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Abstract: Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, 
representing approximately a third of all deaths every year. The greater part of these cases is 
represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when 
declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are 
multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due 
to their potent regenerative effects. However, it remains unclear the extent to which MSC-based 
therapies are able to induce regeneration in the heart and even less clear the degree to which clinical 
outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have 
implications in intracellular communication, derived from MSCs (MSC-Exos), have recently 
emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration 
in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the 
context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos 
accomplish their therapeutic effects, along with commentary on the current difficulties faced with 
exosome research and the ongoing clinical applications of stem-cell derived exosomes in different 
medical contexts. 

Keywords: myocardial infarction; cardiovascular disease; mesenchymal stem cells; exosomes; 
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1. Introduction

Myocardial infarction (MI) is a major cardiovascular disease (CVD) caused by a sudden full or 
partial stoppage of blood flow to the myocardium, leading to cardiomyocyte (CMC) death and 
subsequent irreversible heart muscle necrosis and apoptosis. While recent pharmacological and 
mechanical advances have significantly contributed to the sharp decline in death rates [1–3], MI 
continues to be a major cause of mortality and morbidity worldwide. In a global report on the 
incidence of disease and injury, it was estimated that around 10.6 million incidences of MI caused by 
ischaemic heart disease had occurred in 2019 alone [4]. 

The current standard treatments for MI that aim to mitigate heart damage remain limited in 
restoring heart function as they fail to address the CMC and vasculature loss underlying the condition 
[5]. Major strides in several biomedical fields—especially that of stem cell biology and medicine—
have appreciably attracted attention towards the research and development of cardiac regeneration 
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strategies following MI [6–8]. Thus, novel approaches for acute MI that stimulate angiogenesis, 
promote myocardial regeneration, and prevent left ventricular dysfunction have become highly 
sought after [8]. Over the past decade, a significant proportion of the clinical studies focused on 
cardiac regeneration have been centred around cell therapies, involving the engraftment of novel 
cellular agents including mesenchymal stem cells (MSCs) [9–13] and cardiac progenitor cells (CPCs) 
[14–17]. Whilst many of these studies have met clinical safety and risk standards, they have generally 
been unable to demonstrate significant benefits to cardiac function [18–20]. This failure has prompted 
a search for other novel approaches to induce cardiac regeneration, following acute MI. 

Substantial evidence suggest that the observed cell therapy-related effects are attributed to the 
paracrine activity of the injected cells, rather than their successful integration/transdifferentiation into 
the myocardium [21–27]. Multiple reports have demonstrated that MSCs [28–34], embryonic stem 
cells (ESCs) [35–38], CPCs [39–43], and induced pluripotent stem cells (iPSCs) [44] mediate cardiac 
remodelling through such paracrine signalling activities. This paradigm shift has turned the direction 
of research towards the development of cell-free strategies focused on the isolation and application 
of these bioactive and pro-regenerative paracrine mediators. Studies have shown that extracellular 
vesicles (EVs)—particularly of the subset known as exosomes—are the premier paracrine factor 
responsible for promoting protection and regeneration in CMCs [44–48]. Specifically, MSC-derived 
exosomes (MSC-Exos) have been highlighted as potent paracrine vectors for reducing MI injury and 
rejuvenating cardiac function [47–52]. 

This review will examine the current state of MSC-Exo research and discuss its potential 
translational application as a novel cell-free agent for conferring cardiovascular protection and 
regeneration following MI. 

2. Brief Overview of EVs and Exosome Biology  

EVs are prokaryote and higher eukaryote cell-secreted miniscule vesicles (30 nm to several 
micrometres in diameter) that act as shuttles for a heterogeneous and bioactive cargo mainly 
composed of proteins, lipids, and nucleic acids [53,54]. While initially regarded as membrane debris 
with no remarkable biological significance, EVs are today understood to be key agents of intercellular 
communication that are involved in the regulation of a diverse range of pathological and 
physiological processes. 

Despite the umbrella term used to generally describe secreted phospholipid bilayer-enclosed 
vesicles, EV populations are known to be highly heterogeneous [54–56]. The characterisation and 
classification of EVs remain a translational hurdle, as complex overlapping physiochemical and 
biochemical properties between the different subtypes of EVs make their taxonomic organisation 
difficult to define in a rigorously discrete manner [57,58]. As a result, a reliable and universal EVs 
marker has not yet been identified. Furthermore, the vast range of cell-type-specific surface proteins 
represents an additional layer of complexity to exosome (and wider EV) classification. To date, EVs 
can be broadly divided based on their biogenesis into three subpopulations: apoptotic bodies, 
microvesicles, and exosomes (see Figure 1). 

Apoptotic bodies (ABs) are the largest (800–5000 nm in diameter) subtype of EVs that are 
released as a product of apoptotic cell disassembly. Specifically, ABs release occurs during the 
execution phase of the apoptotic process, when the cell undergoes shrinkage, chromosomal 
condensation, nuclear and chromosomal fragmentation, and membrane blebbing [59]. While 
blebbing occurs, parts of the membrane and the cytoplasm separate from the cell to form ABs. It is 
thought that these ABs play an important role in the detection and removal of dead and dying cells 
via a variety of intercellular signalling pathways [59–61]. Microvesicles (MVs) are vesicular structures 
ranging from 100 to 1000 nm in diameter that are formed from outward blebbing of the plasma 
membrane of the parent cell. These MVs are known to be highly involved in intercellular 
communication through bioactive molecules shuttling [62]. 

Exosomes, which are the principal focus of this review, originate from the endocytic pathway. 
Like the larger MVs, exosomes play crucial roles in intercellular communications, but are divergently 
formed by the inward budding of the multivesicular body (MVB) membrane, which subsequently 
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fuses with the plasma membrane to release intraluminal vesicles (ILVs) into the extracellular space 
[62]. As such, while MVs and exosomes are structurally similar, they greatly differ in size, lipid, and 
cargo composition [63]. Exosome-secreted vesicles are typically around 30–200 nm in diameter and 
selectively taken up by neighbouring or distant target cells. Upon receptor mediated uptake and/or 
internalisation, exosomes specifically modulate the recipient cell pathways according to the 
composition of their bioactive cargo [64]. Exosome membrane-associated proteins are enriched in 
tetraspanins (e.g., CD9, CD63, CD81, and CD82), MHC-I and MHC-II, heat-shock proteins (e.g., 
Hspa8, Hsp60, Hsp70, and Hsp90), GTPases (EEF1A1 and EEF2), and other proteins involved in MVB 
biogenesis (Alix and TSG-101) [65]. Additionally, their cargo contains many bioactive molecules, such 
as lipids [66], proteins [67], mRNAs, ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), long 
noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mitochondrial DNA (mtDNA) [68]. 

