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Abstract: Currently, proteasome inhibitors bortezomib, carfilzomib, and ixazomib are successfully 

used in clinics to treat multiple myeloma. However, these agents show limited efficacy against 

solid tumors. Identification of drugs that can potentiate the action of proteasome inhibitors could 

help expand the use of this therapeutic modality to solid tumors. Here, we found that 

bromodomain extra-terminal (BET) family protein inhibitors such as JQ1, I-BET762, and I-BET151 

synergize with carfilzomib in multiple solid tumor cell lines. Mechanistically, BET inhibitors 

attenuated the ability of the transcription factor Nrf1 to induce proteasome genes in response to 

proteasome inhibition, thus, impeding the bounce-back response of proteasome activity, a critical 

pathway by which cells cope with proteotoxic stress. Moreover, we found that treatment with BET 

inhibitors or depletion of Nrf1 exacerbated the unfolded protein response (UPR), signaling that 

was initiated by proteasome inhibition. Taken together, our work provides a mechanistic 

explanation behind the synergy between proteasome and BET inhibitors in cancer cell lines and 

could prompt future preclinical and clinical studies aimed at further investigating this 

combination. 

Keywords: BET inhibitors; Nrf1; proteasome genes; transcription; proteasome inhibitor; cancer; 

unfolded protein response 

 

1. Introduction 

The ubiquitin-proteasome system (UPS) is a major quality control pathway in eukaryotic cells 

and is responsible for selective and timely removal of proteins that are destined for destruction [1]. 

Selectivity of the UPS is achieved via tagging the substrates with ubiquitin chains which enables its 

recognition and processive degradation by the 26S proteasome, a multi-catalytic protease complex 

[2]. The 26S proteasome is composed of the 20S core particle and the 19S regulatory particle. The 

actual degradation of protein substrates occurs in the 20S core and is facilitated by its 

chymotrypsin-like, trypsin-like, and caspase-like activities conferred, respectively, by β5, β2, and β1 

protein subunits of the proteasome. The 19S regulatory particle caps at one or both ends of the 20S 

proteasome and enables the recognition and transfer of ubiquitinated target proteins to the 20S 

catalytic core for degradation [3]. 

Rapidly proliferating cells such as cancer cells have an increased reliance on proteasome 

activity [4]. Hence, proteasome inhibitors have been found to be effective anticancer therapeutic 

agents in some settings [5]. To date, three proteasome inhibitors, bortezomib, carfilzomib, and 
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ixazomib, have been approved by the FDA for clinical use against multiple myeloma (MM) and 

mantle cell lymphoma (MCL). These proteasome inhibitors mainly target the β5 chymotrypsin-like 

activity of the proteasome. However, the events downstream of β5 inhibition that lead to cancer cell 

death are not completely understood. 

In the case of MM cells which rely heavily on the anti-apoptotic transcription factor NF-κB for 

their survival, proteasome inhibitors induce accumulation of IκB, an inhibitor of NF-κB. This 

inactivates the NF-κB pathway and has been proposed to be one of the reasons for MM’s 

susceptibility to proteasome inhibitors [6]. In addition, given that MM cells are professional 

secretory cells that specialize in producing high amounts of immunoglobulins, they are reliant on a 

stress signaling pathway called the unfolded protein response (UPR) and ER-associated degradation 

(ERAD) to handle misfolded immunoglobulin chains. Although UPR can be cytoprotective, 

hyperactivation of this pathway, as can be seen in MM cells treated with proteasome inhibitors, can 

lead to cell death, thus, offering another explanation for proteasome inhibitor action in MM [6]. In 

the case of MCL, proteasome inhibitors have been proposed to work via induction of oxidative stress 

and also through upregulation of NOXA, a pro-apoptotic Bcl-2 family member [7]. 

In addition to triggering apoptosis, proteasome inhibitors also invoke certain cytoprotective 

pathways such as the heath-shock response [8], autophagy [9–11], and transcription factor 

Nrf1-mediated proteasome ”bounce-back” response [12]. We and others have characterized the 

proteasome bounce-back response, wherein inhibition of the proteasome results in the activation of 

Nrf1 which directs transcriptional upregulation of proteasome genes, thus, mitigating the cellular 

proteotoxic stress [13–16]. Overall, the interplay between the cytotoxic and cytoprotective effects 

elicited by the proteasome inhibitors determines the cell fate.  

