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Abstract: GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune
system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC).
Several further lipids have been proposed to act as GPR18 agonists, but these results still require
unambiguous confirmation. In the present study, we constructed a homology model of the human
GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of
the agonist THC and the recently reported antagonists which feature an imidazothiazinone core
to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular
dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted
to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an
aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could
explain the high potency of the most potent derivatives. Molecular dynamics simulation studies
suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1,
TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is
presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides
insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug
design for this promising potential drug target.
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1. Introduction

G protein-coupled receptors (GPCR) represent the largest family of membrane proteins in
eukaryotes. They are structurally characterized by seven transmembrane (TM) regions connected
by three extracellular (ECL1-3) and three intracellular loops (ICL1-3), an extracellular N-terminal
and an intracellular C-terminal domain. Upon binding of the cognate agonist (e.g., biogenic amine
neurotransmitter, nucleotide, lipid, amino acid, peptide, glycoprotein) conformational changes are
induced. These result in coupling with G proteins, and thereby transducing information from the
extracellular to the intracellular compartment and inducing or inhibiting downstream signaling
pathways [1,2]. Despite persistent efforts, nearly 100 GPCRs remain orphan, with their endogenous
ligands unidentified or unconfirmed [3]. The functionalities and roles of orphan GPCRs under

Biomolecules 2020, 10, 686; doi:10.3390/biom10050686 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0002-1446-4389
https://orcid.org/0000-0002-0456-1353
https://orcid.org/0000-0003-3031-3377
https://orcid.org/0000-0002-6752-7443
https://orcid.org/0000-0002-0013-6624
http://www.mdpi.com/2218-273X/10/5/686?type=check_update&version=1
http://dx.doi.org/10.3390/biom10050686
http://www.mdpi.com/journal/biomolecules


Biomolecules 2020, 10, 686 2 of 19

(patho)physiological conditions are in most cases poorly understood. The identification of the
endogenous ligands would be helpful for target validation studies and the design of novel therapeutic
drugs for orphan GPCRs.

GPR18 is such an orphan GPCR of therapeutic interest, phylogenetically belonging to the δ-branch
of class A, rhodopsin-like GPCRs. GPR18 was first described in 1997 and reported to be highly
expressed in different tissues and cell lines of the immune system, including spleen, thymus, and
leukocytes [4]. The role of GPR18 is still unclear and controversially debated. GPR18 has been
proposed by independent groups to be involved in immunological [5–8] and neurodegenerative
processes including Alzheimer’s disease and multiple sclerosis [9–13]. Based on the observation that
the activation of GPR18 lowers the intraocular pressure in mice, GPR18 agonists have been proposed
for the treatment of glaucoma [14,15]. Antagonists targeting GPR18 may be effective as anticancer
drugs [16–18], since the receptor was found to be abundantly overexpressed in melanoma metastases
and reported to contribute to tumor cell survival through inhibition of apoptosis [17].

In recent years, several studies aimed at the deorphanization of GPR18 have been published.
Due to the lack of selective agonists, the moderately potent cannabinoid (CB) receptor agonist
∆9-tetrahydrocannabinol (THC, 1) has been used in pharmacological studies to activate human
GPR18, which led to the suggestion to classify GPR18 as a cannabinoid receptor subtype besides CB1

and CB2 [19–22]. N-Arachidonoylglycine (NAGly, 2) and resolvin D2 (RvD2, 3) were proposed as
endogenous agonists of GPR18 [23,24]. However, independent confirmation for both lipids is still
lacking, as other groups, including ours, have not been able to confirm their activation of GPR18 [25,26].
We recently described the first GPR18 antagonists based on an imidazothiazinone core structure [21,27].
These were discovered by screening a compound library at the human receptor in a β-arrestin
recruitment assay using enzyme complementation technology and THC as an agonist. Based on
the screening results, a library of imidazothiazinones was synthesized and their structure–activity
relationships (SARs) were investigated. PSB-CB-27 (4) and PSB-CB-5 (5; for structures, see Figure 1)
were reported as the first potent and selective GPR18 antagonists [21].
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In the present study, we constructed a homology model of the human GPR18 to elucidate the
binding mode of the only confirmed agonist so far, the natural product THC, and of selected antagonists
by docking and molecular dynamics (MD) simulation studies. Insights into the binding interactions of
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agonists and antagonists will provide a basis for the rational design of more potent ligands and may
eventually contribute to the deorphanization of GPR18.