Although exosomal cargo specificity varies according to the parent cell-type and other 
environmental conditions (e.g., local temperature [69], O2 content [70,71], and pathological state [72–
74]), there are numerous proteins highly associated with exosomes (including heat shock 70 kDa 
protein 8 (HSPA8), CD9, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta actin (ACTB), 
CD63, CD81, annexin A2 (ANXA2), enolase 1 (ENO1), heat shock protein HSP 90-alpha (HSP90AA1), 
elongation factor 1-alpha 1 (EEF1A1), pyruvate kinase isozyme M2 (PKM2), 14-3-3 protein epsilon 
(YWHAE), syntenin-1 (SDCBP), programmed cell death-6 interacting protein (PDCD6IP), serum 
albumin (ALB), 14-3-3 protein zeta (YWHAZ), eukaryotic elongation factor 2 (EEF2), gamma actin 
(ACTG1), lactate dehydrogenase A (LDHA), heat shock protein HSP 90-beta (HSP90AB1), aldolase 
A (ALDOA), moesin (MSN), annexin A5 (ANXA5), phosphoglycerate kinase 1 (PGK1), and cofilin 1 
(CFL1) [75]. The aforementioned characteristics, along with their unique mechanism of actions, make 
exosomes of immense biological interest, as testified by the plethora of studies aimed at employing 
them both as non-invasive diagnostic biomarkers [76–80] and as biological delivery systems [81–84]. 

 
Figure 1. Biogenesis and features of apoptosis bodies (ABs), microvesicles (MVs), and exosomes. Each 
of the three classes of extracellular vesicle (EV) are characterised by unique biogenesis pathways, 
molecular markers, and cargo. ABs emerge as the cytoskeleton of apoptotic cells are disassembled 
and contain various cellular components such as organelles and nuclear fractions. MVs contain a 
variety of molecular cargo, including DNA, RNA, and protein, and are produced by the cell 
membrane budding and fission. Exosomes are the smallest class of EV, and are enriched in DNA, 
RNA, and proteins, and originate from the multivesicular body (MVB). 
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Exosomes: Techniques for Isolation and Characterization 

Due to their ability to convey a biological message by shuttling a highly specific parental cell-
derived cargo, including miRNAs, mRNAs, proteins, and a variety of bioactive molecules, EVs exert 
a pivotal role in cell-to-cell signalling. Hence, EV research is a growing interest worldwide and has 
led to a large number of clinical trials, aimed at investigating their efficacy and safety as cell-free 
therapy agents. Although EVs were discovered more than three decades ago, their isolation does not 
yet rely on a gold-standard protocol, but it is rather accomplished by different approaches, widely 
depending on their source (biofluids or cell culture media) and the following downstream 
applications [85,86]. 

High speed (100,000 × g) ultracentrifugation (UC), the most commonly used method of isolation, 
allows low yield exosomes isolations from large volumes of initial material (usually urine or 
conditioned cell culture media) with the disadvantage of it being considerably time consuming and 
unable to separate EVs from other contaminants [87,88]. However, the recent commercialization of a 
variety of nanomembrane-based filters for ultrafiltration (UF) produces low contaminated samples 
in less than an hour. The resulting UC and UF pre-isolated EVs can be further purified through size 
exclusion chromatography (SEC) columns, which are made of porous resin particles. These columns 
remove most of the soluble proteins and other contaminants in the sample, providing highly purified 
exosome preparations [89]. Fast-isolation protocols utilizing a broad range of commercially available 
polymer-based precipitation buffers such as polyethylene glycol (PEG), have also been established 
with the aim of providing cost-effective and high yield exosome sample preparation in about 30 min. 
However, the high concentration of non-exosomal contaminants in the sample is a significant 
limitation of the precipitation-based columns that are therefore recommended for RNA/miRNA 
profiling only [90]. Recently, novel protocols relying on the asymmetric-flow field-flow fractionation 
(AF4) technology have been developed with the aim of separating label-free EVs at high resolution 
(1 nm) by analysing their hydrodynamic size [91,92]. 

Although exosome quantification remains challenging (due to their small size), transmission 
electron microscopy (TEM), Western blot (WB) for exosomal markers (CD9, CD63, CD81, and TSG-
101), and nanoparticle tracking assays (NTA) can be used for post-isolation characterization of the 
exosomes [93]. Qualitative TEM protocols involving immunogold sample labelling can provide 
insights on exosome morphology as well as their surface protein composition. NTA analysis provides 
size, distribution and concentration by tracking the exosome’s Brownian motion [94]. Moreover, total 
protein quantification of the sample lysate can be obtained by micro-BCA assays. The above-
mentioned methods are usually combined with WB analysis for exosome phenotyping.  

3. MSC-Exos in Cardiac Regeneration 

MSCs are multipotent progenitor cells, which can be extracted from a wide variety of tissues, 
including bone marrow, adipose tissue, synovium, and Wharton’s jelly. While there exists some 
biological variability between MSCs isolated from different tissue origins, the International Society 
for Cellular Therapy has proposed a set of minimum criteria defining MSCs based on their 
characteristics: (a) being plastic-adherent when maintained in standard culture conditions; (b) 
expressing CD105, CD73, and CD90; (c) not expressing (negative markers) CD45, CD34, CD14, or 
CD11b, CD79a, or CD19 and HLA-DR surface molecules; (d) being able to differentiate into 
osteoblasts, adipocytes, and chondroblasts in vitro upon growth factor stimulation; and (e) being self-
renewable, multipotent, easily accessible, and culturally expandable in vitro [95]. 
In addition, the genomic stability and lack of ethical issues with the application of MSCs make them 
exemplary vectors for cell therapy, regenerative medicine, and tissue repairment. Preclinical and 
clinical studies have reported generally positive immunomodulatory and regenerative effects of 
MSCs in various medical contexts, including cardiac regeneration. In vitro and in vivo studies have 
shown that MSCs are capable of differentiating into CMCs [96,97], endothelial cells (ECs) [98,99], 
and vascular smooth muscle cells (VSMCs) [100,101]. However, the beneficial effects of 
transplanted MSCs have proved to be modest and somewhat inconsistent. MSCs injections have 
been observed to consistently suffer from low engraftment and survival rates in recipient hearts 
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[97,102,103], representing a daunting limiting factor for the development of cell-based translational 
solutions for MI. Studies observed rapidly declining cell count after MSCs transplantation, which 
indicated that observed reductions in infarct size following MSCs treatment are unlikely to be due 
to direct CMCs differentiation and repair [102,103]. It has been suggested that the observed decline 
in cell count may be attributed to the post-MI environment being inhospitable for cell survival 
[103]. 

Initial models attempting to provide mechanistic explanations of the therapeutic effects of MSCs 
described them as migratory cells travelling to and engrafting at the injury sites and subsequently 
interacting with local cells. However, recent studies have demonstrated that their therapeutic activity 
is mainly exerted in a paracrine manner rather than via direct stem-cell transdifferentiation. Such 
investigations have shown that MSC-conditioned medium enhances CMC and progenitor survival 
after hypoxia-induced injury [104,105]. This paracrine effect is facilitated by secreted exosomes. MSC-
Exo cargo contains a variety of cytokines (e.g., IL-6 and IL-10 [106,107]), growth factors (e.g., TGF-β 
and HGF [99,100]), signalling lipids [108], mRNAs (e.g., IGF-1R [109]), and regulatory miRNAs (e.g., 
miR-21 and miR-133b [110,111]). These components play major and minor modulatory roles in a 
broad range of physiological processes, including organism development, epigenetic regulation, 
immunomodulation [112], tumorigenesis, and tumour progression [113]. Furthermore, the 
therapeutic applications of MSC-Exos provide multiple advantages over pure cell treatments, 
including negligible risk of tumour formation and significantly lower immunogenicity. 

