the negative control set is extracellular and, more importantly, none has been described as a fungal effector. In addition, they are highly variable in length, content of cysteine, TMDs and presence or absence of signal peptide, in order to prevent false positive identification by EffHunter as much as possible.



Performance of EffHunter was compared with other effector predictors, running the analysis on the same set of data (4680 proteins, comprising 150 true effectors and 4530 negative controls). F1 score for EffHunter was 0.82, superior to F1 scores for EffectorP v1.0 and effector prediction following the strategy of Sonah et al. [10] (Table 3). EffectorP v2.0 showed a lower F1 score than EffHunter (0.64). The larger difference observed between EffHunter and EffectorP v2.0 was the number of false positives, 64 for EffectorP 2.0 and none for EffHunter.



The positive set of proteins used for developing and training EffectorP 2.0 comprised effectors with transmembrane domains (11 proteins), effectors with no signal peptide (2 proteins), effectors larger than 400 amino acids (2 proteins) and 37 proteins with less than four cysteine residues [15]. This training enables that algorithm to identify effectors with these noncanonical characteristics; however, according to our analysis, it also results in a higher percentage of putative false positives, in contrast to the zero false positives obtained with EffHunter. Another advantage of EffHunter is its suitability for total proteomes or secretomes as input, retrieving the same number of candidate effectors, while EffectorP 2.0 requires a secretome as input. We found that effector prediction using a total proteome in EffectorP 2.0 increases the rate of false positives by almost 10 times (data not shown). EffHunter demonstrated a very good performance as it relates to sensitivity, specificity, precision and accuracy, which were similar to or better than those of EffectorP 2.0.



The ability to predict fungal effectors by the EffHunter pipeline was compared later with reports that used different strategies to predict effectors in Blumeria graminis f. sp. hordei [38], Pseudocercospora fijiensis [39] and M. graminicola [40]. We found that similar numbers of effectors were predicted between EffHunter and each of these reports where distinct strategies and criteria were used. For instance, to predict effectors of the different fungi with EffHunter, the length of amino acids was set according to each report. The number of cysteines was not changed because, in the case of the report for B. graminis f. sp. hordei, the number of cysteines was not defined, and in the case of Pseudocercospora fijiensis and Mycosphaerella graminicola, authors used, respectively, 2% and 5% cysteine as cut off. However, 2% and 5% would discard many promising candidates. Then, since both extremes are not adequate, the number of cysteines for EffHunter searching was set at ≥4 as used in other analyses in this manuscript, reinforcing the EffHunter evaluation against other analyses, which use different parameters.



EffHunter performed well on each comparison. In the three cases, their number of true positives was higher and the number of false positives (candidates that do not meet the criteria established by the respective authors) was lower in comparison with these reference works. EffHunter false positives resulted from additional criteria used by the authors, for example, discarding candidates that have homologs in fungi phylogenetically distant from the model under study or that exclude those that have homologous proteins with any functional annotation. These criteria are good, but we do not recommend including these criteria in automatic analysis, to prevent elimination of many potential true effectors since 18% of true effectors have functional annotation (e.g., hydrophobin, protein with CFEM-domain, cerato-platanin, etc). In the case of false negatives (those candidates proposed only by the other predictor, which largely qualify as potential effectors), the number was negligible for EffHunter; meanwhile, it was 70 in the Liang et al. [38] effectorome prediction for B. graminis f. sp. hordei, 32 for Chang et al. [39] for P. fijiensis and 50 for Morais do Amaral et al. [40] prediction for M. graminicola. Such diversity of approaches used with other fungi presented a great challenge to EffHunter; however, we demonstrated its capacity to perform smoothly with different data.



Another advantage of the program is its versatility since the user can set the cut-off for the length (number of amino acids) and the number of cysteines.