2. Material and Methods

2.1. Homology Modeling

The crystal structures of the murine µ-opioid receptor in complex with the agonist BU72 (PDB-ID:
5C1M), the human P2Y1 receptor in complex with the allosteric antagonist BPTU (PDB-ID: 4XNV)
and the zebrafish lysophosphatidic acid receptor LPA6 in complex with 1-oleoyl-R-glycerol (PDB-ID:
5XSZ) were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein
Data Bank (PDB) [28–30]. The crystal structures of all three receptors were used as templates for
generating homology models of the human GPR18 sequence (accession number: Q14330) retrieved
from the UniProt sequence database (http://www.uniprot.org) [31]. The sequences of the murine
µ-opioid receptor, the P2Y1R, and the zebrafish lysophosphatidic acid receptor LPA6 were aligned
with that of the human GPR18 using Clustal Omega [32]. We generated 500 models for the human
GPR18 based on the triple template approach using the standard comparative modeling automodel
class implemented in MODELLER (version 9.16, University of California, San Francisco, CA, USA). To
ensure correct tertiary protein structure prediction, we introduced a disulfide bridge between Cys94
and Cys172. The best model was selected on the basis of Discrete Optimized Protein Energy (DOPE)
scores calculated for the models [33,34]. The generated models were analyzed, and the best models for
the human GPR18 were used to perform molecular docking studies, based on the DOPE and GA341
score, PROSA II Z score, and Ramachandran plots. We took into account that the X-ray crystal structure
of the lysophosphatidic acid receptor LPA6 is missing part of the ECL2, likely due to low resolution
and high flexibility of that region. Nevertheless, we decided to include LPA6 as a template for model
generation as it might provide valuable information, e.g., regarding the transmembrane domains and
the ligand-binding site. Sequences for the cannabinoid receptors CB1 (P21554) and CB2 (P34972) were
retrieved from UniProt.

2.2. Docking Studies

Prior to docking, the homology model of the human GPR18 was prepared using the Protein
Preparation Wizard module implemented in Schrödinger [34,35]. In the first step for protein preparation,
we preprocessed the structure using the standard protocol at pH 7.4. Docking was performed using
Induced Fit Docking (IFD) and Glide as implemented in Schrödinger release 2016 [35–37]. In the first
step of IFD, Glide ligand docking was performed by removing the side chains of the amino acids in
the selected binding pocket. In the second phase of docking, Prime was applied to refine the nearby
residues and to optimize the side chains. In the final docking phase, the ligand was re-docked into all
induced fit protein structures that were within 30 kcal/mol of the lowest energy structure, by using the
Glide XP scoring function. A receptor grid center was specified on the basis of preliminary docking
studies, resulting in the highest docking scores for the centroid of Lys174 with a cubic grid side length
of 10 Å. Preliminary ensemble docking studies provided highest docking scores and consistent SARs
explanation for this selection as well as comparison with published cannabinoid receptor X-ray crystal
structures [38].

During the docking simulations, the receptor and the ligands were kept flexible. Following
docking, the resulting poses of the best model were selected using the IFD scores and Prime Energy
as representative values. The conformations of the docked ligands within an energy window of
2.5 kcal/mol were considered. For Glide docking, the following standard parameters were selected:
receptor van der Waals scaling, 0.50, ligand van der Waals scaling, 0.50, and a maximum of 20 poses
per ligand. Residues within 5.0 Å of the ligand poses were refined, and the side chains were optimized.
The best docking pose was selected based on the IFD score and Prime Energy values.

http://www.uniprot.org
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2.3. Compounds

Synthesis of the compounds which are utilized in this computational study as performed in the
Department of Technology and Biotechnology of Drugs Jagiellonian University at Kraków, Poland,
and potencies of the compounds were determined at the Department of Pharmaceutical & Medicinal
Chemistry, Pharmaceutical Institute, University of Bonn, Germany, as previously reported [21,27]. The
synthesis and biological evaluation of the new potent GPR18 antagonist 6 will be published elsewhere.

2.4. Molecular Dynamics Simulation

We selected several successful MD simulations as starting points for our runs [39–42]. The GPR18
complexes and the unbound GPR18 structure were prepared using the method described above to
determine the protein protonation state at pH 7.4. The obtained structures were processed to the
CHARMM-GUI molecular simulation program [43–45]. The forcefield CHARMM36m was applied for
all simulation runs. Ligand parameters were obtained separately from Schrödinger. The orientation of
the protein in the phosphatidylcholine lipid bilayer (POPC) was determined using the orientation of
proteins in membranes (OPM) database [46]. The cubic water box size was adjusted to the structure
size of 20 Å and filled with 0.15 M KCl solution. Water molecules were treated with the transferable
intermolecular potential with a 3 points (TIP3P) water model [47]. Equilibration steps for all structures
were divided into six steps using NAMD2 [48]. For the first three steps, we selected a runtime of 250 ps
in 1 fs intervals. For the last three steps, we selected an equilibration runtime of 2 ns in 2 fs intervals.
The system was heated from 0 to 303.15 K during equilibration using the NPT ensemble. During
production stages, the system was kept at 303.15 K. Temperature was regulated using the Langevin
dynamics thermostat. Production runs were performed for 4 × 50 ns with 4 fs intervals (eventually
amounting to 200 ns), and frames were collected every 40 ps using ACEMD by Acellera® with the
NVT ensemble [49].

