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Abstract: Immune response during sepsis is characterized by hyper-inflammation followed by
immunosuppression. The crucial role of macrophages is well-known for both septic stages, since
they are involved in immune homeostasis and inflammation, their dysfunction being implicated
in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7
nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR
activation on macrophages reduces the production of proinflammatory cytokines, the role of these
receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR
selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression
of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation
14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987
to THP-1Mφ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase
in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines
tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated
macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation
on THP-1Mφ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression
of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects
being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated
immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both
playing an important role in preventing immunosuppressive states.
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1. Introduction

Nicotinic acetylcholine receptors (nAChRs) are cationic channels belonging to the Cys-loop receptor
family. They are involved in a wide variety of physiological processes, including learning, memory,
sensory, and neuromuscular signaling [1]. α7 nAChR is a homopentameric receptor mostly expressed in
the central nervous system [2], but also found on such immune system cells as lymphocytes, monocytes,
and macrophages [3]. Activation of macrophages with nicotine or acetylcholine stimulates the
cholinergic anti-inflammatory pathway (CAP). The role of α7 nAChR is important in the CAP-mediated
downregulation of proinflammatory responses. Exposure of lipopolysaccharide (LPS)-activated
human macrophages to acetylcholine resulted in a dose-dependent inhibition of such proinflammatory
cytokines as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-1β [4], involved in pathological
processes of endotoxemia and sepsis [5]. Suppression of cytokine production through α7 nAChR
includes the following signaling pathways: inhibition of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) translocation and the inhibitor of kappa-B (I-kB) phosphorylation [6],
activation of JAK2-STAT3 signaling [7] and inhibition of the toll-like receptor 4 (TLR4) receptor
expression [8]. However, the role of α7 nAChR in the regulation of innate immune cell receptors and
their functions in the inflammatory reactions is not yet clear.

Macrophages and monocytes play a central role in the pathogenesis of sepsis. Sepsis manifests
itself as a persistent inflammatory response to a bacterial infection, which ultimately can lead to
multiple organ dysfunction [9]. This response is triggered by such bacterial toxins as endotoxin of
gram-negative organisms (LPS) and a complex of lipoteichoic acid and peptidoglycan of gram-positive
bacteria. Cluster of differentiation 14 (CD14) is a high affinity membrane binding protein for LPS.
In sepsis caused by gram-negative bacteria, binding of LPS to the CD14 membrane receptor leads
to excessive activation of monocytes and macrophages [10]. LPS stimulation also causes activation
of NF-kB and p38 mitogen-activated protein kinase (p38 MAPK) [11]. Activated monocytes and
macrophages release large amounts of TNF-α, the main mediator of sepsis. In addition to TNF-α,
monocytes and macrophages produce other proinflammatory mediators, including IL-1β and IL-6,
eicosanoids, reactive oxygen species (ROS), platelet-activating factor, and nitric oxide (NO) [12].

Sepsis affects the immune system, directly altering the lifespan, production, and function of
the effector cells responsible for homeostasis. The persistent and simultaneously inflammatory
and anti-inflammatory states caused by dysfunctional innate and suppressed adaptive immunity,
together lead to persistent organ failure and death of the patient [13]. The expression of the major
histocompatibility complex of class II (MHC II; HLA-DR) on monocytes and macrophages is important
for effective interaction with T-lymphocytes, especially when presenting antigens. In addition, cell
adhesion molecules and the complement system receptors, such as CD54 and CD11b, are necessary
for the effective activation of various T-cell populations and for the elimination of pathogens [14,15].
A reduced expression of HLA-DR molecule on macrophages is a hallmark of sepsis and of Systemic
Inflammatory Response Syndrome (SIRS) [16], and also is observed after LPS injection to healthy
volunteers [17]. Moreover, the degree of HLA-DR expression on monocytes and macrophages in
patients with established sepsis is prognostically significant and is a marker of immune dysfunction [18],
a reduced expression being more pronounced in patients with superinfection. A decreased expression
of MHC class II is commonly described in sepsis, the lowest level of HLA-DR expression being observed
among septic patients with a high mortality rate [19]. A low expression of MHC class II leads to an
altered ability to present antigen and to an increased risk of infectious complications in patients with
sepsis after various injuries [20,21]. Low HLA-DR expression is associated with an increased risk
of secondary bacterial infections [22], probably due to a less powerful presentation of the antigen,
precluding the creation of an effective adaptive immunity [23].
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In this article, for the first time we have studied the influence of the selective α7 nAChR agonist
PNU 282,987 on the expression of membrane receptors, namely the LPS-binding receptor CD14,
HLA-DR molecules, as well as on the production of cytokines during the macrophages maturation and
their classical activation. We found that activation of α7 nAChR on macrophages affects the expression
of membrane proteins, such as HLA-DR, CD14, CD11b, and CD54, and also induces changes in the
IL-10 production, all being involved in immunosuppression and hyperinflammation during sepsis.
Therefore, the activation of the α7 nAChRs and, thus, regulating both the HLA-DR expression and
IL-10 production may be a way to prevent the immune dysfunction.