The next evaluation was to compare with the report from Sonah et al. [10] since these authors used another bioinformatics tool, SECRETOOL [41] to predict effectoromes in proteomes of 12 fungi; they filtered first by the SECRETOOL pipeline and then selected the proteins ≤ 300 amino acids. The number of effectors predicted by EffHunter was consistent with the number of predicted effectors by the SECRETOOL pipeline used by these authors, probably because both predictors share similarities in their constructions (both comprise analyses by SignalP 4.1, TMHMM 2.0 and WoLFPSORT). However, they are not identical, since SECRETOOL does not analyze the content of cysteine and EffHunter does not integrate TargetP 1.1 and PredGPI as SECRETOOL does. Results obtained with both tools were not similar for all organisms, revealing differences between both predictors. Unfortunately, coincidences, differences, false positives and false negatives in the predictors for both bioinformatics tools could not be checked, because Sonah and colleagues did not provide the sequences or ID of their effector proteins. In the case of the candidates predicted by EffHunter, all of them met EffHunter’s criteria, reinforcing its high accuracy and its low false positive rate. EffectorP 2.0 predicted a lower number of effectors in all these cases.



Altogether, EffHunter demonstrated that it is a highly efficient bioinformatics tool for fungal effector prediction, and it can be a suitable tool to search effectoromes in fungal proteomes.



Then, EffHunter was used to predict effectors on different types of fungi. The lowest numbers of effectors were predicted in yeast (Figure 4), consistent with what was reported by Sperschneider et al. [16]. These authors proposed that nonpathogenic fungi have less effectors than ectomycorrhiza and saprotrophs. EffHunter predicted a similar number of effectors in ectomycorrhizal as in white and brown rots. In congruence with these findings, recent literature evidences that small-secreted effectors participate in all types of microbial interactions, and the concept “effector” seems to be rapidly evolving [67,68,69,70,71,72].



In plant–pathogen interactions, effectors can be recognized by the cognate R proteins and trigger a hypersensitive response to prevent the spread of the pathogens. Some virulence factors are shared between plant and human fungal pathogens [73], but mammals have authentic immune systems, and their interactions with pathogens are different in comparison with plants. It is likely that some effectors from animal pathogens have different characteristics than phytopathogen effectors, and as a result, EffHunter could not identify them.



The highest numbers of effectors were predicted for plant pathogens and entomopathogens, suggesting that interactions with host producing toxic, antifungal metabolites demand a larger inventory of effectors. Consistent with this interpretation, Metharrhizium anisoplae, a generalist entomopathogen, has 68% more effectors than the specialist Metarrhizium acridum, enabling M. anisoplae to face more divergent challenges. The next group according to the number of effectors was the saprotrophic fungi. Effectors in saprotrophs are probably used for antagonism or in the interaction with microorganisms which inhabit decaying wood. Another explanation is that saprotrophs have effectors because when circumstances change, they could become pathogens [74,75].



Although fungi with small genomes (i.e., yeast) have a smaller number of effectors (30-50 effectors), and the size of effectoromes is not related with the size of the genome. For instance, Puccinia graminis f. sp. tritici (88Mbp) has 659 effectors, Blumeria graminis f. sp. tritici (158 Mpb) has 161 effectors, Magnaporthe oryzae (41 MbP) has 486 effectors and Melampsora lini (189 Mbp) has 175 effectors.



The sizes of effectoromes seem to be related with lifestyles of the fungi: the lower number of effectors was observed in necrotrophs (average ~200 effectors). More complex interactions of biotrophs and hemibiotrophs require larger effectoromes (~300 and ~400 effectors, respectively). Evasion of host perception, suppressing host defense responses and keeping the host alive demand large catalogs of effectors in biotrophic and hemibiotrophic fungi.



As mentioned above, some fungi have unusual large effectoromes (600-700 effectors). The largest effectoromes were predicted for Auricularia subgrabra (708), Puccinia graminis f. sp. tritici (659) and Melampsora larici-populina (603) (Supplementary Table S2). Largest sets of effector candidates in Puccinia graminis f.sp. tritici and Melampsora larici-populina are consistent with predictions by different programs, reported by Sperschneider et al. [15]; these authors proposed that these large effectoromes exist because these pathogens require two host species to complete their cycle of life. Recently, Liang et al. [38] investigated evolutionary features of the genes in obligate biotrophic fungal pathogens and reported that secreted effectors in powdery mildews of monocots have been subjected to positive selection, which explains the expansion of effectoromes in P. graminis f.sp. tritici and M. larici-populina. On the contrary, the families of secreted effectors in powdery mildews of dicots have been under strong purifying selection, resulting in the contraction in the number of effectors, e.g., Melampsora lini (175 effectors). The number of effectors in Auricularia subgrabra is large, probably also by expansion of the family of secreted proteins.