Despite the reasonable success of proteasome inhibitors in treating MM and MCL patients, it is 

not clear why these agents are largely ineffective against solid tumors. Initially, this phenomenon 

was blamed on poor tumor penetration of the drug, based on studies from bortezomib [17]. 

However, ixazomib, which exhibits better tumor penetration, has not fared well in clinical trials with 

solid tumors [18]. A more recent view is that proteasome inhibitors need to be used in combination 

with other drugs to increase their efficacy in solid tumors [19]. Consistent with this idea, a number of 

ongoing clinical trials in solid tumors that evaluate proteasome inhibitors also include a second drug 

in combination. Several preclinical studies also support this notion. For instance, a recent report 

demonstrated that inactivation of the β2 site of the proteasome substantially increased the efficacy of 

bortezomib and carfilzomib in triple-negative breast cancer cell lines, as well as xenograft tumor 

models in mice [20]. Other studies have also shown that the combination of the chemotherapeutic 

agent doxorubicin with either carfilzomib or ixazomib enhanced cell killing in breast cancer cells 

[21,22]. Similarly, in head and neck, as well as pancreatic cancer cells, HDAC inhibitors potentiated 

bortezomib-induced cell death [23,24]. 

In this study, to expand the utility of proteasome inhibitors in treating solid tumors, we 

undertook a search for drugs that could synergize with carfilzomib and found that BET inhibitors 

fulfil this criterion in multiple solid tumor cell lines. We further explored the mechanism behind this 

phenomenon and found that BET inhibitors attenuated the Nrf1-mediated proteasome bounce-back 

response and also exacerbated proteasome inhibitor-induced UPR, thus, explaining the synergy 

between these agents. 

2. Materials and Methods  

2.1. Cell Lines and Culture Conditions 

All wild-type cell lines used in this study, i.e., A549, HCT116, MDA-MB-231, DU145, 

MIAPaCa2, T98G, and NIH-3T3 were from the American Type Culture Collection (ATCC). The 

generation of Nrf1 knockout cell line (NIH-3T3-Nrf1KO) was described previously in [16].The 

MDA-MB-231 with Nrf1 depletion (shNrf1) and a corresponding control cell line with pRS-puro 

vector were also reported previously in [12]. Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (Atlanta Biologicals), penicillin and streptomycin 
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(Invitrogen) was used for all cell lines which were maintained at 37 °C in a humidified incubator 

with 5% CO2 [25–28].  

2.2. MTT Assays for Measuring Cell Viability 

The tetrazolium-based MTT assay was carried out as described in [29–31] with minor 

modifications. Briefly, 2 × 104 cells/well were seeded into 96-well plates. Cells were treated with 

different concentrations of CFZ (0.5, 2, 8, and 32 nM) or BET inhibitors (I-BET762 and I-BET151) (100, 

400, 1600, and 6400 nM) for 72 h in triplicates. For the assay, 10 µL of MTT (5 mg/mL) was added to 

each well and incubated for 1 h, followed by two washes with PBS. To dissolve the formazan 

crystals, 100 µl of DMSO was added to each well and absorbance was measured at 560 nm using a 

GloMax Explorer (Promega, Madison, WI, USA) microplate reader. Values were normalized to 

DMSO treated control cells.  

2.3. Determination of CI 

Cells were treated with 4 concentrations of CFZ each in combination with 4 combinations of 

BET inhibitors in four-fold increments, as indicated above. This yielded a total of 16 different 

combinations and 10 different ratios. Each drug was also treated alone at these concentrations. All 

the treatments were done in triplicates. Fa (fraction affected, inhibition of cell proliferation) was 

calculated for all individual and cotreatments and used to determine CI (combination index) using 

CompuSyn software (ComboSyn Inc., Paramus, NJ, USA) which employs the Chou–Talalay method 

[32]. 

2.4. Quantitative Reverse Transcription PCR 

Total RNA was isolated using TRIzol reagent (Invitrogen, Waltham, MA, USA) and 

quantitative reverse transcription PCR was carried out, as described previously in [15,16]. Briefly, 

1000 ng of total RNA was used for making cDNA using iScript cDNA synthesis kit (Bio-Rad, 

Hercules, CA, USA). Then, quantitative PCR was carried out with iTaq universal SYBR green 

supermix (Bio-Rad) using a C1000 Touch Thermal cycler (Bio-Rad). CFX manager 3.1 (Bio-Rad) was 

used for the analysis of data. 18S rRNA levels were used for normalization. Primers used for the 

assays are listed in Table S1. 