2. Materials and Methods

2.1. Reagents

LPS (Escherichia coli O111:B4), Phorbol 12-myristate 13-acetate (PMA), Poly-L-lysine hydrochloride
were purchased from Sigma-Aldrich (St. Louis, MO, USA, country). Fluo-4AM, Probenecid,
human Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF), and alpha (α)-bungarotoxin
Alexa Fluor 647 conjugate were from ThermoFisher Scientific (Waltham, MA, USA). Ficoll-Paque
PLUS was from GE Healthcare (Pittsburgh, PA, USA). Interferon-γ (IFN-γ) was from PeproTech
(Rocky Hill, NJ, USA). The following monoclonal antibodies (mAbs) against human molecules:
fluorescein isothiocyanate fluorescein isothiocyanate (FITC)-anti-HLA-DR (clone LN3), phycoerythrin
(PE)-anti-CD14 (clone HCD14), Alexa Fluor 488-anti-CD54 (clone HCD54), phycoerythrin-cyanine
7 (PE/Cy7)-anti-CD11b (clone ICRF44) and isotype-matched negative controls mAbs were obtained
from Sony Biotechnology (San Jose, CA, USA). PNU 282,987, PNU 120,596, nicotine, (±)-epibatidine,
methyllycaconitine citrate, dihydro-β-erythroidine hydrobromide, and α-bungarotoxin (α-bgt) were
obtained from Tocris (R&D Systems, Minneapolis, MN, USA).

2.2. Cell Line and Macrophages Preparation

THP-1 (human monocytic cell line, ATCC, TIB-202) were maintained in complete RPMI 1640 culture
medium, supplemented with 10% of heat inactivated fetal bovine serum (FBS), 2 mM L-glutamine,
50 IU/mL penicillin, and 50 µg/mL streptomycin (all from Gibco BRL Life Technologies, Waltham, MA,
USA) in a humidified atmosphere of 5% CO2 at 37 ◦C.

This study was carried out in accordance with the Declaration of Helsinki. Blood samples
were obtained from healthy volunteers, who gave written informed consent prior to the study in
accordance with the recommendations of the local ethics committee of Pirogov Russian National
Research Medical University (protocol #169 of the ethics committee meeting, 20.11.2017). Peripheral
blood mononuclear cells (PBMCs) were separated by Ficoll-Paque PLUS density gradient centrifugation.
PBMCs were placed in a sterile Petri dish and incubated at 37 ◦C for 2 h. Unattached cells were then
removed by washing with PBS, and substituting with fresh complete RPMI 1640 medium. To generate
monocyte-derived macrophages (MDMs), 50 ng/mL GM-CSF was added to the isolated monocytes
and cultured for 6 days to differentiate them into non-polarized MDMs.

THP-1 monocytes were differentiated into macrophages by 24 h incubation with 100 nM PMA,
followed by 48 h incubation in complete RPMI 1640 medium. M1 (classical) polarization was achieved
by supplementation with IFN-γ (20 ng/mL) and LPS E. coli (100 ng/mL) for 48 h.

For experiments, THP-1 macrophages (THP-1Mφ and THP-1M1) or human MDMs were cultured
in 12-well plates at 5×105 cells/well. To determine the effect of α7 nAChRs agonists on the expression
of membrane proteins CD14, HLA-DR, CD11b, and CD54, cells were treated with PNU 282,987 (1 µM)
and/or α-bungarotoxin (10 µM) for 48 h.
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2.3. Single-Cell Ca2+ Imaging

Cells transferred to poly-L-lysine covered glass slips were incubated for 2 h at 37 ◦C. The cells
adhered to glass were further incubated with Fluo-4AM given at 2 mM and organic anion transporter
inhibitor probenecid at 1.25 mM for 1 h at room temperature. After incubation, cells were washed out
with extracellular solution (140 mM NaCl, 2 mM CaCl2, 2.8 mM KCl, 4 mM MgCl2, 20 mM HEPES,
10 mM glucose; pH 7.4). The last wash-out was supplied with 10 µM PNU 120,596 (an α7 nAChR
positive allosteric modulator), and, then, Fluo-4 was excited at 485 nm and fluorescence registered
at 535 nm. The measurements were performed on Olympus (Japan) epifluorescence microscope
with a CAM-XM10 charge-coupled device (CCD). CellA Imaging Software (Olympus Soft Imaging
Solutions GmbH, Germany) was used to record video further analyzed with ImageJ. PNU 282,987
(1 µM) was added directly to the cells preparations. The α7 nAChR inhibition was achieved by 10 µM
α-bungarotoxin application 5 min before adding the agonist PNU 282,987. The calcium rise was
measured relative to the fluorescence base level of each cell.