The above indicates strong potential implications of MSC-Exos in novel therapeutics for 
cardiovascular diseases. In fact, a large volume of preclinical studies has confirmed that MSC-Exos 
reduce the infarct size and improve post-MI cardiac function [50–52,114–116]. Specifically, blood flow 
recovery and preserved cardiac systolic and diastolic performance has been consistently observed 
[116]. 

3.1. MSC-Exos Increases Angiogenesis 

Angiogenesis is the physiological process by which new blood vessels form and develop from 
existing vasculature. The post-MI myocardium suffers from a limited pro-angiogenic capacity [117]. 
Severe angiogenic impairment may contribute to contractile dysfunction following heart failure as 
the oxygen supply to the vasculature is depleted. Therefore, therapeutic solutions promoting de novo 
microvessels’ formation represent a promising strategy for the treatment of acute MI. MSCs 
contribute to cardioprotection and regeneration in an infarcted myocardium through its paracrine 
stimulation of angiogenesis in affected cells. Studies have shown that this pro-angiogenic potential is 
promoted by MSC-Exo-mediated secretion of bioactive factors (see Table 1) [118]. However, it 
remains unclear the extent to which MSC-induced angiogenesis can be attributed to MSC-Exo-
mediated effects [119]. 

Significant blood vessel neo-formations including T cell proliferation and tube formation have 
been observed in vitro after MSC-Exos administration [120,121]. In parallel, expression analyses 
showed that a number of pro-angiogenic and angiogenesis-associated factors were significantly 
upregulated after MSC-Exos treatment in different cardiac cells. Particularly noteworthy was that 
numerous in vitro studies reported significant upregulation in ECs of vascular endothelial growth 
factor (VEGF), an essential component for maintaining vascular homeostasis and stimulating the 
angiogenic cascade [122–126]. Interestingly, in a recent study in which neonatal rat CMCs were 
treated with exosomes from different sources (bone marrow-derived MSCs (BM-MSCs), adipose 
tissue-derived MSCs (AD-MSCs), and umbilical cord-derived MSCs (UC-MSCs)), VEGF, pro-
angiogenic fibroblast growth factor-β (FGF-β), and hepatocyte growth factor (HGF) levels were 
markedly increased in target cells [126]. Notably, AD-MSCs-exosomes had the most significant effect. 
In addition, hypoxic AD-MSC-Exo treatment promotes the upregulation of the pro-angiogenesis 
genes angiopoietin-1 (Angpt1) and receptor tyrosine kinase Flk-1 (Flk1) while simultaneously down-
regulating the anti-angiogenesis genes vasohibin-1 (Vash1) and thrombospondin-1 (Tsp1) in ECs 
[127]. These expression changes were induced by the hypoxic AD-MSC-Exos-mediated activation of 
the protein kinase A (PKA) signalling pathway. A follow-up study demonstrated that PKA activation 
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triggers VEGF expression in ECs, synergistically regulates Ang1 and Flk1 expression, and inhibits the 
expression of Vash1 [128]. 

Although the mechanistic bases need to be further elucidated, it is clear that MSC-Exo-induced 
angiogenesis is strictly cargo-dependent. MSC-Exos exposed to ischemic conditions have a high 
representation of factors involved in canonical angiogenesis-associated pathways, such as the 
cadherin, epidermal growth factor receptor (EGFR), FGF, and platelet-derived growth factor (PDGF) 
pathways [119]. Further network analysis of the MSC-Exo-induced angiogenesis interactome showed 
that protein nodes (i.e., units in an analysis network that represent a specific protein) were most 
represented in clusters around canonical angiogenesis pathways such as nuclear factor kappa B1/2 
(NF-κB1/2), avian reticuloendothelial virus oncogene homolog A (RELA), platelet-derived growth 
factor receptor-β (PDGFR-β), and EGFR in ECs [119]. In particular, MSC-Exo-induced angiogenesis 
in ECs is dependent on NF-κB signalling in a dose-dependent manner. Additionally, in ischaemic 
MSCs, the expression of a similar subset of angiogenic signalling pathways was also significantly 
increased. These findings suggest that ischaemic MSCs are able to create a pro-angiogenic 
environment via secretion of exosomes, thereby promoting in situ tissue healing [120]. 

Further proteomic studies reinforced the hypothesis that the aforementioned pro-angiogenic 
response is mediated by a consistent transfer of bioactive factors, such as the extracellular matrix 
metalloprotease inducer (EMMPRIN), matrix metalloprotease-9 (MMP-9), and VEGF between donor 
(MSCs) and recipient (ECs) cells [128]. Of particular interest is EMMPRIN, which mediates cell 
migration and angiogenesis upstream of MMPs and VEGF. Another study aimed at evaluating the 
molecular composition and the functional properties of the MSC-EV sub-populations found that 
numerous pro-angiogenic and pro-migratory molecules, including VEGF, transforming growth 
factor-β (TGF-β), interleukin-8 (IL-8), and PDGF factors and PDGFR-α/β, were compartmentalised in 
MSC-Exos [129]. A separate proteomic analysis showed that MSC-Exos contain galectin-1, ezrin, and 
p195, which are cell adhesion proteins associated with angiogenesis and cell proliferation [130]. 

In addition to their protein fraction, MSC-Exos are able to convey their pro-angiogenic signals 
through a direct miRNA transfer. Hypoxia-elicited MSC-Exos are significantly enriched in pro-
angiogenic miR-125b-5p compared with naturally occurring MSC-Exos [131]. miR-21-5p is also 
enriched, leading to increased expression of the TGF-β signalling pathway, pro-angiogenic VEGF-α, 
ANGPT-1, hypertrophic atrial natriuretic factor (ANP), and brain natriuretic peptide (BNP) [132]. 
Another landmark study identified high levels of the pro-angiogenic miR-21, miR-1246, miR-23a-3p, 
and miR-23, in MSC-Exos [133]. It was subsequently discovered that a set of angiogenesis-associated 
genes, including members of the angiopoietin network (ANGPT1, ANGPT4, and ANGPTL4) as well 
as other important mediators of angiogenesis (ephrin type-B receptor 2 (EPHB2), and neuropilin 2 
(NRP2)), were upregulated in MSC-Exos treated ECs. Furthermore, numerous genes that correlate 
with VEGF or increase its expression, such as MYC-associated zinc finger protein (MAZ), semaphorin 
5B (SEMA5B), and nuclear receptor coactivator 1 (NCOA1), were also significantly upregulated. In 
contrast, several antiangiogenic genes including Serine protease inhibitor Kazal-type 5 (SPINK5), 
arachidonate 5-Lipoxygenase (ALOX5), and protein phosphatase 1A (PPM1A) were significantly 
down-regulated in MSC-Exo-treated ECs [133]. 

Table 1. List of components of the mesenchymal stem cell-derived exosomes (MSC-Exos) molecular 
cargo selected for their known potential to regulate the angiogenesis process. 

MSC-Exo Molecular 
Cargo Component 

Function Reference 

Avian 
reticuloendothelial 

virus oncogene 
homolog A 

RELA, along with p50, is a constituent of the NF-κB 
heterodimer that mediates NF-κB gene transactivation 

activity, which includes numerous angiogenesis-related 
genes [134]. 