2.5. Proteasome Activity Recovery Assay 

Measurement of proteasome activity was performed, as described previously in [15]. Briefly, 

about 90% of chymotrypsin-like proteasome activity of cells was inhibited by treatment with 20 nM 

carfilzomib for 1 h, followed by three times washing with PBS to remove residual CFZ. Then, cells 

were allowed to recover in fresh medium with or without BET inhibitors. At regular time points, the 

cells were frozen in TE buffer (20 mM Tris pH 8.0 and 5 mM EDTA). To measure chymotrypsin-like 

proteasome activity, the cell lysates obtained by freeze-thaw lysis were incubated with 

succinyl-Leu-Leu-Val-Tyr-amino-4-methylcoumarin (Suc-LLVY-AMC), and the resulting 

fluorescence was measured at 360/460 nm excitation/emission. The fluorescence values were then 

normalized by cell number which was quantitated using a Cell-Titer Glo kit (Promega, Madison, WI, 

USA) which measures the ATP levels in the cell. 

2.6. Luciferase Assays 

The 8xARE-Luc construct was generated by cloning 8 copies of the antioxidant response 

element [15] into the pGL3-promoter vector (Promega) that contains the firefly luciferase gene. Cells 

were transfected with the 8xARE-Luc construct along with a renilla luciferase construct (pRL-TK, 

Promega). Forty-eight hours after transfection, cells were subjected to overnight drug treatments 

and luciferase assays were performed using the Dual-Glo luciferase assay system (E2940, Promega). 

The firefly luciferase activity was, then, normalized to the renilla luciferase activity. 
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2.7. Immunoblot Analysis 

Following treatments, cells were washed twice with PBS and lysed in 1× Laemmli sample buffer 

and subjected to immunoblot analysis as described previously [33]. Briefly, proteins were separated 

on SDS-PAGE, followed by transfer on to PVDF membrane. The membrane was washed twice with 

Tris-buffered saline with Tween before blocking with 5% non-fat dry milk (BioRad) for 1 h at room 

temperature, followed by overnight incubation with appropriate primary antibodies at 4 °C. The 

membrane was, then, washed three times and incubated with secondary antibody for 1 h at room 

temperature. Following a final set of three washes, the membrane was used for detection of the 

chemiluminescent signal using Supersignal West Dura substrate (Thermo Fisher Pierce, Waltham, 

MA, USA). The primary antibodies used were specific for Nrf1 (1:5000), BiP (1:2500), ATF6 (1:2500), 

ubiquitin (1:3000), PERK (1:3000), pEIF2α (1:2500), GADD34 (1:2500), CHOP (1:2000), XBP1s 

(1:2000), cleaved caspase-3 (1:3000) (all from Cell Signaling, Danvers, MA, USA), β-Actin (1:10,000, 

Sigma-Aldrich (Burlington, MA, USA). The secondary antibodies used were rabbit IgG HRP, and 

mouse IgG HRP (1:10,000; both from Bio-Rad). 

2.8. RNA Sequencing and Analysis 

Cells treated with CFZ or DMSO (vehicle control) were used for RNA extraction with a RNeasy 

mini kit (Qiagen, Germantown, MD, USA). A KAPA stranded mRNA-seq kit (Illumina, San Diego, 

CA, USA) was used for library preparation and run on 2 × 125 bp v4 high output lanes on Illumina 

HiSeq 2500 instrument. The library preparation and sequencing steps were carried out at the DNA 

sequencing core of the Brigham Young University. Then, differential expression of the genes was 

determined with the Illumina Base Space RNA Express app (Illumina, San Diego, CA, USA) that 

integrates STAR aligner [34] and DESeq2 [35,36] software packages. 

2.9. Statistical Analysis 

Data are presented as mean ± SD of at least three experiments, performed as a minimum in 

triplicate. Two-way Anova analysis was used to calculate p values for pairwise comparisons and p < 

0.05 was considered to be significant.  

3. Results 

3.1. Identification of BET Inhibitors as Synergizers of Proteasome Inhibitor-Induced Cancer Cell Death 

We used a recently described online platform, SynergySeq [37], to search for drugs that can 

synergistically interact with proteasome inhibitors. SynergySeq integrates glioblastoma gene 

expression data from The Cancer Genome Atlas (TCGA) [38] together with multi-cell line drug 

response data from the Library of Integrated Network-Based Cellular Signatures (LINCS) [39]. 