2.4. Fluorescence-Activated Cell Sorting (FACS) Analysis

To study the surface marker expression in THP-1 macrophages or MDMs, the following mAbs
were used: HLA-DR-FITC (clone LN3), CD14-PE (clone HCD14), CD54-Alexa Fluor 488 (clone HCD54),
and CD11b-PE/Cy7 (clone ICRF44). Cells were detached with cell dissociation solution (non-enzymatic,
Sigma-Aldrich (St. Louis, MO, USA)) and stained with fluorescently-labeled mAbs for 30 min on ice in
PBS staining buffer (containing 0.5% bovine serum albumin (BSA) and 0.01% sodium azide). After
washing twice with PBS staining buffer by centrifugation at 1200 rpm for 7 min at 4 ◦C, samples were
analyzed using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA) equipped with the
488- and 640-nm lasers, analyzing 100,000 events. Data were processed using FlowJo software 10.0.8.
(Three Star Inc., Ashland, OR, USA). THP-1 macrophages were gated in a logarithmic side scatter (SSC)
vs. forward scatter (FSC), while primary macrophages were gated in a linear SSC vs. FSC. Dot plots
represented as FSC to fluorescence. Data on histograms were acquired in log mode.

2.5. α-Bungarotoxin Binding Assay

To evaluate the expression of α7 nAChRs on the cell membrane THP-1 macrophages and MDMs,
cells were detached with cell dissociation solution and stained with 100 nM Alexa Fluor 647-labeled
α-bungarotoxin in PBS staining buffer at room temperature for 1 h. After that, the cells were washed
twice with PBS staining buffer and analyzed using BD FACSCalibur flow cytometer. Data were
processed using FlowJo software 10.0.8. The autofluorescence of THP-1 macrophages and MDMs was
subtracted from the fluorescence intensity values of the stained samples. Fifty thousand events were
analyzed for each sample and the fluorescence intensity of cells was analyzed from the geometrical
mean of fluoresce.

2.6. Whole-Cell Patch Clamp

Cells were cultured on glass and transferred to the extracellular solution (140 mM NaCl, 2 mM
CaCl2, 2.8 mM KCl, 4 mM MgCl2, 20 mM HEPES, 10 mM glucose; pH 7.4) prior to the experiments.
Whole-cell patch clamp was performed using HEKA amplifier (HEKA Elektronic, Germany). Capillaries
were manufactured on the Narishige puller and filled with internal solution (140 mM CsCl, 6 mM
CaCl2, 2 mM MgCl2, 2 mM MgATP, 0.4 mM NaGTP, 10 mM HEPES/CsOH, 20 mM BAPTA/KOH;
pH 7.3). Microelectrodes had 6-8 MOhm resistance observed in real time with 5 mV 5 ms test pulse,
cells were clamped at –40 mV, using uncompensated fast capacitance and 10 kHz filter. PNU 282,987
or nicotine at 1 µM along with or without 10 µM PNU 120,596 were applied via Fast Step (Warner
Instrument, USA) at the flow rate of about 1 mL/min. GOhm seal formation was stimulated with
pre-setting of –10 mV pipette potential in cell-attached mode. After the plasma membrane rupture
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on-cell settings were applied. Currents were monitored and analyzed through Patchmaster software
(HEKA Elektronic, Germany).

2.7. ELISA

THP-1 monocytes were differentiated into macrophages as described in Section 2.2. After
differentiation, the media were changed for fresh media with different concentration of PNU 282,987,
a selective agonist of α7 receptor. The inflammation inductor, LPS E.coli (500 µg/mL) was added to
THP-1 macrophages. PNU 282,987 was added 30 min before LPS application. Supernatants were
collected 24 h post-treatments and stored at −80 ◦C for further analysis. TNF-α, IL-6 and IL-10 released
from THP-1 macrophages to the culture medium were quantified by ELISA kits according to the
manufacturer’s instructions (Vektor-Best, Russia).

2.8. Quantitative Real-Time PCR (q-PCR)

Total RNA was isolated from THP-1 macrophages and MDMs using the ExtractRNA reagent
(Eurogen, Russia) according to the manufacturer’s instruction. First strand complementary DNA
(cDNA) synthesis was performed using Maxima H Minus First Strand cDNA Synthesis Kit with
dsDNAse from ThermoFisher Scientific (Waltham, MA, USA) according to the manufacturer’s protocol,
using a thermo cycler (BioRad) at 37 ◦C for 2 min, 25 ◦C for 10 min, 50 ◦C for 30 min, and 85 ◦C for
5 min. The cDNA was subject to qRT-PCR on a CFX96 Real-Time PCR Detection System (Bio-Rad,
CA, USA) using PowerUP SYBR Green Master Mix (ThermoFisher Scientific) under the following
conditions: 95 ◦C for 3 min, 95 ◦C for 15 s, 55 ◦C for 15 s, 72 ◦C for 20 s (40 cycles). After the reaction
was complete, specificity was verified by melting curve analysis. Quantification was performed by
normalizing the Ct (cycle threshold) values of each sample to human β-actin. The sequences of the
PCR primers used are given in Table 1.

Table 1. Primer sequence of genes used for qRT-PCR.