3. Results

So far, no X-ray crystal structure of GPR18 has been published. After performing a BLAST search,
three crystal structures with highest sequence identity and overall sequence coverage were chosen
as templates: the murine µ-opioid receptor (PDB-ID: 5C1M) in complex with an agonist, the human
P2Y1R (PDB-ID: 4XNV) in complex with an allosteric antagonist, and the zebrafish lysophosphatidic
acid receptor LPA6 (PDB-ID: 5XSZ) in complex with oleoyl-R-glycerol, showing sequence identities
of 24.8%, 25.5% and 27.3%, respectively [28–30,50]. Multiple template approaches had been reported
to compensate for poor sequence similarity for receptors lacking a template with sequence similarity
above 30% [51,52]. Therefore, we decided to include all three templates into the process of homology
modeling, although they represent different states of receptor activation. Structures of class A GPCRs
belonging to the same δ-branch as GPR18 (P2Y1, LPA6) andone GPCR that is activated by a lipid like
GPR18 (LPA6) were selected. BBy this approach, we expected to compensate for gaps and mismatching
residues which would be present in a single template approach. The multiple sequence alignment is
shown in Figure S1 of Supporting Information.

We subsequently investigated the binding modes of imidazothiazinone antagonists and of the
agonist THC in the homology model of the human GPR18. To this end, we used the Induced Fit
module implemented in Maestro Schrödinger to propose a binding mode for the selected ligands and
to rationalize the potency values obtained in biological studies. Imidazothiazinone derivatives 4 and 5
were selected as representative potent antagonist structures. In addition to the imidazothiazinone core,
they both possess a 4-chlorophenoxy substituent connected by a linker which differs in length. For
the investigated antagonists 4 and 5, IC50 values of 0.650 and 0.279 µM had been determined [21,27].
In order to investigate whether the proposed antagonist–GPR18 complexes are stable, we performed a
200 ns MD simulation study. Furthermore, we rationalized the SARs of related GPR18 antagonists
using a structure-based approach.
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3.1. Docking Studies of Antagonists

Recently, several studies on molecular modeling of the human GPR18 have been published [53–57].
However, neither binding mode predictions of THC (or other agonists) nor MD simulations of ≥200 ns
of antagonist–GPR18 complexes have been published so far. Kuder et al. reported molecular modeling
and docking studies, creating a homology model of the human GPR18 based on the crystal structure of
the antagonist-bound human P2Y1 receptor [53]. The imidazothiazinone group of antagonist 5 was
predicted to point into a deeper binding pocket towards TM3 where it was hypothesized to form a
hydrogen bond with Arg1915.42. The results obtained in the present study indicate a different binding
mode which is supported by comprehensive SAR data and based on an ensemble of templates for
homology model generation rather than a single, low homology template as in the previous study [53].

The proposed binding mode for antagonist 4 based on the performed docking studies is presented
in Figure 2. Antagonist 4 is predicted to bind in the upper third part of the receptor, extending from
a hydrophobic cavity formed by ECL2, TM2 and TM3 to an aromatic binding pocket formed by
TM6 and TM7, which is a common motif for several GPCRs [58–61]. Compound 4 likely binds with
its imidazothiazinone moiety close to the conserved disulfide bridge of Cys943.25 and Cys172ECL2.
Both cysteines and Leu973.28 form a lipophilic binding pocket which is predicted to accommodate
the thiazine ring. The keto group of the imidazolone ring likely forms an H-bond with Tyr822.64.
Due to the close proximity of Arg782.60, cation–π interactions with the imidazolone system are feasible.
The benzylidene ring may extend towards the center of the receptor, where hydrophobic interactions
with Thr2727.39 are possible. The hexyloxy linker could bind with several hydrophobic residues
(Tyr1604.64, Ile175ECL2, Phe2486.51, Met2757.42) towards an aromatic binding pocket formed by side
chains of TM6 and TM7. Additional van der Waals forces for hydrophobic interactions with the
benzylidene moiety and the hexyloxy linker may be provided by the alkyl chain of Lys174ECL2. Several
aromatic (Phe2486.51, Phe2526.55, Tyr2647.31) and hydrophobic (Cys2516.54 and Leu2556.58) residues of
TM6 and TM7 are predicted to form the binding pocket accommodating the 4-chlorophenoxy moiety
of compound 5 (see Figure 3).
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Figure 2. Proposed binding mode of antagonist 4. (A) Docked pose of 4 in complex with the homology
model of the human GPR18 shown with the residues forming the binding pocket. The receptor is
displayed in cartoon representation, the amino acid residues (white) and compound 4 (orange) are
shown as stick models. Oxygen atoms are colored in red, nitrogen atoms in blue, chlorine in green and
sulfur atoms in yellow. (B) Schematic 2D representation of the binding pocket. Lipophilic amino acids
are colored in yellow, hydrophilic ones in blue, aromatic ones in red, amino acid residues with mixed
properties in green. (C) Schematic presentation of the homology model of GPR18 in complex with
antagonist 4. The imidazothiazinone moiety is predicted to bind in the hydrophobic binding pocket
consisting of residues of TM3 and ECL2. The 4-chlorophenyl moiety binds in the aromatic binding
pocket consisting of residues of TM6 and TM7. Cys2516.54 in the aromatic binding pocket most likely
interacts with hydrophobic substituents in position 4 of the phenoxy (4) or benzyloxy (5) moiety of
the antagonists.