Given an input drug, this resource enables the identification of other drugs that can synergistically 

reverse the cancer gene expression to a more “normal state” in glioblastoma [37]. Using carfilzomib 

(CFZ), ixazomib-citrate (IXA), and bortezomib (BTZ) as input drugs in SynergySeq, we observed 

that various BET inhibitors such as I-BET151, JQ1, I-BET762, and PFI1 emerged as potential 

synergistic interactors with proteasome inhibitors (Figure 1A).  

To experimentally verify this prediction, first, we treated a glioblastoma cell line T98G with 

different concentrations of CFZ in combination with each of the BET inhibitors JQ1, I-BET762, and 

I-BET151. Then, we analyzed the resultant cell viability data using the established Chou-Talalay 

method, wherein a combination index (CI) value less than 1.0 is regarded synergistic [32]. Given that 

the fraction affected (Fa) is a measure of cell viability, we considered Fa values greater than 0.75 to be 

optimal. Using these criteria, we found several optimal CFZ + BET inhibitor combinations that were 

highly synergistic in the T98G cell line (Figure 1B; first panel). In order to test if this effect is true for 

cell lines derived from other tumor types, we employed A549 (lung), HCT116 (colon), MDA-MB-231 

(breast), DU145 (prostate), and MIAPaCa2 (pancreatic) cell lines in a similar experiment. Indeed, we 

could find several optimal CFZ + BET inhibitor synergistic combinations in all of these cell lines 
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(Figure 1B; panels 2–6), implying that this could be a general phenomenon independent of cancer 

type. 

3.2. BET Inhibitors Attenuate CFZ-Mediated Nrf1-Dependent Proteasome Bounce-Back Response 

To explore possible mechanisms behind the synergy of proteasome and BET inhibitors, first, we 

sought to examine the Nrf1 pathway. We and others have previously established Nrf1 as a master 

transcription factor of the proteasome genes [12,14,40]. In response to proteasome inhibition, Nrf1 is 

activated resulting in de novo synthesis of proteasome genes leading to a bounce-back response or 

recovery of proteasome activity [12]. Here, using three different cancer cell lines, we investigated the 

changes in proteasome gene transcription in response to CFZ and BET inhibitors JQ1, and I-BET762. 

We found that in all these cell lines, CFZ treatment alone resulted in a robust induction of 

representative proteasome genes as compared with the control (Figure 2A). Interestingly, this 

induction was completely abolished when either JQ1 or I-BET762 was added along with CFZ, 

suggesting that these BET inhibitors could be antagonizing Nrf1-mediated transcription of its target 

genes. Of note, treatment with BET inhibitors alone did not elicit any appreciable changes in basal 

expression of proteasome genes (Figure 2A). Taken together, our data indicate that BET inhibitors 

block Nrf1-mediated induced expression of proteasome genes. 
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Figure 1. Synergistic interaction between proteasome and BET inhibitors in various cancer cells. (A) 

SynergySeq online platform was used to identify potential drugs that can synergize with proteasome 

inhibitors in cancer. “cancer discordance”, a measure of the ability of a drug to reverse cancer gene 

expression signature to a normal state, is shown on the y-axis. The level of similarity of a drug to the 

reference proteasome inhibitor drugs carfilzomib (CFZ), ixazomib-citrate (IXA), and bortezomib 

(BTZ) is shown as “concordance” values on the x-axis; (B) T98G, A549, HCT116, MDA-MB-231, 

DU145, and MIAPaCa2 cells were treated with different doses of CFZ (0.5, 2, 8, and 32 nM), along 

with one of the BET inhibitors (I-BET762, I-BET151, and JQ1) in different doses (0.1, 0.4, 1.6, and 6.4 

µM) as indicated for 72 h. In these combination treatments, the ratio of CFZ to BET inhibitors was 

maintained at 1:200. The combination index (CI) and fraction affected (Fa) values were determined 

using CompuSyn software from cell viability data and are shown in these plots. The results are 

shown as mean ± SD, n = 3. CI < 1.0 indicates synergism, CI = 1.0 indicates additive effect, and CI > 1.0 

indicates antagonism. The regions highlighted in yellow are synergistic (CI < 1.0) at optimal Fa > 0.75. 