Gene Forward Reverse Sources
α1 GGCTCCGAACATGAGACCCG GCGTGACTTTGGGAGTTCCTTT [24]
α2 TGACCCACATGACCAAGGCCCA TGGTGAACAGCAGGTACTCGCC [24]
α3 CCGAGGCCCCTCTACGGT CACACAGCTTAGTGCTTA [24]
α4 CCTCGGCCTGTCCATCGCTCA AAGACGGTGAGCGACAGCAGC [24]
α7 CCCGGCAAGAGGAGTGAAAGGT TGCAGATGATGGTGAAGACC [24,25]
α9 AGAGCCTGTGAACACCAATGTGG ATGACTTTCGCCACCTTCTTCC [3]
β2 GTGTCCTTCTATTCCAAT AATGATGAAGTCATACGT [24]
β3 AAGGGGAACAGAAGGGACGG GAAGCAGTACGTCGCGGACG [24]
β4 CAACAACCTGATCCGCCCAGC GAAGGGAAAGTACTTCACCTC [24]
β-actin GAGCGGGAAATCGTGCGTGACATT GATGGAGTTGAAGGTAGTTTCGTG [26]

2.9. Data and Statistical Analysis

Data were expressed as mean ± SEM or MFI ± SEM (MFI-geometrical mean fluorescence intensity)
for an indicated number of independent experiments. The values of MFI for macrophage membrane
receptors expressions in non-treated cells were taken as 100%. The changes in the expression of
macrophage receptors were calculated from the MFI values obtained for untreated control cells.
Statistical analysis using Student’s t-test and one-way ANOVA tests with Tukey post hoc test (for three
or more experimental groups) were performed using GraphPad Prism version 6 (GraphPad Software
Inc., La Jolla, CA, USA). The differences were considered statistically significant at p < 0.05.
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3. Results

3.1. Expression of nAChR Subunits in THP-1Mφ and MDMs

Quantitative PCR was performed on first-strand cDNA that was prepared from the THP-1
macrophages or MDMs (Figure 1). Using gene-specific primers, the abundance of mRNA for
individual nAChR subunits was determined. The muscle-type nAChR subunit transcript α1 were
either undetectable or detected in THP-1φ and MDMs. In addition, several neuronal nAChR subunits
transcript (α3, α9, β2) were not present. All other human nAChR subunit transcripts (α2, α4, α7, β3,
β4) were detected at similar levels.Biomolecules 2020, 10, x 6 of 18 
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Figure 1. Relative expression of nicotinic acetylcholine receptor (nAChR) subunits transcripts (A)
human monocytic cell line macrophages (THP-1Mφ) and (B) monocyte-derived macrophages (MDMs)
examined by qRT-PCR. Data are shown as relative expression ± SEM, normalized to the endogenous
β-actin expression. 3.2. Expression of α7 nAChR on the surface of THP-1Mφ and MDMs.

Surface expression of α7 nAChR on macrophages obtained after the differentiation of THP-1
cells (THP-1Mφ) and primary monocytes (MDMs) was analyzed using α7 nAChR antagonist Alexa
Fluor 647-labeled α-bgt (AF647-α-bgt). According to flow cytometry results, AF647-α-bgt binding was
clearly detected on both THP-1Mφ (Figure 2A) and MDMs (Figure 2B). Higher fluorescence per cell
was observed on THP-1Mφ (MFI AF647-α-bgt binding on THP-1Mφ vs. MDMs: 22.5 ± 1.8 vs. 13.4 ±
0.1, **** p < 0.0001; Figure 2C). Thus, THP-1Mφ and MDMs expressed α7 nAChR on their surface,
with a higher expression on THP-1Mφ.
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Figure 2. Expression of α7 nAChR on the THP-1Mφ and MDMs cell surface. THP-1 monocyte or
primary human monocytes were differentiated into macrophages (THP-1Mφ and MDMs, respectively)
and stained with Alexa Fluor 647-labeled alpha (α)-bungarotoxin (AF647-α-bgt). Cell staining was
analyzed by flow cytometry. (A) α7 Receptor expression on the THP-1Mφ or (B) MDMs cells is
shown. Gray dotted histograms—autofluorescence of cells; black lined histograms—cells stained with
AF647-α-bgt. (C) Intensity of AF647-α-bgt staining on THP-1Mφ and MDMs. Data obtained from three
independent experiments performed with MDMs from different donors. Student’s t-test: *** p < 0.001