[119] 

Cadherin Vascular endothelial cadherin modulates angiogenesis 
and the structural integrity of blood vessels [135]. 

[119] 
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Epidermal growth 
factor receptor 

The EGFR signal transduction pathway regulates 
angiogenesis and is especially pro-angiogenic during 

tumorigenesis [136]. 

[119] 

Extracellular matrix 
metalloprotease inducer 

EMMPRIN mediates cell migration and angiogenesis 
upstream of VEGF and MMP-9 [121]. EMMPRIN 
promotes angiogenesis by directly elevating the 

expression of VEGF [137]. 

[128] 

Ezrin Ezrin plays a key role in the actin-based cellular functions 
required for cell locomotion that are important in 

angiogenesis [138]. 

[130] 

Fibroblast growth factor FGF is a potent inducer of angiogenesis via its mitogenic 
action on vascular and capillary endothelial cells. 

Specifically, it achieves this by driving VEGF-induced 
angiogenesis [139,140]. 

[119] 

Galectin-1 Galectin-1 contributes to multiple steps of the 
angiogenesis pathway; pro-angiogenic signalling via 

VEGF receptors and H-Ras is augmented by galectin-1 
[141]. 

[130] 

Interleukin-8 Chemokine IL-8 exerts potent angiogenic properties on 
ECs through interaction with the receptors C-X-C 

chemokine receptor type (CXCR1) and CXCR2 [142]. 

[129] 

Platelet-derived growth 
factor 

PDGF is heavily involved in the angiogenic processes in a 
vast array of physiological contexts. PDGF interacts with 
different PDGFRs, which in turn activate multiple pro-

angiogenic pathways such as the MAPK and PI3K 
pathways [143,144]. 

[129] 

Platelet-derived growth 
factor receptors 

PDGFs interact with PDGFRs to activate the pro-
angiogenic MAPK and PI3K signalling pathways [144]. 

[129] 

p195 p195 functions to link VEGFR2 to the vascular endothelial 
cadherin-containing adherens junctions, thereby 
promoting VEGF-stimulated angiogenesis [145]. 

[130] 

Nuclear factor-κb NF-κB is a transcription factor highly associated with 
tumour angiogenesis. It activates numerous pro-

angiogenic genes such as VEGF, IL-8, and several MMPs 
[146,147]. 

[119] 

Transforming growth 
factor-β 

TGF-β induces angiogenesis through its binding to TGF-β 
receptor complexes present on ECs [148]. The subsequent 

signalling response is highly context-dependent: it can 
result in promotion or suppression of endothelial 

migration, proliferation, permeability, and sprouting 
[149]. 

[106,129] 

Vascular endothelial 
growth factor 

VEGF is an important key factor involved in maintaining 
vascular homeostasis and stimulating the angiogenic 

cascade [150,151]. 

[128,129] 
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miR-21 miR-21 activates the PTEN/VEGF signalling pathway 
after acute MI to exert cardioprotective pro-angiogenic 

effects [152]. 

[110,133] 

miR-21-5p miR-21-5p leads to increased expression of the TGF-β 
signalling pathway, pro-angiogenic VEGF-α, and 

angiopoietin-1, and ANP and BNP [132]. 

[132] 

miR-23 miR-23 interact with Sprouty2, Sema6A, and Sema6D in 
ECs to induce sprouting angiogenesis [153]. 

[133] 

miR-23a-3p Hypoxic tumour exosomal miR-23a directly targets prolyl 
hydroxylase 1 and 2 (PHD1 and 2) in endothelial cells, 

promoting tumour angiogenesis [154]. 

[133] 

miR-1246 Colon tumour exosome miR-1246 has been found to 
promote angiogenesis via Smad 1/5/8 signalling in ECs 

[155]. 

[133] 

3.2. MSC-Exos Reduces Apoptosis  

Apoptosis is a form of programmed cell death characterised by membrane blebbing, cell 
shrinkage, condensation of chromatin, and DNA fragmentation, followed by a rapid engulfment of 
the corpse by neighbouring cells. It is distinguished from necrosis by the absence of an associated 
inflammatory response [156]. Apoptosis plays a significant role during acute MI and reperfusion-
induced tissue injury, leading to the myocardial loss that eventually manifests as heart failure 
[157,158]. Therefore, suppressing apoptosis in CMCs is potentially an effective strategy in the 
alleviation of acute myocardial infarction [159]. MSC-Exos confer cardioprotection under ischemic 
conditions to cardiac cells by hypoxia-induced apoptosis inhibition (see Table 2). This anti-apoptotic 
response hinders myocardial damage, preserves left ventricle geometry, and improves cardiac 
function [160]. 

Evidence suggests that MSC-Exos exert anti-apoptotic effects through the modulation of 
bioenergetics in target cells. Key features of acute MI include loss of ATP and NADH, increased 
oxidative stress, and cell death [161]—all processes that are directly tied to cellular bioenergetics. 
MSC-Exo treatment in murine myocardium increases ATP and NADH levels, decreases oxidative 
stress, and enhances phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pro-survival 
signalling activation in ischemia-reperfusion injury (I/R) hearts [51]. In parallel, MSC-Exo treatments 
reduce c-Jun N-terminal kinase (c-JNK) phosphorylation, a major activator of pro-apoptotic signals. 
This finding suggests that MSC-Exos exert therapeutic effects at least partly through the restoration 
of bioenergetics in target cardiac cells. While the underlying anti-apoptotic molecular mechanisms 
remained unclear, it was speculated that MSC-Exos deliver a set of oxidative enzymes that are lost 
during I/R injury [161]. Consequentially, a restoration of the bioenergetics processes and 
simultaneous decrease in oxidative stress results in apoptosis reduction. 

The PI3K/AKT pathway is a key intracellular signal transduction pathway involved in the 
regulation of apoptosis and survival. AKT is the primary protein effector downstream of the PI3K 
signalling pathway and plays an important role in glucose metabolism by regulating the biological 
functions of insulin [162,163]. CMC apoptosis is increased by malfunction of the AKT signalling 
pathway during hyperglycaemia, which is accompanied by an increase in the release of cytochrome 
c from mitochondria and an enhancement of caspase-3 activity [164]. This pathway is tightly 
regulated by phosphatase and tensin homolog (PTEN) via its phosphatase dephosphorylation 
activity [165]. Among the MSC-Exo anti-apoptotic miRNAs modulating the PI3K/AKT pathway, 
miR-144, which is highly enriched in BM-MSC-Exos, significantly counteracts apoptosis in hypoxic 
CMCs by interacting with PTEN/PI3K/AKT [166]. Similarly, miR-486-5p from BM-MSC-Exos reduce 
MI-induced apoptosis by repressing the PTEN pathway and subsequently activating the PI3K/AKT 
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pathway in CMCs [167]. These observations are consistent with other studies investigating the effects 
of non-exosomal interventions on the PI3K/AKT pathway and apoptosis in the heart [168–170]. 