Next, as controls under our treatment conditions, we examined the mRNA levels of FOXM1, 

TERT, BCL2, and AURKB which are some of the target genes of BET proteins [41,42]. Interestingly, 

in contrast to proteasome genes, we observed a modest decrease in BET target genes in response to 

CFZ alone (Figure 2B). These genes also exhibited a decrease after treatment with BET inhibitor 

alone, and depending on the cell type, registered a further decline with CFZ + BET inhibitor (Figure 

2B). However, this was quite a contrast to the consistent increase in proteasome genes in response to 

CFZ and the subsequent attenuation of this increase in response to CFZ + BET inhibitor which we 

observed earlier across all three cell lines examined (Figure 2A), implying that impaired induction of 

proteasome genes could be a major characteristic of CFZ + BET inhibitor combination. 
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Figure 2. BET inhibitors impair Nrf1-mediated induction of proteasome genes and recovery of 

proteasome activity in response to CFZ. The A549, HCT116, and MDA-MB-231 cells were treated 

with CFZ (200 nM) alone and in combination with I-BET762 (10 µM) and JQ1 (1 µM) for 8 h. The 

DMSO treatment was used as vehicle control. Following treatments, RNA was extracted from cells 

and analyzed for representative proteasome subunit (A), BET target (B) mRNA levels with gene 

specific primers using quantitative RT-PCR. The 18s rRNA tanscript levels were used for 

normalization. Error bars denote SD (n = 3); (C) A schematic representation of the proteasome 

recovery assays is shown; (D) A549, HCT116, and MDA-MB-231 cells were treated with 20 nM CFZ 

for 1 h (pulse treatment). The drugs were, then, washed out and the cells were allowed to recover in 

the absence or presence of I-BET762(10 µM) and JQ1 (1 µM) for 0, 4, 8, 12, and 24 h. Proteasome 

activity was measured at indicated time points and normalized to DMSO treated control cells. Error 
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bars denote SD (n = 3); (E) A549, HCT116, and MDA-MB-231 cells were transiently transfected with a 

firefly luciferase construct driven by eight repeats of the antioxidant response element (8xARE-Luc) 

along with a renilla luciferase construct. Forty-eight hours after transfection, cells were treated 

overnight with CFZ (200 nM) alone or in combination with JQ1 (1 µM) or I-BET762 (10 µM) as 

indicated. Dual luciferase assays were, then, performed to measure the firefly and renilla luciferase 

activity values. Normalized luciferase activity is shown. Error bars denote SD (n = 3); (F) 

MDA-MB-231-shNrf1 cells were treated with different doses of CFZ (0.5, 2, 8, and 32 nM), along with 

one of the BET inhibitors (I-BET762, JQ1) in different doses (0.1, 0.4, 1.6, and 6.4 µM) for 72 h. The 

combination index (CI) and fraction affected (Fa) values were determined using CompuSyn software 

from cell viability data, and are shown in the graph. The results are shown as mean ± SD, n = 3. CI < 

1.0 indicates synergism, CI = 1.0 indicates additive effect, and CI > 1.0 indicates antagonism. *, p < 

0.05, **, p < 0.005, ***, and p < 0.0005 as compared with controls; #, p < 0.05, ##, p < 0.005, and ###, p < 

0.0005 as compared with the CFZ-treated group. 

Next, to understand the impact of BET inhibitors in this context on a functional level, we turned 

to proteasome recovery assays that measure the ability of the cells to bounce back from proteasome 

inhibition [12,15,43]. It is important to note that CFZ binds irreversibly to the proteasome β5 active 

site, whereas BTZ and IXA binding are reversible. We have previously demonstrated that in cells 

pulse treated with an irreversible proteasome inhibitor, the bounce-back response of proteasome 

activity almost exclusively relies on the Nrf1 pathway [12]. Taking advantage of these facts, here, we 

treated three different cancer cells with CFZ for an hour such that the residual proteasome activity 

was ~10% as compared with the vehicle control. Then, we washed away the excess CFZ and 

followed the proteasome activity for 24 h, either in the absence or presence of BET inhibitors JQ1 and 

I-BET762 (Figure 2C). Whereas the cells pulse treated with CFZ regained their proteasome activity 

steadily in the subsequent 24 h washout period, the extent of recovery was significantly impaired in 

the cells pulse treated with CFZ followed by JQ1 or I-BET762 exposure (Figure 2D). Overall, our 

results establish BET inhibitors as potent antagonists of the Nrf1 pathway. 