The smaller antagonist 5 can occupy the same binding cavity as antagonist 4 (see Figure 3). The
imidazothiazinone moiety of both compounds can reach the same binding pose. Due to the missing
linker, the benzylidine ring is predicted to exhibit an upward shift towards ECL2 where additional
cation–π interactions with Lys161ECL2 can be realized. In both cases, the chlorine atoms on the terminal
phenyl ring can reach the same binding cavity consisting of aromatic and hydrophobic residues of
TM6 and TM7 close to Cys2516.54. Therefore, we expect halogen or methyl substitutions to interact
analogously with Cys2516.54. These findings suggest that hydrophobic substituents in position 4 of
the terminal phenyl ring of the antagonists are necessary for proper hydrophobic interaction with
Cys2516.54 resulting in increased potency.
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of the binding pocket. For color code, see Figure 2.

3.2. MD Simulation Study of Antagonists

Both antagonist–GPR18 complexes were stable during the 200 ns MD simulation runs, which
supports our prediction of the binding pocket based on docking studies. The duration of the
MD simulation runs was in accordance with similar studies performed for other GPCRs [62–65].
The behavior of antagonists 4 and 5 in the homology model of GPR18 during the 200 ns MD simulation
is presented from a bird’s eye view perspective in Supplementary Information Figures S2 and S3.
The 0 ns state refers to the structure of the docked complex after equilibration. The course of the
root mean square deviation (RMSD) indicates that the complex of GPR18 with antagonist 5 reached
an equilibrated state after approximately 50 ns, and after approximately 100 ns for antagonist 4 (see
Figure 4). Compared to the unbound GPR18 structure, the complex of GPR18 with antagonist 5
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showed decreased root mean square fluctuation (RMSF) values for TM1, TM2, TM3, TM5 and TM7,
and for ECL2 and ECL3, indicating stabilization of these regions upon antagonist binding. Similar
results were observed for the complex with the larger antagonist 4, where decreased RMSF values
were observed for TM7, ECL2 and ECL3, and ICL2 and ICL3 when compared to the unbound structure.
The concept of stabilization of an inactive conformation of the target GPCR upon antagonist binding
was postulated for several receptors and supported by mutagenesis experiments, biophysical studies
and MD simulations [58,66–68]. This had also been observed for the P2Y1 receptor which belongs to
the same δ-branch of the class A family of GPCRs. The P2Y1 receptor can be blocked by structurally
distinct antagonists that bind to different binding sites, the nucleotide analog MRS2500 and the urea
derivative BPTU—both of which stabilize an ionic lock between an aspartic acid residue of ECL2 and
an arginine of TM7 [69]. During MD simulations for 2 µs, RSMD values had been significantly lower
for the complexes with an antagonist as compared to those with the P2Y1 receptor agonist ADP [69].
A shift in TM3, TM6 and TM7 in the simulation runs with the agonists created a void resulting in
receptor activation through a bulk water influx into the binding pocket [69]. Similar observations were
reported for several class A family members of GPCRs including µ-opioid receptors and adenosine
receptors [70–73].
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Figure 4. (a,b) Root mean square deviation (RMSD) curves for the 200 ns MD simulation runs of the
GPR18 complex with antagonist 4 (a) and antagonist 5 (b). (c,d) Root mean square fluctuation (RMSF)
curves of the molecular dynamics (MD) simulation for complexes with antagonist 4 (c) and 5 (d).
Curves of the complexes are colored in orange, and the curve of the apo form of the receptor in black.