MSC-Exos treatment activates AMPK/mTOR and AKT/mTOR signalling to partly reduce in vitro 
and in vivo apoptosis through autophagy enhancement [171]. It is likely that PI3K/AKT activation 
contributes to the aforementioned anti-apoptotic response by accelerating autophagic signalling 
pathways. In addition, AD-MSC-Exos counteract apoptosis by Wnt/β-catenin pathway modulation, 
a key regulator of survival in CMCs [172]. AD-MSC-Exo treatments induce Wnt/β-catenin signalling 
activation by attenuating I/R- and hypoxia-reoxygenation injury (H/R; an in vitro model where 
standard culture atmosphere is replaced with a hypoxic or anoxic gas mixture to study the recovery 
process following the hypoxic period)-induced inhibition of Wnt3a, p-GSK-3β (Ser9), and β-catenin 
expression. This effect coincided with dramatically reduced I/R-induced apoptosis in rat CMCs, 
upregulation of Bcl-2 and cyclin-D1, downregulation of Bax and, inhibition of caspase-3 activity [172]. 

Hypoxic preconditioning of parent MSC significantly improves the ability of MSC-Exos to 
inhibit apoptosis by enriching their miR-22 content, which inhibits apoptosis by targeting methyl 
CpG binding protein 2 (Mecp2) [173]. Horizontal transfer of miR-22 reduces apoptosis in CMCs, 
ameliorates fibrosis, and improves post-MI function in the mouse heart. Likewise, miR-21 transfer 
via MSC-Exos enhances cardioprotection by conferring anti-apoptotic effects [123]. miR-21 is 
involved in several intracellular signalling pathways and modulates apoptotic proteins in CMCs, 
such as PDCD4, TLR4, NF-κB, and, notably, PTEN/AKT/Bcl-2 [174]. One study even found that miR-
21 from BM-MSC-Exos protects cardiac stem cells expressing the stem cell factor receptor c-kit from 
oxidative injury and apoptosis through PTEN/PI3K/AKT pathway modulation [175]. Hypoxic MSC-
Exos inhibit CMC apoptosis after acute MI by upregulating miR-24 in target cells, which in turn 
inhibits apoptosis in murine CMCs [176] by repressing Bcl-2-like protein-11 (BIM) translation (a 
member of the B cell lymphoma-2 (Bcl-2) family of apoptosis-mediating proteins). Hypoxic MSC-
Exos also facilitates cardiac repair via miR-125b-5p cargo activity following MI [131]. 

Interestingly, induced changes to gene expression in parent MSCs influence the anti-apoptotic 
properties of MSC-Exos. GATA-binding protein-4 (GATA-4) overexpression leads to increased 
growth factor release and EC-mediated angiogenesis [177]. Another study also found that GATA-4 
regulates the expression of the members of the miR-15 family in MSCs and improves their survival 
in ischemic environments [178]. MSCs overexpressing GATA-4-derived exosomes (MSCGATA-4-DEs) 
expressing anti-apoptotic miRNAs, reduce apoptosis and preserve mitochondrial membrane 
potential in targeted hypoxic CMCs [179]. Additionally, miR-19a and miR-451 are highly expressed 
in CMCs treated with MSCGATA-4 -DEs. Further analysis showed that miR-19a downregulates PTEN 
and BIM expression resulting in AKT and ERK signalling pathways activation while inhibiting 
JNK/caspase-3 activation by targeting the transcription factor SRY-box transcription factor-6 (SOX-6) 
[180]. These observations suggest a central role of miR-19a in mediating the anti-apoptotic effects of 
MSC-Exo treatments. A prior investigation of MSCGATA-4 found that the cardioprotection induced by 
MSCGATA-4-DEs is partially mediated by miR-221 [181], which inhibits p53 modulator of apoptosis 
(PUMA), a pro-apoptotic member of the Bcl-2 protein family. 

Furthermore, exosomes from MSCs treated with macrophage migration inhibitory factor (MIF) 
(MSCMIF) enhances myocardial repair by ameliorating the heart function, reducing heart remodelling, 
mitochondrial fragmentation, and apoptosis in vivo [182]. These MSCMIF-DEs confer enhanced anti-
apoptotic effects compared to unmodified MSC-Exos in hypoxic CMCs. Here, the exosomal long 
coding RNA lncRNA-NEAT1 inhibits miR-142-3p [183]. Increased activity of miR-142 has been found 
to induce apoptosis and cardiac dysfunction while its reduction rescued cardiac function in a murine 
heart failure model [184]. Additionally, activation of the lncRNA-NEAT1/miR-142 axis enhances the 
transcription factor forkhead box protein O1 (FOXO1) activity in CMCs, resulting in the downstream 
modulation of a wide range of genes regulating cellular apoptosis. It was therefore suggested that 
the lncRNA-NEAT1/miR-142/FOXO1 represents a novel cardioprotective signalling pathway. 

Table 2. List of components of the mesenchymal stem cell-derived exosomes (MSC-Exos) molecular 
cargo selected for their known potential to regulate the apoptosis process. 
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MSC-Exo 
Molecular Cargo 

Component 
Function Reference 

miR-19a miR-19a downregulates PTEN and BIM expression resulting 
in AKT and ERK signalling pathways activation while 

inhibiting JNK/caspase-3 activation by targeting the 
transcription factor SOX-6 [179]. 

[179] 

miR-21 miR-21 is involved in several intracellular signalling 
pathways and modulates apoptotic proteins in CMCs, such as 

PDCD4, TLR4, NF-κB, and PTEN/AKT/Bcl-2 [167]. In 
addition, miR-21 is involved in PTEN/PI3K/AKT pathway 

modulation [175]. 

[110,123,133] 

miR-22 miR-22 inhibits apoptosis by targeting Mecp2 [173]. [173] 
miR-24 miR-24 represses BIM translation to suppress apoptosis [185]. [110,176] 

miR-125b-5p miR-125b-5p protects ECs from apoptosis and necrosis under 
oxidative stress via interaction with SMAD4 [186]. 

[131] 

miR-144 miR-144 counteracts apoptosis in hypoxic CMCs by 
interacting with the PTEN/PI3K/AKT pathway [187,188]. 

Conversely, miR-144 is also known for suppressing 
proliferation and promoting apoptosis in tumours. 

[166] 

miR-221 miR-221 inhibits PUMA, a pro-apoptotic member of the Bcl-2 
protein family [181] 

[181] 

miR-451 miR-451 modulates the TLR4/NF-κB pathway, resulting in a 
significant apoptosis reduction [189]. 

[179] 

miR-486-5p miR-486-5p represses the PTEN pathway while activating the 
PI3K/AKT pathway in CMCs to prevent apoptosis [177]. 

[167] 

lncRNA-NEAT1 lncRNA-NEAT1 inhibits miR-142-3p, which is known to 
induce apoptosis and cardiac dysfunction [184]. Additionally, 

activation of the lncRNA-NEAT1/miR-142 axis enhances 
FOXO1 activity in CMCs, resulting in apoptosis gene 

expression modulation. 

[184] 

3.3. Immune Response in Acute MI 

Acute MI triggers inflammatory responses, which are in turn responsible for the healing/repair 
cycles following MI [190]. The role of reperfusion-induced inflammation in the repair process has 
been reported in several experimental models [191,192]. Initially, infiltrating monocytes and mast 
cells mediate cardiac repair by a complex process involving different cytokines and growth factor 
cascades [193]. However, a prolonged inflammation extends myocardial injury, leading to adverse 
left ventricular remodelling and heart failure [190]. In addition to the in situ inflammation affecting 
the infarcted region, acute MI also triggers systemic inflammation by modulating the levels of a wide 
range of immune factors involved in the humoral and cell-mediated inflammatory responses [194]. 