Given that Nrf1 is an endoplasmic reticulum (ER)-bound transcription factor, its activation in 

response to proteasome inhibition involves a series of steps including ATPase p97/VCP-dependent 

retrotranslocation into the cytosol [13], followed by the protease DDI2-mediated proteolytic 

processing [44,45], and the mobilization of the active form to the nucleus where it can bind to 

proteasome gene promoters to activate their transcription. It is possible that the BET inhibitors could 

interfere with one or more of these steps to thwart Nrf1 activity. Alternatively, it could be that 

Brd2/Brd3/Brd4 (BET inhibitor targets) act as necessary cofactor(s) of Nrf1 akin to the TIP60 complex 

that we recently demonstrated [15]. However, when we utilized a luciferase construct driven by a 

synthetic promoter harboring eight repeats of the antioxidant response element (ARE, the DNA 

sequence that Nrf1 binds to), we observed no reduction in the CFZ-induced luciferase activity from 

cells that were coincubated with JQ1 or I-BET762 (Figure 2E). This suggests that although 

CFZ-induced Nrf1 remains transcriptionally competent in the presence of BET inhibitors in general, 

it is unable to transactivate proteasome genes via their natural promoters in this context, the 

mechanism of which is currently unclear. 

Next, we wondered if inactivation of Nrf1 plays a significant role in the synergistic cell death 

that we observed earlier in the CFZ + BET inhibitor treatments. To this end, we used MDA-MB-231 

cells with shRNA-mediated Nrf1 knockdown (shNrf1) and found that treatments with CFZ + JQ1 or 

CFZ + I-BET762 were not synergistic (Figure 2F), thus, ascribing a critical role for Nrf1 inactivation in 

this context.  

3.3. BET Inhibitors Exacerbate CFZ-Mediated Unfolded Protein Response (UPR) 

Inhibition of the proteasome results in the accumulation of misfolded and short-lived proteins 

which leads to ER stress [46]. A major consequence of the ER stress is the activation of the UPR 

pathway [47] which is generally categorized into three branches each of which is mediated by a 

different ER protein, i.e., PERK, IRE1, or ATF6. Although UPR signaling initially acts in a 

cytoprotective fashion, in the face of sustained ER stress, it can lead to cell death [47].  
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Here, using different cancer cell lines, we sought to characterize the magnitude of the UPR in 

response to CFZ and CFZ+BET inhibitors by quantifying the changes in mRNA levels of 

representative genes in the PERK branch (ATF3, CHOP, and GADD34), IRE1 branch (IFRD1, ERN1, 

and ERO1LB), and the ATF6 branch (HERPUD1 and BiP). As expected, in these cancer cell lines, we 

observed an appreciable increase in all of these UPR genes in response to CFZ alone (Figure 3A). 

Strikingly, when these cells were cotreated with BET inhibitors JQ1 or I-BET762 in addition to CFZ, 

the increase in the UPR genes was significantly enhanced. Most noteworthy was the level of 

enhancement in CHOP mRNA in A549 (~20-fold in CFZ vs. ~120-fold in CFZ + BET inhibitor) and 

HCT116 (~20-fold in CFZ vs. ~90-fold in CFZ + BET inhibitor) cell lines (Figure 3A). In line with these 

observations, GADD34, a downstream target gene of CHOP, also exhibited a similar trend (Figure 

3A). 

Overall, the level of enhancement of UPR transcript levels in CFZ + BET inhibitor-treated 

samples as compared with CFZ-treated samples was maximal in A549, followed by HCT116 and 

MDA-MB-231, and this matched up with the differing levels of CFZ + BET inhibitor synergism that 

we observed in these cell lines (Figure 1B). Interestingly, treatment with either BET inhibitor alone 

did not show significant changes in the UPR genes (with one exception in MDA-MB-231 where 

ATF3 mRNA increased approximately four-fold in response to JQ1/I-BET763). Together, our results 

indicate that BET inhibitors have the ability to aggravate the UPR initiated by proteasome inhibition. 

This notion was further reinforced when we examined CHOP and BiP at the protein level. We saw 

that the levels of these proteins were significantly enhanced in the cells treated with CFZ + BET 

inhibitors as compared with CFZ alone (Figure 3B). As a control, we examined the accumulation of 

ubiquitinated proteins, which increased in response to CFZ and CFZ + BET inhibitors, as expected 

(Figure 3B). We also monitored the levels of the Nrf1 protein under these conditions and saw that 

both p120 (inactive precursor) and p110 (proteolytically processed and active) forms accumulated in 

response to CFZ and this pattern did not change in the CFZ + BET inhibitor treated cells (Figure 3B), 

implying that BET inhibitors do not interfere with Nrf1 protein levels. 