On the other hand, it is known that the characteristics of the fungi and oomycete effectors are different, but we took advantage of the fact that both of their effectors have signal peptides for secretion, and we used EffHunter to predict effectors in oomycetes. The number of candidates predicted by EffHunter in P. infestans (355) was similar to the prediction reported by Sonah et al. [10] (343 candidates). Supporting EffHunter’s prediction, 295 candidates contain the motif RxLR, very common in oomycete effectors. This suggests that EffHunter is suitable for searching effectors in oomycete proteomes. Haas et al. [57], using Hidden Markov Models to retrieve proteins with oomycete motifs, predicted 563 effectors in P. infestans. Restriction by protein length and cysteine content by EffHunter can underestimate the number of effectors in oomycetes, but this pipeline can be used for easy and rapid preliminary searches.



It is important to highlight that any of the available effector predictors is capable to identify all effectors that have been experimentally studied so far [15]. Effector BEC1019, a haustorial protease from Blumeria graminis f. sp. hordei that suppresses host cell death, and AvrSr35, a 578 amino acids effector from Puccinia graminis f. sp. tritici, are neither identified by any effector classifier previously created, nor by EffHunter. EffectorP 2.0 does not retrieve the effectors Mg3LysM from Zymoseptoria tritici and CSEP0105 from Bumeria graminis f.sp. hordei; meanwhile, both of them are recognized by EffHunter. On the contrary, BEC1054 and BEC1011 from Blumeria graminis f. sp. hordei are identified by EffectorP 2.0, but EffHunter is not able to recognize them as effectors. A combination of different tools can increase sensitivity in effector prediction, adding the criteria and the predictive advantages of each tool. For example, a combination of EffectorP 1.0 and EffectorP 2.0 allowed the identification of AvrSr50 effector from Puccinia graminis f. sp. tritici [15]. However, larger lists make it more difficult to prioritize candidates for functional validation. The main robustness of EffHunter is its low false positive rate in identifying bona fide canonical effectors. Although EffHunter ignores effectors with atypical characteristics, its high PPV (100%) and accuracy (ACC) (99%) make it a useful tool for the selection of top candidates. This is crucial because the number of fungal effectors per genome is in the order of hundreds [10,16] and false positives slow down the validation and characterization of effectors. After effector mining, high-priority candidates can be selected by filtering with additional criteria (when available) common among many known effectors such as in planta expression data, genomic location (e.g., comprising clusters of putative effectors, or locations in dispensable chromosomes), positive net charge and low content of serine and tryptophan, among others.




5. Conclusions


EffHunter is a pipeline that integrates the software SignalP 4.1, Phobius, TMHMM 2.0 and WoLFPSORT with Perl scripts to filter proteins by length and by cysteine content to search for fungal protein effectors in a single step. This makes EffHunter a user-friendly and amenable tool.



EffHunter is a robust tool that can identify effectors in fungal proteomes, showing higher accuracy and lower false positives than other effector predictors do.



Different types of fungi have varying quantities of effectors. Although exceptions were observed, there are averages in the number of effectors in each type of fungi. The results of our effectoromics study showed that plant pathogens and entomopathogens were the organisms with the largest effectoromes. Within plant pathogens, as it relates to their lifestyle, biotrophic and hemibiotrophic fungi have larger effectoromes than necrotrophic fungi.




6. Patents


The present pipeline was certified at Mexican Public Copyright Registry with the registration number 03-2019-101809310300-01.
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Figure 1. Complete EffHunter workflow for the prediction of effectors in fungal proteomes. Red square, custom tools (user parameters); blue square, pre-installed prediction tools. RFS, retrieved FASTA sequences. The pipeline works correctly either on total proteomes or secretomes. 
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Figure 2. Effector prediction of positive control set. (a) Venn diagram showing the distribution of shared and non-shared predicted effectors by EffHunter and EffectorP 2.0. (b) Pie chart summarizing the characteristics of the 41 non-shared effectors protein predicted by EffectorP 2.0. 
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Figure 3. Effectoromes in fungal and oomycetes phytopathogens predicted by EffHunter. 
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Figure 4. Predicted effectors in fungal and oomycetes proteomes using EffHunter. 
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Table 1. Bioinformatics tools integrated into EffHunter.
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	Program
	Features
	Website
	Reference





	Perl/Bioperl
	International association of users and developers of open-source Perl tools for bioinformatics, genomics and life science.
	https://bioperl.org/
	[44]