To further investigate conformational changes in the receptor, RMSD values for each
transmembrane-spanning helix were calculated (see Figure 5). Using the OPM database [46] seven
transmembrane region segments were determined: TM1 (Ile231.33–Ser481.58), TM2 (Ile592.41–Phe802.62),
TM3 (Glu913.22–Ala1173.53), TM4 (Val1394.43–Tyr1604.64), TM5 (Ala1835.34–Val2095.60), TM6
(Ile2316.34–Phe2546.57) and TM7 (Trp2677.34–Val2897.56). The RMSD values amounted to 2.8, 1.0,
1.2, 1.2, 1.4, 2.0 and 1.9 Å for TM1–TM7, respectively, when comparing the TM regions of the complex
of GPR18 and compound 4 at 0 ns and at 200 ns. For the complex with the larger antagonist 4, the
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RMSD values amounted to 2.2, 2.2, 1.4, 1.9, 2.1, 2.3 and 1.8 Å for TM1–TM7, respectively. The higher
RMSD values for antagonist 4 can be explained by the size of the compound when compared to 5:
the larger linker requires adaptation of the receptor, resulting in higher RMSD values. In contrast to
the behavior of the antagonist-bound complexes, even higher RMSD values were observed for the
unbound apo form of GPR18. Here, RMSD values of 4.6, 1.4, 1.8, 2.4, 1.4, 2.9 and 5.4 Å were calculated
for TM1–TM7, respectively. Furthermore, the stabilization of TM1, TM6 and TM7 in the presence of an
antagonist supports the theory of stabilization of an inactive state of the receptor upon binding of an
antagonist [74–76].
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Potential salt bridges within the receptor were analyzed to further investigate the mode of
inhibition. Arg1193.50 of the DRY motif had been proposed to be located in an “arginine cage,” where
it forms an ionic lock with Asp1183.49, thus stabilizing the inactive GPR18 [54,77]. Disruption of the
ionic lock was postulated to contribute to receptor activation through facilitated movements of TM3
and TM6, resulting in conformational changes towards the intracellular lumen [54]. The authors
concluded that stable salt bridges or H-bonds induce a rotamer of Arg1193.50, which is no longer
present during receptor activation. The ionic lock between Asp1183.49 and Arg1193.50 was observed
in the apo form of GPR18 during our 200 ns MD simulation run, which is consistent with previous
studies [54]. Interestingly, we observed differences in the behavior of Arg1193.50 in the apo form as
compared to the antagonist-bound complexes: in the apo form, the salt bridge between Arg1193.50 and
Asp1183.49 formed after approximately 75 ns and was stable until the end of the MD simulation, while
no similar interaction was observed for the antagonist-bound complexes. Asp1183.49 formed a stable
salt bridge with Lys133ICL2 in the complexes but not in the apo form. This lysine is neither conserved in
the three homology model templates nor in the two CB receptor subtypes. Furthermore, we observed
stable ionic interactions of Asp85ECL1 with Lys22N-terminus and of Asp162ECL2 with Lys161ECL2 in the
antagonist-bound structures, which were not present in the apo form. Interaction of Glu131ICL2 with
Lys1374.41 was observed in all three structures. The salt bridge between Glu2286.31 and Arg2326.35

was stable in the receptor apo form, which was not the case for the antagonist-bound structures.
The trajectory for the salt bridge distances is presented in Supplementary Information (Figure S4).
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We conclude that the binding of an antagonist stabilizes several salt bridges within GPR18, resulting in
the stabilization of an inactive conformation of the receptor.