Next, we compared the level of apoptosis in response to treatments with CFZ alone and CFZ + 

BET inhibitors, and found that in combination treatments, cleaved caspase-3 levels were markedly 

increased (Figure 3C), consistent with the synergistic cell death that we observed earlier (Figure 1B) 

under similar conditions. 
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Figure 3. Combination of proteasome and BET inhibitors results in exacerbation of the UPR. (A) BET 

inhibitors (JQ1 1 µM and I-BET762 10 µM) and proteasome inhibitor (CFZ 200 nM) were added 

either alone or in combination to A549, HCT 116, and MDA-MB-231 cells for 8 h, as indicated. DMSO 

was used as the vehicle control. RNA was isolated from these cells and subjected to quantitative 

RT-PCR to measure transcript levels of select stress response genes, as shown. The mRNA levels of 

18s rRNA were used for normalization. Error bars denote SD (n = 3); (B) Cells treated as above were 

used for Western blot analysis employing specific antibodies as indicated and β-Actin was used as 

the loading control. The experiments were performed three independent times and a representative 

blot is shown; (C) A549, HCT116, and MDA-MB-231 cells were treated with BET inhibitors (JQ1 1 µM 

and I-BET762 10 µM) and proteasome inhibitor (CFZ 200 nM), similar as above, for 14 h and lysates 

were used to analyze cleaved caspase-3 using specific antibody. β-Actin served as the loading 

control. A representative blot of three independent experiments is shown. *, p < 0.05, **, p < 0.005, ***, 

and p < 0.0005 as compared with controls; #, p < 0.05, ##, p < 0.005, ###, and p < 0.0005 as compared 

with the CFZ-treated group. 

3.4. Depletion of Nrf1 Exacerbates CFZ-Mediated UPR 

Thus far, our results indicate that BET inhibitors attenuate the ability of Nrf1 to induce 

proteasome genes and, at the same time, also exacerbate the UPR caused by proteasome inhibition. 

We wondered if these two seemingly disparate results could somehow be related. To address this 

question, we used a previously characterized NIH-3T3 cell line where Nrf1 has been knocked out 

(KO) using CRISPR/Cas9 [15,16]. We treated both control wild-type (WT) and Nrf1KO cell lines for 

either 6 or 24 h with CFZ and analyzed the changes in gene expression using RNA-sequencing. 

Consistent with an established role for Nrf1 in inducing proteasome genes [12,14], we saw a robust 

increase in these genes in the WT, but not in the Nrf1KO cells in response to CFZ (Figure 4A). We also 

observed a general increase in UPR-related genes in the WT cells in response to CFZ. Strikingly, 
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under these conditions in the Nrf1KO cells treated with CFZ, we saw that a number of those 

UPR-related genes were hyperinduced (Figure 4A). 

Next, we sought to verify these results in MDA-MB-231 cells with shRNA-mediated Nrf1 

knockdown (shNrf1). In response to CFZ, we saw that the proteasome genes were induced in an 

Nrf1-dependent fashion, and UPR-related genes were hyperinduced in shNrf1 cells as compared 

with the vector control cells (Figure 4B). Consistent with these results, we observed that in response 

to CFZ, the CHOP protein levels in shNrf1 cells were significantly elevated as compared with the 

vector control cells (Figure 4C). Together, our results point to a model in which loss of Nrf1 

aggravates the UPR caused by the inhibition of the proteasome.  

Taking this one step further, we examined some of the UPR-related genes in MDA-MB-231: 

shNrf1 cells treated with the CFZ + BET inhibitor combination. We found that in response to the CFZ 

+ I-BET762 treatment, whereas GADD34 and BiP were similarly induced in both the vector control 

and shNrf1 cells, CHOP and HERPUD1 were induced more in the shNrf1 cells (Figure 4D). These 

results suggest that some, but not all, of the CFZ-responsive UPR-related genes are hyperinduced by 

BET inhibitors via Nrf1 inactivation. 

4. Discussion 

Proteasome inhibitors have emerged as effective therapeutics in multiple myeloma and mantle 

cell lymphoma [5]. However, their efficacy in other cancer types, especially solid tumors, remains 

very limited. Here, we found that BET inhibitors such as JQ1, I-BET762, and I-BET151 have the 

ability to potentiate the cytotoxicity of proteasome inhibitor drug carfilzomib in multiple solid 

tumor cell lines.  