3.2. Functional Expression of α7 nAChRs in THP-1 Macrophages (THP-1Mφ)

There is much evidence for the presence of α7 nAChRs in the human MDMs [3,27–29], while here
we analyzed functional expression of these receptors in macrophages obtained after differentiation
of the THP-1 cells. Calcium imaging is preferable to measure α7 nAChRs activity in macrophages,
since most of previous studies failed to find evidence of their ion channel activity in such cells [30–32],
referring to their metabotropic rather than ionotropic intracellular signaling [33,34]. Application of
non-selective nAChRs agonists nicotine (100 µM) led to calcium rise in some cells (Figure 3A,K).
This effect became more prominent after application of more potent agonist epibatidine (Epi, 10 µM,
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Figure 3B,K) and α7 nAChR selective agonist PNU 282,987 (1 µM, Figure 3C,K). It is very hard or
even impossible to detect α7 nAChR-mediated calcium response in neurons and neuroblastoma cells
in the absence of a selective positive α7 nAChR allosteric modulator PNU 120,596, decreasing the
extremely high rate of receptor desensitization [35–37]. Applying PNU 120,596 (10µM) to THP-1φ
cells, we observed a great increase in the number of nicotine-responsive cells and in the corresponding
calcium rise amplitudes (Figure 3D,L). Preincubation of THP-1φ cells with 10 µM α-bgt (Figure 3E,L)
and 1 µM methyllycaconitine (MLA, Figure 3F,L), but not with 50 µM dihydro-β-erythroidine (DhβE,
Figure 3G,L) almost completely abolished the observed calcium rise. Co-application of α7 nAChR
selective agonist (1 µM PNU 282,987) and positive allosteric modulator (10 µM PNU 120,596) to
THP-1φ cells led to calcium rises of the highest amplitude (Figure 3H,M), which were significantly
inhibited with 10 µM α-bgt.
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Figure 3. Single-cell Ca2+ imaging in THP-1Mφ. Macrophages obtained from THP-1 cells were loaded
with calcium indicator Fluo-4 AM and analyzed using an epifluorescence microscope, as described in
the materials and methods. Traces of changes in [Ca2+]i in cells over a 100 s are shown. Data were
obtained before (0 s) and after (100 s) exposure of the cells to the selective α7 receptor agonist, which
corresponds to the time at which the maximum increase in [Ca2+]i was observed. The maximum
response was observed no later than 80 s; (A) 100 µM nicotine, (B) 10 µM epibatidine (Epi), (C)
1 µM PNU 282,987, (D) 100 µM nicotine and 10µM PNU 120,596, (H) 1 µM PNU 282,987, and 10
µM PNU 120,596 were applied to the cells; 100 µM nicotine and 10 µM PNU 120,596 were applied
to the cells after 20 min pre-incubation with (E) 10 µM α-bgt, (F) 1 µM methyllycaconitine (MLA),
and (G) 50 µM dihydro-β-erythroidine (DhβE); (I) 1 µM PNU 282,987 and 10 µM PNU 120,596 were
applied to the cells after 20 min pre-incubation with 10 µM α-bgt. Each curve represents changes in
intracellular Ca2+ concentration in one cell. The arrow indicates the time of application of the agonist.
(K–M) The columns are normalized cell response amplitudes expressed as mean ± SEM of the relative
fluorescence intensity of each cell (measured at the maximum value minus baseline fluorescence). At
least 30–50 cells/condition were analyzed. Fl.u.–arbitrary fluorescent units. One-way ANOVA tests
with Turkey post hoc test: **** p < 0.0001.

Patch-clamp electrophysiology experiments have demonstrated that α7 nAChR expressed on the
THP-1Mφ is functioning as an ion channel. Figure 4A shows a typical current trace recorded from
THP-1Mφ under simultaneous application of 1 µM PNU 282,987 and 10 µM PNU 120,596. Positive
allosteric modulator PNU 120,596 simplifies ion current registration because it removes fast receptor
desensitization [38], which is characteristic for α7 nAChR. Five out of twenty-three tested THP-1Mφ

cells have shown ion currents upon application of either PNU 282,987 (with or without PNU 120,596,
Figure 4A,B) or of nicotine supplemented with PNU 120,596 (Figure 4C). No cells showing currents
when nicotine as such was applied have been detected (Figure 4C).
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Figure 4. Patch-clamp experiments on THP-1Mφ. Representative traces for (A) buffer (green line) or 1
µM PNU 282,987 with 10 µM PNU 120,596 (black line), (B) 1 µM PNU 282,987, and (C) 10 µM nicotine
(red line) or 10 µM nicotine with 10 µM PNU 120,596 (black line), which have been applied to the cells.

3.3. Activation of α7 nAChRs with PNU 282,987 Regulates the Expression of HLA-DR, CD14, and CD54,
CD11b in THP-1Mφ, THP-1M1, and MDMs

We further examined whether the α7 nAChR activation influenced the expression of such
membrane molecules and receptors as HLA-DR and CD14 involved in inflammation, as well as CD11b
and CD54 involved in intercellular interactions. THP-1 monocytes or primary human monocytes
were differentiated to macrophages, after which THP-1 macrophages were polarized into classically
activated macrophages (M1) by IFN-γ (20 ng/mL) and E. coli LPS (100 ng/mL). The effect of the selective
α7 receptor agonist PNU 282,987 on the expression of membrane markers HLA-DR, CD14, CD54, and
CD11b on THP-1Mφ, THP-1M1 or MDMs cells was studied after 48 h incubation (Figure 5).
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Figure 5. Representative expression profile of HLA-DR and CD14 on THP-1 macrophages and effects of
PNU 282,987 on the expression of membrane receptors involved in the inflammation on THP-1Mφ and
THP-1M1 cells. Cells were treated with PNU 282,987 for 48 h and analyzed by flow cytometry. PNU
282,987 led to an (A) increase in the proportion of fluorescence and the number of HLA-DR positive cells
with (B) a decrease in CD14 expression. Histograms: gray dashed—isotype control; black line—control
cells; gray line—PNU 282,987 treated cells. The numbers in the histograms represent MFI ± SEM
(geometric mean in the entire cell population). The changes were observed in the expression level of
the membrane proteins HLA-DR, CD14, CD11b, and CD54 on (C) THP-1Mφ and on (D) THP-1M1.
Stimulation of cells by PNU 282,987 also led to the increased expression of CD54 cell adhesion molecules
and of the complement receptor CD11b. Data were obtained in three independent experiments and
presented as mean ± SEM. Student’s t-test: * p < 0.05, ** p < 0.01 and ns p > 0.05 compared to untreated
control cells.