	SignalP 4.1
	Predicts the presence of signal peptides and the location of their cleavage sites in proteins from gram-positive bacteria, gram-negative bacteria and eukarya.
	http://www.cbs.dtu.dk/services/SignalP/index.php
	[12]



	Phobius
	This server is for the prediction of transmembrane topology and signal peptides from the amino acid sequence of a protein.
	http://phobius.sbc.su.se/
	[18]



	WoLFPSORT
	Converts protein amino acid sequences into numerical localization features, based on sorting signals, amino acid composition and functional motifs, to predict protein subcellular location.
	https://wolfpsort.hgc.jp/
	[13]



	TMHMM 2.0
	Predicts trans-membrane (TM) domain helices in proteins.
	http://www.cbs.dtu.dk/services/TMHMM/
	[14]
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Table 2. Positive data set of effector proteins used in this work.
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	Species
	Effector Proteins





	Alternaria alternata
	Aapg1



	Alternaria citri
	Acpg1



	Aspergillus flavus
	PECA



	Aspergillus fumigatus
	CfmB, CfmC



	Beauveria bassiana
	BbCHIT1



	Bipolaris maydis
	Ppt1



	Bipolaris oryzae
	Ppt1



	Bipolaris zeicola
	PGN1



	Blumeria graminis f. sp. hordei
	Avrk1, Avra1, Avra13, CSEP0105, BEC1005, BEC1040



	Blumeria graminis f. sp. tritici
	AvrPm2



	Botrytis cinerea
	CUTA, Nep1, PGIP2, BcPGA1, BcPG2



	Botrytis elliptica
	BeNEP2



	Candida albicans
	BGL2, SAP1, sap1, SAP2, SAP3, sap3, Pga26, RBT4



	Candida tropicalis
	ACP



	Cladosporium fulvum
	Avr2, Avr4, Avr4E, Avr5, Avr9, Ecp1, Ecp2, Ecp4, Ecp5, Ecp6



	Claviceps purpurea
	CPPG1, CPPG2



	Colletotrichum graminicola
	CgEP1, Cgfl



	Fusarium graminearum
	FGL1



	Fusarium oxysporum
	Avr3, PG1, XYL3



	Fusarium oxysporum f. sp. lycopersici
	Six1, Six2, Six3, Six4, Six5, Six6, Six7, Six8



	Fusarium solani
	cutA



	Histoplasma capsulatum
	CBP1



	Laccaria bicolor
	MiSSP7



	Leptosphaeria maculans
	AvrLm1, AvrLm4–7, AvrLm6, AvrLm11, AvrLmJ1, SP1



	Magnaporthe oryzae
	Avr1-CO39, Avr-Pia, AvrPib, Avr-Pita, Avr-Pii, Avr-Pik, AvrPi9, AvrPiz-t, Bas1, Bas2, Bas3, Bas4, Bas107, Bas162, GAS1, GAS2, Iug6, Iug9, MC69, MHP1, MoCDIP1, MoCDIP2, MoCDIP3, MoCDIP4, MoCDIP5, MPG1, MoHEG13, Msp1, Pwl1, SPD2, SPD4, SPD7, SPD9, SPD10, XYL-6