We additionally investigated the binding mode of a new potent antagonist, an analog of 4 and 5,
which has a more rigid substituent in position 4 of the phenyl group (a biphenyl derivative). Compound
PSB-CB-148 (6) contains a p-cyano-biphenyl group which is larger and at the same time less flexible
than the corresponding substituents in antagonists 4 and 5. The imidazothiazinone group is predicted
to bind in the same binding cavity as for compounds 4 and 5 (see Figure 6). The trajectory of the
linker in the docked structure closely resembles the binding mode of compound 4. Furthermore,
the proximity of Arg1915.42 to both oxygen atoms in the linker indicates bidental H-bond interactions.
The biphenyl moiety likely binds in a lipophilic binding cavity, where π–π interactions between the
phenyl groups and the aromatic residues Phe2486.51, Phe2526.55 and Tyr2647.31 are feasible. Interactions
of the terminal phenyl group with Cys2516.54 are not observed for 6. Due to its decreased flexibility,
the terminal group does not allow this interaction. The shift in the phenyl group is predicted to place
the cyano moiety in close proximity to Asn1855.39. Upon inspection of Asn1855.39, several rotamers
were found which could form H-bonds with the nitrile (see Figure S5 in Supplementary Information).
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Figure 6. Proposed binding mode of antagonist 6. (A) Docked pose of 6 in complex with the homology
model of human GPR18 shown with the residues forming the binding pocket. (B) Schematic 2D
representation of the binding pocket. For color code, see Figure 2. (C) Overlay of the proposed binding
modes of GPR18 antagonists. Antagonist 4 is colored in orange, antagonist 5 in red, antagonist 6 in blue.
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The obtained data of the docking studies were used to re-analyze the SARs of previously published
antagonists [21]. The summarized results are presented in Figure 7 (for structures, see Figures S6 and
S7 in Supporting Information). The linker size was found to have an impact on the potency of the tested
antagonists. The antagonist containing a hexyloxy linker (4) showed an almost 10-fold increase in
potency compared to the analog with the shorter ethyloxy linker (7) (IC50 of 0.650 µM versus 5.00 µM).
Prolongation of the ethyloxy linker resulted in increased inhibitory potency, with hexyloxy being
optimal (IC50 = 0.650 µM), while larger linkers, i.e., heptyloxy (11) and octyloxy (12), led to slightly less
potent antagonists (IC50 = 1.71 and 1.15 µM). Our docking results suggest that the hexyloxy linker is
required for the 4-chlorophenoxy moiety to reach the aromatic binding pocket and to form hydrophobic
interactions with Cys2516.54. The shorter alkyloxy linker is less well stabilized in the hydrophobic
cavity formed by Tyr1604.64, Ile175ECL2, Phe2486.51 and Met2757.42. The decrease in potency observed
for compounds 11 and 12 despite their higher lipophilicity could be explained by limited space in
the binding cavity or unfavorable adaptation of the alkyloxy linker, resulting in a shifted binding
position for the 4-chlorophenoxy moiety which prohibits optimal interaction with Cys2516.54. Among
the smaller compounds missing an additional linker between the benzylidene and the substituted
phenoxy ring, the most potent antagonists contained a hydrophobic substituent in position 4 of the
phenyl ring (compounds 5, 14–16). Hydrophobic interactions of substituents in position 4 of the
phenoxy residue with Cys2516.54 are supported by acceptance of both chlorine and methyl groups in
compounds 4 and 13, resulting in comparable IC50 values (0.650 and 0.238 µM). The potency (IC50

values) of the compounds decreased in the following rank order Cl (0.279 µM) > Br (1.73 µM) ≥ CH3

(3.59 µM) > F (> 10 µM), indicating that the size and lipophilicity of the substituent plays a major
role. Decreased potency observed for antagonists containing larger substituents in position 4 such as
ethyl (17) or isopropyl (18) can be explained by the limited space of the binding pocket in proximity
to Cys2516.54. Moreover, the substitution position on the phenyl ring proved to have an effect on the
potency of the compounds. Antagonist 19 (o,o-dimethyl-substituted), for example, was inactive (IC50 >

10 µM). Antagonists containing different heterocycles in place of the imidazothiazinone moiety (20–34)
showed lower potency as compared to antagonist 5. In our homology model, two aromatic residues
close to the hydrophobic binding pocket, Tyr812.63 and Trp87ECL1, may form π–π interactions with
antagonists containing an additional aromatic group attached to the heterocycle (see Figure S8 in
Supporting Information). The ethylthio linker connecting the imidazolone ring with the phenyl ring in
compound 32 might be beneficial to enable proper binding for π–π interactions. The results suggest
that the imidazothiazinone heterocycle is optimal to allow hydrophobic packing in the binding pocket
close to the disulfide bridge of ECL2.

In conclusion, the docking studies, MD simulations and SARs of imidazothiazinones as well as
antagonists containing smaller heterocycles further support our suggested binding mode of an aromatic
and lipophilic binding pocket of the human GPR18 for antagonists. The most potent antagonists of
this series likely interact with Cys2516.54 through lipophilic interactions, and this additional interaction
is predicted to be the reason for their high potency.
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slightly less potent antagonists (IC50 = 1.71 and 1.15 μM). Our docking results suggest that the hex-
yloxy linker is required for the 4-chlorophenoxy moiety to reach the aromatic binding pocket and to 
form hydrophobic interactions with Cys2516.54. The shorter alkyloxy linker is less well stabilized in 
the hydrophobic cavity formed by Tyr1604.64, Ile175ECL2, Phe2486.51 and Met2757.42. The decrease in po-
tency observed for compounds 11 and 12 despite their higher lipophilicity could be explained by 
limited space in the binding cavity or unfavorable adaptation of the alkyloxy linker, resulting in a 
shifted binding position for the 4-chlorophenoxy moiety which prohibits optimal interaction with 
Cys2516.54. Among the smaller compounds missing an additional linker between the benzylidene and 
the substituted phenoxy ring, the most potent antagonists contained a hydrophobic substituent in 
position 4 of the phenyl ring (compounds 5, 14–16). Hydrophobic interactions of substituents in po-
sition 4 of the phenoxy residue with Cys2516.54 are supported by acceptance of both chlorine and 
methyl groups in compounds 4 and 13, resulting in comparable IC50 values (0.650 and 0.238 μM). The 
potency (IC50 values) of the compounds decreased in the following rank order Cl (0.279 μM) > Br (1.73 
μM) ≥ CH3 (3.59 μM) > F (> 10 μM), indicating that the size and lipophilicity of the substituent plays 
a major role. Decreased potency observed for antagonists containing larger substituents in position 4 
such as ethyl (17) or isopropyl (18) can be explained by the limited space of the binding pocket in 
proximity to Cys2516.54. Moreover, the substitution position on the phenyl ring proved to have an 
effect on the potency of the compounds. Antagonist 19 (o,o-dimethyl-substituted), for example, was 
inactive (IC50 > 10 μM). Antagonists containing different heterocycles in place of the imidazothia-
zinone moiety (20–34) showed lower potency as compared to antagonist 5. In our homology model, 
two aromatic residues close to the hydrophobic binding pocket, Tyr812.63 and Trp87ECL1, may form π–
π interactions with antagonists containing an additional aromatic group attached to the heterocycle 
(see Figure S8 in Supporting Information). The ethylthio linker connecting the imidazolone ring with 
the phenyl ring in compound 32 might be beneficial to enable proper binding for π–π interactions. 
The results suggest that the imidazothiazinone heterocycle is optimal to allow hydrophobic packing 
in the binding pocket close to the disulfide bridge of ECL2. 