The cell treatment by PNU 282,987 induced a 20% enhancement in HLA-DR expression during
the maturation of THP-1Mφ (Figure 5C). This agonist induced a marked (on overage by 50%) increase
in the expression of HLA-DR molecules on classically activated THP-1M1 cells (Figure 5A,D).

The action of PNU 282,987 on the THP-1Mφ and THP-1M1 cells resulted in the inhibition of the
CD14 receptor expression (Figure 5B–D), as reflected by a decrease in the number of CD14 positive
cells and a lower intensity of fluorescence of these cells in comparison with the untreated control cells.

Moreover, PNU 282,987 increased the expression of macrophage adhesion molecules CD54 and
of the CD11b complement receptor (Figure 5C,D), where the highest expression level was observed
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in THP-1Mφ during macrophage maturation. No change in the expression of CD11b receptor in
THP-1M1 in the presence of PNU 282,987 was observed.

The influence of PNU 282,987 on the expression of the above-listed membrane proteins was
also evaluated using the MDMs: an increase in the HLA-DR (Figure 6A) and a decrease in the CD14
expression (Figure 6B) were observed. Similar changes were found with THP-1Mφ and THP-1M1 cells.
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Figure 6. Representative expression profile and effect of PNU 282,987 on the expression of HLA-DR, CD14,
CD54, and CD11b in the MDMs. The expression levels (A) of HLA-DR and (B) CD14 on the PNU 282,987
treated and untreated MDMs are shown. These cells were treated with PNU 282,987 or PNU 282,987 +

α-bgt for 48 h and analyzed by Fluorescence-Activated Cell Sorting (FACS). PNU 282,987 induced an
increase in the expression (C) of HLA-DR molecules, (E) CD11b, (F) CD54, and decreased the expression
(D) of CD14; the effect of PNU 282,987 is blocked by the α7 receptor antagonist α-bgt. Histograms: gray
dashed—isotype control; gray line—cells control; black line—PNU 282,987 treated cells. (G) Changes in
the expression level of membrane proteins involved in inflammation on MDMs treated with PNU 282,987.
The bars are expressed as mean ± SEM. The results were obtained in three experiments on MDMs from
three different donors. One-way ANOVA tests with Turkey post hoc test: PNU 282,987 vs. non-treated
cells and PNU 282,987 vs. PNU 282,987 + α-bgt: ** p ≤ 0.01, *** p < 0.001, ns p > 0.05.

The addition of PNU 282,987 also induced an increase in the fluorescence intensity proportion
of CD11b and CD54 positive cells (Figure 6E,F). The percentage of expression of these molecules
corresponded to the expression level of CD54 and CD11b on the PNU 282,987 treated THP-1Mφ. To
confirm that the upregulation of HLA-DR and decreased expression of CD14 is the result of the α7
nAChR stimulation, MDMs were preincubated with an α7 receptor antagonist α-bgt (10 µM), which
abrogated the PNU 282,987-induced upregulation of HLA-DR (Figure 6C,G), inhibition of the CD14
expression (Figure 6D,G), as well as increased CD11b (Figure 6G).
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3.4. Analysis of TNF-α, IL-6, and IL-10 Production during Activation of α7 nAChR

Cytokine production during activation ofα7 nAChR by PNU 282,987 was studied in LPS-stimulated
THP-1 macrophages. The cells were pretreated with PNU 282,987 (0.1–10 µM) for 30 min and then
stimulated with LPS (500 ng/mL) for 24 h. Such cell treatment did not significantly change the TNF-α
production (Figure 7A). The α7 nAChR activation with PNU 282,987 had no effect on the IL-6 release
at any of the tested concentrations (Figure 7B). However, we found a dose-dependent inhibition of the
LPS-induced release of IL-10 in the PNU 282,987 treated macrophages (Figure 7C).
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Figure 7. Cytokine levels in macrophage culture medium. Macrophages THP-1Mφ were treated with
various doses of PNU 282,987 for 30 min, after which they were stimulated with lipopolysaccharide
(LPS). The levels (A) of tumor necrosis factor-α (TNF-α), (B) interleukin (IL)-6 and (C) IL-10 were
determined after 24 h by ELISA. Bars are expressed as mean ± SEM. Data were obtained in three
independent experiments. One-way ANOVA tests with Turkey post hoc test: * p < 0.05, ** p < 0.01.