	Melampsora lini
	AvrL2-A, AvrL567-A, AvrM, AvrM14, AvrP4, AvrP123,



	Metarhizium anisopliae
	Pr1



	Monilinia fructicola
	MfCUT1



	Parastagonospora nodorum
	SP1



	Phakopsora pachyrhizi
	PpEC23



	Phytophthora cactorum
	PcF



	Phytophthora capcisi
	Pc129892, Pcipg2



	Phytophthora infestans
	EPI10, INF1, INF2A, INF2B



	Phytophthora parasitica
	CBEL, Ppxyn1



	Phytophthora sojae
	GIP2



	Puccinia graminis f. sp. tritici
	AvrSr50, PGTAUSPE-10-1



	Puccinia striiformis f. sp. tritici
	Pec6, PstSCR1



	Pyrenophora tritici-repentis
	ToxB



	Rhynchosporium secalis
	NIP1, NIP2, NIP3



	Sclerotinia sclerotiorum
	SsSSVP1



	Stagonospora nodorum
	ToxA, Tox1, Tox3



	Trichoderma virens
	Sm1



	Uromyces fabae
	RTP1



	Ustilago hordei
	UhAvr1



	Ustilago maydis
	Cmu1, eff1-1, Mig1, Mig2-1, Pep1, Pit2, Tin2, See1



	Verticillium dahliae
	Ave1, PevD1, Vdlsc1, VdSCP7



	Zymoseptoria tritici
	AvrStb6, Zt6







* One hundred fifty effector proteins were pooled from the list (94) collected by Sperschneider et al. [15] and 56 effectors retrieved from the PHI database (labeled in bold). All these effector proteins have been published in peer-reviewed journals.
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Table 3. Validation of EffHunter for prediction of effector proteins and comparison with EffectorP 2.0.
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Step-by-Step Prediction




	
Data*

	
Proteins in Data set

	
Total Proteins

	
Length (30—400aas)

	
>4 Cysteine

	
Signal peptide by SignalP/Phobius

	
Proteins without TMD with TMHMM

	
Total prediction

	
Results

	
Sen/Rec

	
Spe

	
PPV/Prec

	
ACC

	
FPR

	
F1 score




	
Set 1

	
150

	
4680

	
765

	
435

	
107

	
105

	
105

	
105

	
70%

	
100%

	
100%

	
99%

	
0.00%

	
0.82




	
Set 2

	
2329

	
0




	
Set 3

	
476

	
0




	
Set 4

	
1725

	
0




	
EffHunter




	
Data*

	
Proteins in data set

	
Total proteins

	
Total prediction

	
Prediction

	
Sen/Rec

	
Spe

	
PPV/Prec

	
ACC

	
FPR

	
F1 score




	
Set 1

	
150

	
4680

	
105

	
105

	
70%

	
100%

	
100%

	
99%

	
0.00%

	
0.82




	
Set 2

	
2329

	
0




	
Set 3

	
476

	
0




	
Set 4

	
1725

	
0




	
EffectorP 2.0




	
Data*

	
Proteins in data set

	
Total proteins

	
Total prediction

	
Prediction

	
Sen/Rec

	
Spe

	
PPV/Prec

	
ACC

	
FPR

	
F1 score




	
Set 1

	
150

	
4680

	
166

	
102

	
68%

	
98%

	
61%

	
97%

	
1.41%

	
0.64




	
Set 2

	
2329

	
41




	
Set 3

	
476

	
22




	
Set 4

	
1725

	
1




	
EffectorP 1.0




	
Data*

	
Proteins in data set

	
Total proteins

	
Total prediction

	
Prediction

	
Sen/Rec

	
Spe

	
PPV/Prec

	
ACC

	
FPR

	
F1 score




	
Set 1

	
150

	
4680

	
164

	
91

	
60%

	
98%

	
55%

	
97%

	
1.6%

	
0.57




	
Set 2

	
2329

	
49




	
Set 3

	
476

	
20




	
Set 4

	
1725

	
4




	
Sonah et al. [10] (SECRETOOL and filter by length <300 amino acids)




	
Data*

	
Proteins in data set

	
Total proteins

	
Total prediction

	
Prediction

	
Sen/Rec

	
Spe

	
PPV/Prec

	
ACC

	
FPR

	
F1 score




	
Set 1

	
150

	
4680

	
72

	
72

	
48%

	
100%

	
100%

	
98%

	
0.00%

	
0.64




	
Set 2

	
2329

	
0




	
Set 3

	
476

	
0




	
Set 4

	
1725

	
0








* Set 1: Positive dataset of true effectors (positive dataset comprises effectors retrieved from pathogen-host interaction (PHI) and the list collected by Sperschneider et al. [15]); Set 2: ABC transporters; Set 3: cytochrome P450; Set 4: proteins classified as major facilitator transporter superfamily. Sen/Rec: Sensitivity/Recall; Spe: Specificity; PPV/Prec: Positive Predictive Value/Precision; ACC: Accuracy; FPR: False positive rate; F1 score: Measure of the success of binary classifier (score reaches its best value at 1, and worst score at 0).
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Table 4. Data analysis of the set of fungal effector proteins between EffHunter and other reports.
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Species

	
Criteria in Reference

	
Genome Size (Mbp)

	
Total Proteome

	
Secretome

	
Effectors Prediction in Reference

	
EffHunter Prediction

	
Shared

	
Difference in:

Reference(R)

EffHunter(E)

	
Observations for Effectors Predicted by Reference or by EffHunter

	
Summary of True or False Positives or Negatives, or Ambiguous in the Specific Sets of Effectors (Considering Both Predictions)






	
Blumeria graminis f. sp. hordei

[38]

	
Secretion signal with SignalP 4.1 and SecretomeP, no TMD with TMHMM 2.0, no hits outside powdery mildews with Blastp; subcellular localization with TargetP 1.1 and GPI anchors by Big-PI.