BET inhibitors, as the name implies, target and inhibit the BET family of proteins that consists of 

germ cell-specific BRDT and ubiquitously expressed Brd2, Brd3, and Brd4 [48]. Using their 

bromodomains, these BET proteins recognize and bind acetylated lysine residues on histones, 

recruit factors associated with transcription such as P-TEFb, and act as positive regulators of gene 

transcription in most scenarios. For instance, Brd4, a well-studied member of the BET family, is 

known to activate genes involved in cell growth and cell cycle progression which are some of the 

prominent features associated with cancer cells [48]. Thus, there is intense interest in developing 

BET inhibitors as anticancer therapeutics. Our current study supports the use of BET inhibitors in 

conjunction with proteasome inhibitors. 
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Figure 4. Depletion of Nrf1 leads to exacerbation of UPR under proteotoxic stress conditions. (A) 

Wild-type (WT) and Nrf1 knock-out (KO) NIH-3T3 cells were treated or not with 200 nM CFZ for 6 

or 24 h and the samples from 3 biological replicates were analyzed by RNA-seq. Heat maps for 

changes in proteasome and UPR-related genes are shown and were generated using the Morpheus 

software (https://software.broadinstitute.org/morpheus/). A relative color scheme is employed 

where the minimum and maximum values in each row were used to convert values to color. The 

relative levels are indicated by varying color intensities of blue (low) and red (high); (B) 

MDA-MB-231 cells expressing a vector (Ctrl) or shNrf1 were treated with CFZ (200 nM) for 8 h and 

RNA was extracted and analyzed for indicated proteasome and UPR-related mRNA levels using 

quantitative RT-PCR with gene specific primers. The levels of 18s rRNA were used for 

normalization. Error bars denote SD (n = 3); (C) From cells treated as above, whole cell lysates were 

analyzed by immunoblotting for Nrf1, ubiquitin, and CHOP levels. β-Actin was used as loading 

control; (D) The MDA-MB-231:Ctrl and MDA-MB-231:shNrf1 cells were cotreated with CFZ (200 

nM) and I-BET762 (10 µM) for 8 h and total RNA was isolated and analyzed for mRNA levels of UPR 

target genes using quantitative RT-PCR. The 18s rRNA levels were used for normalization. Error 

bars denote SD (n = 3). ***, p < 0.0005 as compared with the controls; ###, p < 0.0005 as compared with 

the CFZ-treated group. $$$, p < 0.0005 as compared with the CFZ + I-BET762 treated group. 

Our results show that one of the advantages of this combination is the inactivation of the 

cytoprotective Nrf1 pathway that otherwise acts to induce proteasome gene expression in response 

to proteasome inhibition. Intriguingly, whereas the activity of BET proteins seems to be necessary to 

support Nrf1-mediated proteasome gene transcription after proteasome inhibition, it appears to be 

dispensable for Nrf1-dependent transcription from a synthetic promoter, suggesting a 

context-dependent requirement for BET proteins. The precise molecular events that underlie this 

effect remain to be elucidated. 

Apart from the inactivation of the Nrf1 pathway, another potential explanation for the synergy 

between proteasome and BET inhibitors is the exacerbation of UPR signaling that was evident in the 
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carfilzomib + BET inhibitor treatments as compared with carfilzomib alone. Of all the UPR-related 

genes that we tested, the level of CHOP was the most noteworthy and was significantly 

hyperinduced in the carfilzomib + BET inhibitor treatments as compared with carfilzomib alone. 

Given that CHOP is a well-established pro-apoptotic protein [49], it could very well be a key driver 

of the synergistic cell death that we observed in this context. 

Proteasome inhibitors are well known for inducing UPR [6]. Our results show that although 

BET inhibitors by themselves do not cause UPR, they seem to aggravate the response initiated by 

proteasome inhibition. Intriguingly, our study also shows that the UPR is hyperactivated in 

Nrf1-deficient cells. Taken together, our data suggest that the ability of BET inhibitors to attenuate 

Nrf1-mediated proteasome bounce-back response could in part explain their ability to exacerbate the 

UPR triggered by proteasome inhibition. Overall, our study offers a mechanistic explanation for the 

synergy between proteasome and BET inhibitors and provides a rationale for exploring this 

combination further via in vivo xenograft studies and possibly in future clinical trials.  
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