4. Discussion

The vagus nerve (cranial nerve X) is the longest of the cranial nerves, and its main function
is to regulate the parasympathetic nervous system. It has been earlier shown that the vagus nerve
stimulation can reduce inflammation both in the peripheral lymphoid organs and in the brain [39,40].
The complex interactions between the nervous and immune systems that make up this “inflammatory
reflex” are still not fully understood [41]. However, it is clear that the anti-inflammatory effects
observed after vagal stimulation are mediated by the activation of α7 nAChRs that were detected on
the innate immunity cells [3].

Here we show for the first time that macrophages derived from the THP-1 cells express functional
α7 nAChRs. A number of studies have found that monocytes [8], dendritic cells [42], natural killer
(NK) cells [43], T and B lymphocytes [44,45] express nAChRs. We were not able to detect significant
changes in calcium rise during the application of nicotine, non-selective nAChR agonist, to THP-1Mφ.
However, the use of a positive allosteric modulator (PNU 120,596) led to an increase in calcium rise
when co-applied with nicotine. We showed that the specific activation of α7 nAChR mediates the
transmission of Ca2+ signals in the THP-1Mφ. A selective α7 nAChR agonist PNU 282,987 induced
a similar increase in calcium rise as epibatidine. PNU 282,987 together with PNU 120,596 caused a
steady increase in [Ca2+]i. α-bgt and MLA almost completely abolished the observed calcium rise in
nicotine- or PNU 282,987-responsive cells. A similar type of response was recorded in other human
cells, such as NK cells [43], endothelial cells [46], and peripheral blood lymphocytes [47]. In previous
studies using alveolar macrophages [30], the U937 monocytic cell line [31], and mouse microglia [32],
currents were not detected in response to such agonists as nicotine or acetylcholine. Using patch-clamp
electrophysiology experiments, by applying PNU 282,987 or PNU 282,987 in the presence of positive
allosteric modulator (PAM, PNU 120596), we confirmed that the α7 nAChRs on the THP-1Mφ are
functioning as an ion channel (see Figure 3). Similar results were previously described using MDMs
when co-applying acetylcholine with PNU 120,596 [38]. The RT-PCR experiments using THP-1Mφ

cells and MDMs revealed the expression of α2, α4, α7, β3, and β4 subunits, but not of α3, α9 and β2
subunits. Padilla et al. [48] showed that the THP-1 macrophages are stained with fluorescent derivative
α-bgt. The expression of α7 nAChR on the THP-1Mφ membrane and MDMs was confirmed by
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cytochemical staining with a fluorescent derivative of α-bgt (AF647-α-bgt). The highest AF647-α-bgt
binding to the α7 receptor was observed on the THP-1Mφ cells. Human cell lines are important in vitro
tools for studying cellular functions and the signaling pathways. Thus, macrophages derived from
THP-1 cells, which express functional α7 nAChR, can serve as a convenient in vitro model for studying
the role of α7 nAChR in various immunopathological processes.

The CD14 membrane protein, together with TLR4 and the MD2 adapter molecules, serves as
the receptor for such components of gram-negative bacteria as LPS [49]. Binding of LPS to CD14
leads to the activation of immune cells and excessive production of TNF-α, playing a critical role in
sepsis [50]. Systemic inhibition of CD14 reduces inflammation in sepsis [51]. We have found that
PNU 282,987 inhibited the expression of CD14. Similar results were obtained in experiments with the
THP-1Mφ and MDMs. At the early stage of sepsis, macrophages undergo differentiation according to
the classical type (M1), releasing an excessive amount of pro-inflammatory cytokines [52]. Noteworthy,
we also observed a decrease in the CD14 expression on the LPS-activated THP-1M1 macrophages. The
specificity of the CD14 inhibition on MDMs through the α7 receptors was confirmed by pretreatment
of cells with α-bgt, an α7 nAChR antagonist. This compound reversed the effect of PNU 282,987 on the
α7 receptors, returning the CD14 expression to the baseline. As a result, regulation of CD14 expression
during differentiation and on activated macrophages is possible through stimulation of α7 nAChR.

A decreased HLA-DR expression on blood monocytes and macrophages occurs in the course of
acute clinical inflammation, especially sepsis [53], and can contribute to the development of secondary
infections. In addition, HLA-DR levels are inversely correlated with the severity of sepsis and immune
dysfunction [54]. Our work has shown that PNU 282,987 promotes a higher level of expression of such
MHC II molecules as HLA-DR, as compared to untreated cells. α-bgt antagonist abrogated the effect of
PNU 282,987 on MDMs, supporting the α7-mediated pathway for regulating the HLA-DR expression.
In particular, PNU 282,987 also increased the number and fluorescence levels of HLA-DR positive cells
in the LPS-activated THP-1 macrophages, indicating that the activation of α7 receptors is effective in
the process of differentiation and maturation of macrophages, as well as in their stimulation by LPS.