	
124.49

	
7118

	
726

	
494

	
490

	
408

	


R = 86



	
Negatives (86): 62 proteins are larger than 400 amino acids, 5 proteins have GPI binding and 19 proteins have no signal peptide and have TMD. Therefore, all 86 are false positive in this set.

TP = 0; FP = 86

	
Reference

TP = 0

FP = 86

FN = 70

TN = 12




	
E = 82

	
Negatives (12): 3 proteins were predicted by TargetP 1.1 as mitochondria target, 6 proteins were predicted with GPI anchors by big-PI and 3 proteins have homologs in fungal species that are not powdery mildew.

Positives (70): 70 meet all criteria of authors; Blastp retrieved homologs only in powdery mildews.

TP = 70; FP = 12

	
EffHunter

TP = 70

FP = 12

FN = 0

TN = 86




	
Pseudocercospora fijiensis

[39]

	
Secretion signal with SignalP 4.1, one or no TM domains with TMHMM 2.0, subcellular localization with TargetP 1.1 and WoLFPSORT, no GPI anchor with PredGPI, length <250aas, >2% cysteine residues

	
74.1

	
13,107

	
584

	
105

	
136

	
78

	


R = 27



	
Negatives (15): 2 proteins are larger than 250 amino acids, 2 have no clear localization prediction with TargetP 1.1, 7 have no signal peptide, 4 have no extracellular location.

*Ambiguous (12): 7 have one TMD and 5 small proteins (<60 amino acids) with less than 4 cysteine, but ≥2% cysteine.

A = 12; FP = 15

	
Reference

TP = 0

FP = 15

FN = 32

TN = 16

A = 12




	
E = 58

	
Negatives (16): 11 proteins are GPI-anchored, 5 proteins have mitochondria target (by TargetP 1.1).

Positives (32): 30 meet all criteria and have 2.0-8.2% cysteine; 2 proteins are predicted with signal peptide by SignalP 4.1 and Phobius, and as extracellular with WoLFPSORT, but TargetP 1.1 (reference) fails to predict localization.

*Ambiguous (10): 10 are >200 amino acids and have 4 (but <2%) cysteine. Meet all other criteria.

TP = 32; FP = 16; A = 10

	
EffHunter

TP = 32

FP = 16

FN = 0

TN = 15

A = 10




	
Mycosphaerella graminicola

[40]

	
Size <200 amino acids; secretion signal with SignalP 4.1, one or no TM domain with TMHMM 2.0, secreted by TargetP 1.1, no GPI-anchor with big-PI, subcellular localization with WoLFPSORT and ProtComp, and no functional information

	
39.7

	
10933

	
492

	
171

	
183

	
110

	


R = 61



	
Negatives (60): 37 proteins are larger than 200 amino acids; 3 do not have signal peptide; 6 are GPI-anchored, 14 are not predicted as secreted by ProtComp.

Positives (1): Protein ID 82029 matches all criteria. This protein is not in the nonredundant set of M. graminicola database at JGI, therefore EffHunter could not analyze it.

TP = 1; FP = 60

	
Reference

TP = 1

FP = 60

FN=50

TN=24




	
E = 74

	
Negatives (24): 4 proteins have GPI anchors; 1 has mitochondria target; 6 are predicted cytosolic, mitochondrial or nuclear by ProtComp and 13 proteins have functional annotation in PFAM

Positives (50): 50 match all criteria and have no functional annotation or known protein domains.