 
Figure 7. Schematic representation of the structure–activity relationships (SARs) of GPR18 antago-
nists. The different heterocycles shown contain a 4-chlorophenoxy group, while the compounds with 
varying aryl substituents and linker lengths contain the imidazothiazinone heterocycle. Compounds 
were categorized into three groups: highest potency (IC50 < 1 μM), moderate potency (1 μM < IC50 < 
10 μM) and low potency (IC50 > 10 μM) based on their antagonistic activity. 

In conclusion, the docking studies, MD simulations and SARs of imidazothiazinones as well as 
antagonists containing smaller heterocycles further support our suggested binding mode of an aro-

Figure 7. Schematic representation of the structure–activity relationships (SARs) of GPR18 antagonists.
The different heterocycles shown contain a 4-chlorophenoxy group, while the compounds with varying
aryl substituents and linker lengths contain the imidazothiazinone heterocycle. Compounds were
categorized into three groups: highest potency (IC50 < 1 µM), moderate potency (1 µM < IC50 < 10 µM)
and low potency (IC50 > 10 µM) based on their antagonistic activity.

3.3. Binding Mode of THC

As a next step, we explored the most likely binding pocket for the GPR18 agonist THC (1).
The ability of the potent CB receptor agonist THC to activate GPR18 with moderate potency had led to
the suggestion to classify GPR18 as a novel CB receptor subtype [19]. Lipophilicity is a feature shared
by GPR18 agonists and antagonists [78,79]. THC is regarded as a promiscuous ligand acting not only
at cannabinoid but also at several non-cannabinoid receptors [80–85]. Studies on the binding mode
of cannabinoids at the cannabinoid receptors CB1 and CB2 proposed a binding portal between TM6
and TM7 from the lipid-facing side of the receptor for the entrance of agonists [86–88]. Such entry is
unique among GPCRs, as ligands typically reach the binding pocket between TM3 and TM7 from the
extracellular lumen.

To date, two crystal structures of the CB1 receptor bound to THC-related compounds are available
(PDB-ID: 5XR8, 5XRA) [38]. As observed for many other GPCRs, the agonist binding site, which
is very lipophilic in the case of the CB1 receptor, is located between a highly conserved Trp6.48 and
ECL2 [89,90]. The tricyclic THC ring system is stabilized through lipophilic as well as π–π interactions
with an aromatic cluster (Phe1702.57, Phe1742.61, Phe1772.64, Phe1893.25, Phe268ECL2, Phe3797.35). Several
previous mutagenesis studies have confirmed the key role of the aromatic residues for the binding of
cannabinoids [38,91–93]. The alkyl chain of the agonists extends towards a binding cleft formed by
several lipophilic residues (Leu1933.29, Val1963.32, Tyr2755.39, Leu2765.40, Leu3596.51 and Met3636.55).

Given the low sequence similarity between the cannabinoid receptors CB1, CB2, and GPR18 (18.7
and 23.7%, respectively), similar binding of the THC ring system in GPR18 cannot be taken for granted.
Amino acid residues Val1963.32, Phe268ECL2, Tyr2755.39, Met3636.55 and Phe3797.35 are conserved in
both CB receptor subtypes but replaced in GPR18 by leucine, serine, arginine, phenylalanine and
glycine, respectively (see Figure S9 in Supplementary Information for multiple sequence alignment).
Phe1742.61 and Leu1933.29, but not Leu3596.51, are conserved among all three receptors. The absence of
the aromatic network responsible for the binding of the THC ring system in the CB receptors suggests
a different binding mode for the agonist THC at GPR18.