In particular, the complement cascade signalling is activated, mediating immune cell 
recruitment to the injured myocardium to rapidly elevate myocardial inflammation [190]. 
Mechanistically, this process infiltrates neutrophils and monocytes into the afflicted regions, where 
they exert different immune functions involved in inflammation and tissue repair such as 
degranulation, phagocytosis, and differentiation. In parallel, recruited mast cells degranulation 
activates a series of pro-inflammatory cytokine and chemokine cascades such as tumour necrosis 
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factor (TNF), IL-1β, and members of the IL-6 family [194]. A variety of damage-associated molecular 
patterns (DAMPs) are simultaneously released from necrotic cardiac resident cells following 
infarction, which perform a variety of pro-inflammatory functions, including the activation of 
immune cells, TLR activation, and inflammasome formation signalling [195–197]. Finally, reactive 
oxygen species (ROS) generated from acute MI directly injures cardiac myocytes and vascular cells 
by triggering inflammatory cascades in a positive feedback loop [198,199]. 

Chronic and excessive pro-inflammatory response following acute MI contributes towards the 
induction of a process known as adverse left ventricular remodelling [194,200], which involves 
enhanced protease activation [201], cytokine expression [202], ventricular dilation [203,204], and 
excessive fibrosis induced by cardiac fibroblast activation [205]. This process is strongly correlated 
with worsened clinical outcomes, therefore making therapeutic targeting of inflammation following 
MI, an important strategy for limiting the infarct size. 

3.3.1 MSC-Exos Modulate the Immune Response 

While the complete mechanism of action is not yet fully understood, MSCs have long been 
known for their immunomodulatory properties [206–208]. As the significance of their paracrine 
signalling is increasingly emphasised, evidence that MSCs alter the immune response via exosome 
shuttling during MI has recently emerged (see Table 3). Specifically, MSC-Exos hold potent 
immunosuppressive anti-inflammatory effects [120,209–211], having significant implications on 
cardiac tissue regeneration. Previous studies suggest that the switch from a pro-inflammatory to a 
tolerogenic immune response may contribute towards a pro-regenerative environment, allowing 
endogenous stem and progenitor cells to successfully repair the affected tissues [211]. 

A breakthrough study published in 2015 showed that MSC-Exos restrain the inflammatory 
response during acute MI by inhibiting immune cell invasion and proliferation in the infarcted zone 
of the rat heart [120]. Specifically, CD3+ T cells were significantly decreased after MSC-Exos treatment 
and a simultaneous inflammation/infiltration reduction was observed in myocardial tissue. Prior in 
vitro studies investigating the interaction between MSC-Exos and peripheral blood mononuclear cells 
(PBMCs) have also indicated similar results, as co-culture experiments increase CD3+ T cell apoptosis 
while reducing B cell proliferation, differentiation, and production of IgM, IgG, and IgA under CpG 
stimulation [212]. Furthermore, concentrations of immunosuppressive IL-10 were greatly increased 
in surrounding culture medium. It was subsequently reported that MSC-Exos inhibited the 
differentiation, activation, and proliferation of T cells in vitro in a similar manner [213]. 

Later studies aimed at identifying the mechanism by which MSC-Exos reduced the 
inflammatory response found numerous components involved in the process. MSC-Exos express 
programmed death-ligand 1 (PD-L1), galectin-1, and membrane-bound TGF-β, which are all essential 
molecules for inducing immune tolerance [214]. Moreover, immunomodulatory miR-29 and miR-24 
are highly expressed in both MSC-Exos and MSCs [110], suggesting that MSC-Exos may be able to at 
least partially reproduce the immunosuppressive effects observed after MSC treatment. Both 
miRNAs modulate the immune response, with miR-29 being associated with reduced fibrosis via the 
repression of numerous collagen genes [215], and miR-24 limiting aortic vascular inflammation by 
interacting with a potent regulator of inflammation and tissue remodelling known as chitinase-3-like 
protein-1 (CHI3L-1) [216]. Additionally, miR-181a delivered by MSC-Exos inhibits the inflammatory 
response through c-Fos protein interaction, a key immunoactivator promoting the dendritic cell-
related immune functions [217]. 

MSC-Exo-delivered miR-182 attenuates myocardial I/R injury via TLR4/NF-κB/PI3K/AKT 
pathway interaction, which in turn regulates macrophage polarisation [218]. MSC-Exo treatments 
modify the polarisation of pro-inflammatory M1 macrophages to anti-inflammatory M2 
macrophages both in vitro and in vivo [218–224]. As opposed to the host-defensive regulatory M1 
macrophages, M2 macrophages have functions in translating the pro-inflammatory cascades into 
reduced inflammatory cascades while enhancing subsequent reparative activities. MSC-Exo 
synthesis is affected by pro-inflammatory environments, which induce them to promote M2 
polarisation by significant upregulation of miR-34a-5p, miR-21, and miR-146a-5p [223]. Besides the 
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context of acute MI, the switch from an M1 to M2 phenotype has been similarly observed in MSC-
Exo treatments in other physiological contexts, including bronchopulmonary dysplasia [221], cecal 
ligation, puncture-induced sepsis [222], and skeletal muscle damage [224]. 

Moreover, the M1 to M2 macrophages shift has implications in tissue fibrosis. The post-MI 
myocardium is highly characterised by extensive cardiac fibrosis due to the fibroblast and 
myofibroblast-mediated reparative response to ischemic cell death [225]. The initial cardiac fibrotic 
response is necessary to lessen the rupture of the ventricular wall and therefore represents an 
important step in prevention of subsequent heart failure [225]. The transition from acute 
inflammation to fibrosis, facilitated by the switch from M1 to M2 dominant macrophage subsets, 
significantly contributes towards increasing cardiac fibrosis. 

M2 macrophage secretion of TGF-β1 induces resident fibroblast to myofibroblast transformation 
[226], which in turn produce matrix components more effectively. Furthermore, macrophages have 
roles in recruiting these cells to the injury site via chemokine signalling, and the resulting production 
of matrix components and collagen deposition stabilises and crosslinks to form scar tissue [227]. M2 
macrophages further promote fibrogenesis through the production of arginase, which activates 
glutamate and proline, both of which are necessary for collagen synthesis [227,228]. It should be noted 
that acute MI often induces exaggerated response outside the injured area, which can contribute to 
progressive impairment of cardiac function and lead to heart failure. Conversely, M2 macrophages 
are a potent source of anti-inflammatory IL-10, which exerts protection against cardiac fibrosis. It has 
been shown that a lack of IL-10 leads to adverse tissue remodelling and more severe cardiac fibrosis 
when compared to naturally occurring counterparts [229]. 

Despite the seemingly contradictory functions of the M2 macrophages, several reports show that 
MSC-Exos ameliorate fibrosis after MI [114,173,210,230]. While the underlying mechanism is unclear, 
some studies have implicated a role for the miRNA component of the MSC-Exo molecular cargo. 
Ischemic preconditioned MSC-Exos contains miR-22, which ameliorates fibrosis and improves 
cardiac function post-MI [173]. MSC-Exos from miR-133-overexpressing MSCs produced comparable 
results [231,232]. 