TP = 50; FP = 24

	
EffHunter

TP = 50

FP = 24

FN=1

TN=60








* Ambiguous: Those candidates that meet criteria from one prediction (positive for this analysis), but do not meet criteria of the other analysis and criteria from one or the other are not definitive for assigning them as positive or negative. Databases analyzed in the references and by EffHunter were the same, except for M. graminicola. The authors did not provide that database; the nonredundant protein models from M. graminicola at JGI were downloaded in that case.
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Table 5. Effector prediction data from the different predictions tool across 12 proteomes.
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Species

	
Lifestyle

	
Genome

	
Total Proteins

	
Effector Predictions

	
Effectors in Reference

	
Reference Genome




	
Mb

	
Coverage

	
EffHunter

	
EffectorP 2.0

	
*SECRETOOL






	
Alternaria brassicicola

	
Necrotroph

	
31.03

	
120×

	
10688

	
227

	
113

	
228

	
139

	
[49]




	
Blumeria graminis

	
Biotroph

	
158.94

	
13×

	
6526

	
255

	
109

	
143

	
437

	
[50]




	
Cladosporium fulvum

	
Biotroph

	
61.11

	
21×

	
14127

	
342

	
151

	
296

	
271

	
[51]




	
Colletotrichum graminicola

	
Hemibiotroph

	
51.6

	
9×

	
12006

	
364

	
159

	
352

	
177

	
[52]




	
Fusarium oxysporum

	
Hemibiotroph

	
55.72

	
186.1×

	
17726

	
474

	
256

	
361

	
364

	
[53]




	
Leptosphaeria maculans

	
Hemibiotroph

	
44.81

	
8.31×

	
12469

	
290

	
162

	
263

	
529

	
[54]




	
Magnaporthe oryzae

	
Hemibiotroph

	
41.7

	
7×

	
12755

	
273

	
368

	
528

	
163

	
[55]




	
Mycosphaerella graminicola

	
Hemibiotroph

	
39.7

	
8.9×

	
10933

	
286

	
166

	
235

	
NS

	
[56]




	
Phytophtora infestans

	
Hemibiotroph

	
228.54

	
7.6×

	
17787

	
355

	
404

	
343

	
563

	
[57]




	
Puccinia graminis f. sp. tritici

	
Biotroph

	
88.64

	
6.9×

	
15979

	
659

	
605

	
612

	
1106

	
[26]




	
Pyrenophora tritici-repentis

	
Necrotroph

	
37.84

	
98×

	
12169

	
322

	
182

	
328

	
317

	
[58]




	
Ustilago maydis

	
Biotroph

	
19.66

	
10×

	
6785

	
113

	
107

	
142

	
426

	
[59]








* Prediction in Sonah et al. [10]; NS: Not specified
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Table 6. Comparison of prediction between EffHunter and EffectorP 2.0 on noncanonical effectors.
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Species

	
Effector

	
Length

	
No. of Cysteine

	
Signal Peptide

	
*TMD

	
EffHunter

	
EffectorP 2.0






	
Sporisorium reilianum

	
SAD1

	
626

	
4

	
No

	
0

	
Non-effector

	
Effector




	
Zymoseptoria tritici

	
Mg3LysM

	
232

	
9

	
Yes

	
0

	
Effector

	
Non-effector




	
Blumeria graminis f. sp. hordei

	
BEC1054

	
118

	
2

	
Yes

	
0

	
Non-effector

	
Effector




	
BEC1011

	
118

	
3

	
Yes

	
0

	
Non-effector

	
Effector




	
BEC1019

	
316

	
8

	
Yes

	
0

	
Effector

	
Non-effector




	
CSEP0055

	
122

	
3

	
Yes

	
0

	
Non-effector

	
Effector




	
Bcg1

	
146

	
2

	
Yes

	
0

	
Non-effector

	
Effector




	
CSEP0105

	
128

	
6

	
Yes

	
0

	
Effector

	
Non-effector




	
Rhizophagus irregularis

	
SIS1

	
149

	
2

	
Yes

	
1

	
Non-effector

	
Effector




	
Fusarium graminearum

	
Xyla

	
231

	
1

	
Yes

	
0

	
Non-effector

	
Effector




	
Piriformospora indica

	
PIIN 08944

	
120

	
0

	
Yes

	
0

	
Non-effector

	
Non-effector




	
Blumeria graminis f. sp. tritici

	
AvrPm3

	
130

	
2

	
Yes

	
0

	
Non-effector

	
Effector




	
Puccinia graminis f. sp. tritici

	
AvrSr35

	
577

	
3

	
Yes

	
0

	
Non-effector

	
Non-effector








* TMD: Transmembrane Domain.
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