Docking studies of THC were performed using the generated homology model of the human
GPR18. We observed that THC appears to bind closer to TM4 and TM5 as compared to the cannabinoids
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in the X-ray crystal structures of the CB1 receptor (see Figure 8). The phenyl group of the tricyclic
THC ring system is predicted to bind in a cleft formed by several lipophilic (Val1023.33, Ile175ECL2,
Phe2486.51, Phe2526.55) and hydrophilic (Lys161ECL2, Lys174ECL2, Asn1885.39, Arg1915.42, His2496.52)
amino acid residues. H-bond interactions are feasible for the oxygen atoms of the chromene moiety
and Lys161ECL2, as well as the hydroxy group and Asn1885.39 and Arg1915.42. The cyclohexenyl moiety
is likely accommodated in a lipophilic binding pocket formed by Thr1524.56, Pro1554.59, Leu1564.60,
Val1845.35 and the alkyl side chain of Arg1915.42. The alkyl group of the agonist likely projects
towards TM7, where it can be stabilized through lipophilic interactions with Phe2486.51, Phe2526.55

and Met2757.42. The binding modes of THC in the CB1 receptor as compared to GPR18 are shown in
Figure S10 of Supporting Information.

 
Figure 8. Proposed binding mode of ∆9-tetrahydrocannabinol (THC) in the homology model of hu-
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and THC (1, green) are shown as stick models. Oxygen atoms are colored in red, nitrogen atoms in 
blue, sulfur atoms in yellow. (B) Schematic 2D representation of the binding pocket. For color code, 
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related crystal structures requires further experimental validation. In the present study, we generated 
a homology model of the orphan GPR18 and predicted the binding modes of the confirmed agonist 
THC as well as the most potent class of antagonists containing an imidazothiazinone scaffold. Despite 
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ulation studies of antagonist complexes which were in agreement with the extensive published SAR 
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Figure 8. Proposed binding mode of ∆9-tetrahydrocannabinol (THC) in the homology model of human
GPR18. (A) The receptor is displayed in cartoon representation, the amino acid residues (white) and
THC (1, green) are shown as stick models. Oxygen atoms are colored in red, nitrogen atoms in blue,
sulfur atoms in yellow. (B) Schematic 2D representation of the binding pocket. For color code, see
Figure 2.

We propose that the tricyclic THC ring system binds in a binding cavity of GPR18 distant to
the orthosteric binding site of the CB1 receptor. The absence of aromatic residues in ECL2 of GPR18
may contribute to the proposed shifted binding mode of THC, as π–π stacking with a phenylalanine
in position 2.57 is not possible. However, the binding cleft for the alkyl chain is predicted to be
overlapping in both receptors. It should be pointed out that THC displays much higher potency at CB1

(and CB2) receptors as compared to GPR18.
Our results suggest that THC shares a common binding pocket with the imidazothiazinone

antagonists (see Figure 9). While the imidazothiazinone moiety of the antagonists is predicted to
bind in a lipophilic pocket formed by amino acid residues of TM2 and TM7, the benzylidene group is
suggested to project towards the putative binding site of the chromene and alkyl group of THC. This is
supported by experimental data showing that imidazothiazinone antagonists containing lipophilic
residues act as competitive antagonists versus THC [21].
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Figure 9. (A) Comparison of the proposed binding mode of THC (green) and antagonist 4 (orange) at
human GPR18. (B) Comparison of the proposed binding modes of THC and antagonist 5 (red).

4. Conclusions

Since only approximately 10% of the non-olfactory GPCRs are covered by structural studies,
meaningful prediction of ligand-binding modes represents one of the greatest challenges in molecular
modeling [94]. In particular, homology modeling assessment of receptors with no resolved closely
related crystal structures requires further experimental validation. In the present study, we generated
a homology model of the orphan GPR18 and predicted the binding modes of the confirmed agonist
THC as well as the most potent class of antagonists containing an imidazothiazinone scaffold. Despite
the lack of closely related X-ray crystal structures, we successfully performed docking and MD
simulation studies of antagonist complexes which were in agreement with the extensive published
SAR data. The investigated potent antagonists are predicted to share the same binding site for the
imidazothiazinone core. The linker of the antagonists is likely accommodated in a lipophilic binding
cleft shared by the alkyl chain of the agonist THC. The 200 ns MD simulation runs suggested stabilization
of a receptor conformation by antagonists which was not observed for the unbound receptor structure.
Stabilization of a salt bridge between Asp1183.49 and Lys133ICL2 through imidothiazinone-based
antagonists may play a role in the inhibition mechanism. Our docking studies suggest a different
binding mode of the agonist THC in GPR18 as compared to that observed in cannabinoid receptors.
However, future structural studies will be required to confirm the proposed interactions. The presented
data provide a well-founded hypothesis that will support the rational design of new ligands for this
poorly investigated receptor which has potential as a future drug target.
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