Table 3. List of components of the mesenchymal stem cell-derived exosomes (MSC-Exos) molecular 
cargo selected for their known potential to regulate the immune response. 

MSC-Exo 
Molecular 

Cargo 
Component 

Function Reference 

Galectin-1 Galectin-1 functions as a homeostatic agent by modulating 
innate and adaptive immune responses [233]. Galectin-1 

inhibits cell growth, induces cell cycle arrest, and 
promotes apoptosis of activated immune cells [234–236]. 

[130,214] 

Programmed 
death-ligand 1 

PD-L1 is a crucial part of the programmed death-1 (PD-
1)/PD-L1 pathway, which regulates T cell responses and 

its effects on immunological tolerance and immune-
mediated tissue damage [237]. 

[214] 

Transforming 
growth factor-β 

TGF-β is a potent cytokine having effects on many 
different cells in the immune system (including T cells and 

dendritic cells) and exerting both pro- and anti-
inflammatory effects depending on the context in which it 

is acting [238]. 

[106,129,214] 

miR-21 miR-21 acts as a negative regulator of T cell activation by 
targeting guanine nucleotide-binding protein G subunit 

[110,123,133,223] 
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alpha (GNAQ), pleckstrin homology domain-containing 
family A member 1 (PLEKHA1), and CXCR4 [239]. 

Mature miR-21 regulates the anti-inflammatory responses 
and polarises macrophages to the M2 phenotype [240]. 

miR-22 miR-22 ameliorates fibrosis and improves cardiac function 
post-MI [241]. 

[173] 

miR-24 miR-24 limits aortic vascular inflammation through 
interaction with CHI3L-1, which itself is a regulator of 

inflammation and tissue remodelling [216]. 

[110,176,216] 

miR-29 miR-29 reduces fibrosis via repression of several collagen 
genes [215]. 

[110] 

miR-34a-5p miR-34a-5p is a central regulator of NF-κB in T cells 
[234,242] and differentiation towards M2 macrophage 

polarisation [243]. 

[223] 

miR-133 miR-133 ameliorates fibrosis and improves cardiac 
function post-MI [244]. 

[232] 

miR-146a-5p miR-146a can contribute towards M1 to M2 polarisation 
by downregulating M1-marker genes [245]. 

[223] 

miR-181a miR-181a inhibits the inflammatory response through 
interaction with the c-Fos protein, a key immunoactivator 
that contributes to dendritic cell-related immune functions 

[217]. 

[217] 

miR-182 miR-182 interacts with the TLR4/NF-κB/PI3K/AKT 
pathway, regulate regulator of macrophage polarisation 

[218]. 

[218] 

4. Clinical Trials Involving Stem-cell Derived Exosomes 

Due to their potential as therapeutic cell-free drugs and biomarkers, 151 clinical trial studies 
involving exosomes [246] are being developed to-date. Although the regenerative and 
immunomodulatory activities of MSC-Exos have been shown in a plethora of preclinical studies in 
cardiovascular disorders, more efforts are needed to establish standard and consistent methods for 
exosome production (cell lines and culture conditions), isolation, and storage, which are aimed at 
reducing the variability between cell-free products. Additional investigations focused on dose and 
administration of exosome preparations in patients may facilitate their use in future clinical trials. 
Hence, due to the above translational limitations, in a majority of the ongoing clinical trials, exosomes 
and their protected cargos including RNAs, small RNAs, and proteins [247], are being investigated 
for developing novel diagnostic and prognostic tools toward broad range of conditions. Only seven 
interventional studies are currently evaluating the therapeutic efficacy and safety of stem-cell derived 
exosomes in patients (see Table 4). 

4.1. MSC-EVs and Bronchopulmonary Dysplasia 

The NCT03857841 phase I trial assesses the safety and tolerability of intravenous administration 
of BM-MSC-EVs (UNEX-42) in 18 patients at risk of bronchopulmonary dysplasia, a severe neonatal 
lung injury [248]. Preclinical studies in the hyperoxia (HYRX)-induced BPD model showed that MSC-
EVs treatment improved lungs morphology by reducing fibrosis and inflammation. As extensively 
described in 3.3.1, MSC-EVs modulates macrophages phenotype by promoting the M1-like to M2-
like status [221]. 



Biomolecules 2020, 10, 707 14 of 32 

4.2. MSC-EVs in Dystrophic Epidermolysis Bullosa  

Epidermolysis Bullosa (EB) includes a group of inherited genodermatoses caused by a lack of 
collagen VII, which in turn results in skin fragility and mucocutaneous blistering. The phase I/IIA 
trial NCT04173650, aims at studying effectiveness and safety of AGLE-103 topic administration in the 
treatment of lesions in EB subjects. AGLE-103 is an allogenic derived drug composed of MSC-EVs 
derived from normal donors. Previous data showed that the intradermal administration of allogenic 
MSCs improved the wound healing and prevented blistering by promoting Collagen VII replacement 
in patients [249]. 

4.3. MSC-EVs in Patients with Acute Ischemic Stroke 

The NCT03384433 phase II trial aims at studying efficacy and safety of allogenic miR-124 
enriched MSC-EVs intravenously administered to five patients with acute ischemic stroke. 
Specifically, five patients aged 40–80 years will receive 200 µg (total protein) of miR-124-enriched 
allogenic MSC exosomes one month after stroke attack.  

MiR-124 regulates several biological processes in central nervous system [250] and exerts an anti-
apoptotic and neuroprotective action in stroke [251]. In addition, previous studies showed that miR-
124 promotes neurovascular remodelling, and neurogenesis after stroke [252]. 

4.4. Effect of MSC in Patients with Chronic Graft-versus Host Diseases  

Chronic graft-versus-host disease (GVHD) is a life-threatening complication following allogenic 
hematopoietic stem cell transplantation, resulting in enhanced inflammatory events triggered by the 
interaction between donor lymphocytes and foreign antigens [253]. Major ocular complications 
including keratoconjunctivis, pain, photophobia, dryness and blindness, and other manifestations 
affecting the lacrimal glands, results in decreased tear production [254]. 

Participants from NCT04213248 Phase II clinical trial will receive umbilical mesenchymal stem 
cell (UMSC)-derived exosomes 10 µg/drop, four times a day for 14 days with the aim of relieving the 
dry eye symptoms. Previous results indicate that MSCs infusions can be therapeutically effective in 
suppressing dry eye symptoms associated in cGVHD subjects by promoting the generation of 
regulatory T cells exerting immunomodulatory effects [255]. Subsequently, Lay et al., confirmed that 
the anti-inflammatory MSCs capability is due to a paracrine action mediated by MSC-derived 
exosomes promoting IL-10-expressing regulatory cells proliferation and IL-17-expressing pathogenic 
T cells inhibition [256]. 

4.5. MSC-EVs Promotion of Macular Holes Healing 

The early phase I trial NCT03437759 aims at inducing functional recovery of large and refractory 
macular holes (MHs). MHs are thickness defects in the eye macula region of various pathogenetic 
origin (including idiopathic and traumatic) [257]. 

Forty-four subjects will receive a 10 µL PBS drop containing 50 µg or 20 µg MSC-Exo into 
vitreous cavity and will be followed up by physical examinations, fundoscopy, best-corrected visual 
acuity (BCVA) measurement, and spectral-domain optical coherence tomography (OCT). The main 
patient inclusion criteria are a diagnosis of MHs larger than 400 µm. Literature studies show that 
local human umbilical cord-derived MSC-EVs injection ameliorates uveitis in a rat by inhibiting 
inflammatory cell migration, including neutrophils, macrophages cells, and CD4+ T cells [258]. 