Adhesion molecules are known to mediate intercellular interactions, especially between the
T cells and antigen-presenting cells. Lebedeva et al. [55] identified CD54 (intercellular adhesion
molecule 1, ICAM-1) as a costimulatory ligand that binds to antigen-1 (lymphocyte function-associated
antigen 1, LFA-1), becoming an important molecule for the activation of various T-cell populations and
facilitating antigen presentation. We found that stimulation of α7 receptors on THP-1Mφ by PNU
282,987 leads to increased expression of CD54 cell adhesion molecules. The complement system is an
important component of both innate and acquired immunity, which is necessary for the recognition
and elimination of pathogenic agents. We have shown that stimulation of α7 nAChR also leads to
the increased expression of the CD11b receptor, which is a component of CR3 (complement receptor
3). Recent studies have reported the effects of nicotine (a non-selective nAChR agonist) on dendritic
cells (DC) [56,57], showing that nicotine treatment promoted the differentiation of DC precursors in
immature DC (imDC) with a semi-mature phenotype and with a higher expression of CD11c. Low
doses of nicotine enhanced the expression of costimulatory molecules CD80, CD40, CD54 and HLA-DR
in imDC. DCs are professional antigen-presenting cells [58] that play an important role in the aberrant
immune response in sepsis [59,60]. Thus, through the activation of α7 nAChR it becomes possible to
regulate several membrane markers involved in the T-cell interaction and antigen presentation.

The second part of our work concerns the cytokines. Among them, IL-10 is a pleiotropic cytokine
with both anti-inflammatory and immunosuppressive properties [61]. In addition to the «cytokine
storm» phase, which is characterized by the production of a large number of pro-inflammatory cytokines,
the pathogenesis of sepsis is characterized by a phase of immune dysfunction. There is enough evidence
that IL-10 is one of the main cytokines involved in immune dysfunction in sepsis [62–65]. Monocytes
stimulated by LPS have been shown to produce high levels of pro-inflammatory cytokines IL-1, IL-6,
IL-8, TNF-α, GM-CSF, and G-CSF, which can be detected within 4-8 h [66]. The production of IL-10,
which has a strong anti-inflammatory effect on monocytes and Th1 lymphocytes, reaches a peak 24–48
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h after stimulation. The release of IL-10 is important to suppress the inflammatory response. However,
monocytes that have been re-stimulated with LPS produce low levels of pro-inflammatory cytokines,
while the release of anti-inflammatory mediators, such as IL-10, increases. This «desensitization of
LPS», which is mediated by IL-10, is another counter-regulatory mechanism designed to control the
inflammatory response [67]. It has been suggested that monocyte deactivation that occurs during
sepsis is caused by IL-10 [68]. IL-10 inhibits the release of pro-inflammatory cytokines [66], inhibits
the presentation of antigen and the formation of free oxygen radicals [69]. In a series of 32 patients
undergoing major abdominal surgery, IL-10 gene expression was inversely correlated with HLA-DR
monocyte expression, which is consistent with the role of IL-10 as a mediator of immunosuppression [68].
Its activation (upregulation) can lead to immune tolerance in sepsis, which is manifested by a reduced
ability to protect the body from secondary infections [70]. In septic shock, an increase in IL-10 release
is observed, which correlates with increased mortality and secondary infections [71]. In addition, IL-10
is involved in the suppression of HLA-DR and various costimulatory receptors [72]. We have found
that PNU 282,987 dose-dependently inhibits the production of IL-10 in LPS-activated macrophages
indicating the important role of α7 receptors in reducing the immunosuppressive state.

Stimulation of α7 nAChR can be achieved with agonists or positive allosteric modulators, both
types of ligands being potential therapeutics [73,74]. Usually, therapeutic strategies for the treatment
of sepsis are aimed at suppressing the early phase of the hyperinflammatory response [75]. However,
the immunosuppression state exists simultaneously with the persistent inflammation and contributes
to the development of persistent, recurrent, secondary and nosocomial infections, which lead to
poorer outcomes and increased mortality [59]. While therapeutic attention has long been focused on
anti-inflammatory strategies, an increased understanding of the importance of sepsis-induced immune
depletion in morbidity and mortality in patients with sepsis has led to a paradigm shift in sepsis
research toward strategies to enhance the immune response [76]. Thus, α7 nAChR can be an important
drug target not only for inhibiting hyperinflammation, but also for immune modulation.

5. Conclusions

This study shows that PNU 282,987 enhances the macrophage-mediated immunity and this effect
is realized through α7 nAChR. The data presented provide new information on the expression of
macrophages membrane markers upon activation of α7 nAChR. PNU 282,987, a selective α7 nAChR
agonist, modulates immunophenotypic changes in these antigen-presenting cells by affecting the
expression of surface receptors and cytokines involved in immunosuppression and hyperinflammation.
In addition, we found that the changes in the level of expression of macrophage receptors on THP-1
upon stimulation of α7 receptors, are similar to changes in MDMs. These results underscore the
relevance of using macrophages derived from THP-1 cells as a model for studying the role of α7
receptors in the immune processes. A deeper understanding of the regulation of immunological
markers on the cells involved in inflammation is becoming a challenging task. Thus, by inducing via
the α7 nAChR activation, the up- or down- regulation of biomarkers involved in the restoration of the
functions of antigen-presenting cells, and as a consequence of immune homeostasis, may become a
new therapeutic strategy to prevent the development of immunosuppression.
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