4.6. MSC-EVs Treatment in Patients with Metastatic Pancreas Cancer  

Pancreatic ductal adenocarcinoma is a highly metastatic disease associated to KRAS Proto-
Oncogene, GTPase (KRAS) gene mutations, occurring to > 90% of the patients [259]. In particular, the 
specific KRAS G12D mutation, a codon-12, exon-2 G > A point mutation subtype is the most negative 
prognostic factor associated with the modulations of both: the cell cycle regulator PI3K/AKT and, the 
cell proliferation/survival/regulation MEK pathways [260]. 
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Twenty-eight subjects enrolled in the NCT03608631 study will receive different doses of 
iExosomes. Specifically, iExosomes is a preparation of MSC-EVs containing combined with 
KrasG12D siRNAs and the aim of this phase I clinical trial is to identify both dose-limiting toxicities 
(DLT) and maximum tolerated dose (MTD). The ability of iExosomes to enter cells via 
micropinocytosis and reducing RAS pathway activation, resulting in pancreatic cancer suppression, 
has been extensively shown in multiple in vitro and in vivo models [261]. RAS pathway is involved in 
a variety of cellular processes that are relevant for tumorigenesis [262]. 

4.7. MSC-EVs Based Treatment for Type I Diabetes Mellitus  

Type I diabetes mellitus (T1DM) is caused by the pancreatic islets β-cell damage, due to an 
autoimmune mechanism involving T cells [263] and other factors, including TNF-α and interferon-γ 
[264]. The rationale of the study is that umbilical cord-blood MSC-EVs intravenously infused can 
reduce the inflammation and stabilize the glycaemic control in T1DM patients by improving the β-
cell mass. It has been previously shown that umbilical cord-blood MSC-EVs promotes the islet 
survival by reducing β-cell apoptosis [265]. In the phase III NCT02138331 clinical trial, twenty 
patients will receive a dose of 1.22–1.51 × 106/kg of purified exosomes followed by a second injection 
of an equivalent dose of MVs (180–1000 nm) after 7 days. 

Table 4. Summary of the clinical trials involving MSC-extracellular vesicles (EVs). 

Disease Study Type Phase Trial ID Reference 
Bronchopulmonary Dysplasia Interventional Phase I NCT03857841 [221,248] 

Dystrophic Epidermolysis Bullosa Interventional Phase I/IIA NCT04173650 [249] 
Acute Ischemic Stroke Interventional Phase II NCT03384433 [250–252] 

Dry Eye Interventional Phase II NCT04213248 [253–256] 
Macular Holes Interventional Phase I NCT03437759 [257,258] 

Pancreatic Adenocarcinoma Interventional Phase I NCT03608631 [259–262] 
Diabetes Mellitus Type 1 Interventional Phase III NCT02138331 [263,264] 

5. Discussion and Future Perspectives 

While there is still much to be understood about their nature, MSC-Exos have emerged as a 
highly promising cell-free vector for conferring regeneration in the heart. As outlined in this review, 
MSC-Exos may have especially strong implications in MI therapeutics, being able to confer potent 
angiogenesis [118–121], protection against apoptosis [160], and immunomodulation [120,209,210] 
that can directly counteract the adverse outcomes of MI and induce subsequent cardiac regeneration 
(see Figure 2). It is clear that the molecular cargo of MSC-Exos (especially that of miRNA and 
proteins) is highly responsible for the dynamic cardioprotective and regenerative effects observed. 
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Figure 2. Summary of MSC-Exo molecular cargo and its functions in angiogenesis, apoptosis, and 
immunomodulation. MSC-Exo treatments improve blood vessel neo-formations through the 
activation of a wide range of pro-angiogenic pathways in ECs. In parallel, anti-apoptotic effects are 
induced via bioenergetics modification, principally though the PI3K/AKT and mTOR pathways. 
Finally, MSC-Exos modify the inflammatory and fibrotic immune responses, creating a 
microenvironment more accommodating to regeneration and healing. A highly diverse set of 
molecular cargo (almost solely consisted of miRNA and protein factors) is responsible for the 
cardioprotective and regenerative effects of MSC-Exos. 

While naturally occurring MSC-Exos have been demonstrated to induce desirable effects, it is a 
natural next step to pursue research of engineered exosomes that are capable of producing more 
vigorous effects that optimise cardioprotection and cardiac regeneration. Future research on MSC-
Exos in this context should therefore focus on identifying the specific molecular cargo of MSC-Exos, 
and subsequently elucidate the mechanism by which such components are able to produce specific 
effects in target cells. Alongside this, research into the mechanism of exosome-loading process will 
be highly valuable as greater understanding of the process would allow for modification of the parent 
cell, with the aim of producing exosomes encapsulating desirable molecular cargo. While still 
unrefined, several aforementioned studies in this review have attempted to artificially improve MSC-
Exo cardioprotection and regeneration, either through modification of the cells’ local environment 
[124,131,160,173,176] or by modifying the expression of specific genes that were believed to have 
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downstream implications in cardioprotection and/or regeneration [119,177,178,181,183,184]. 
Furthermore, the prospect of developing synthetic exosome-mimics introduces the possibility of 
large-scale synthesis of MSC-Exo-like exosomes [266]. In this review, we provided an extensive list 
of specific molecular cargo components found in MSC-Exos that we hope can assist in designing such 
engineered exosomes. 

Besides exosome modification, one interesting possibility is to explore the idea of the 
enhancement of cardioprotection and cardiac regeneration through selection of MSCs that secrete the 
“perfect” exosomes for the required clinical applications. To do this, cells could be subjected to 
undergo a process of directed evolution. This is a method for artificially selecting a biological species 
(usually a protein or nucleic acid) towards a user-defined goal [267]. It consists of subjecting a gene 
to iterative rounds of mutagenesis, selection, and amplification to create a product that is optimised 
to accomplish a specific goal—but this has never been attempted at the cellular level. In this logic, 
instead of rationally designing exosomes optimised to heal cardiac tissue, in vitro experiments 
attempting to select for MSCs that secrete exosomes best suited for inducing cardioprotection could 
pose as an alternative solution. Once such a population of exosomes is identified, their contents and 
mechanisms of action could then be analysed. 

Nevertheless, the application of MSC-Exos—and exosomes in general—in a clinical setting 
remains a challenge due to limitations in exosome isolation and characterisation. While techniques 
such as ultracentrifugation and size exclusion chromatography-based methods are readily able to 
capture exosomes from MSC-conditioned media, it remains a hard truth that the resulting sample is 
never a pure population of exosomes due to the fact that other biological particles, especially that of 
MVs, can overlap in size. Developments of methods that can better distinguish MSC-Exos based on 
their biological properties rather than their physical qualities is likely to improve the pharmacological 
potency of the samples. More importantly, however, is that obtaining pure fractions of MSC-Exos 
would shed light on the components of the exosomes preparation that may produce unexpected 
and/or undesirable effects when applied in a clinical setting (such as an adverse immune response or 
tumour development) [268]. 
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