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Abstract: Components of the extracellular matrix (ECM) are key players in regulating cellular 
functions throughout the whole organism. In fact, ECM components not only participate in tissue 
organization but also contribute to processes such as cellular maintenance, proliferation, and 
migration, as well as to support for various signaling pathways. In the central nervous system 
(CNS), proteoglycans of the lectican family, such as versican, aggrecan, brevican, and neurocan, are 
important constituents of the ECM. In recent years, members of this family have been found to be 
involved in the maintenance of CNS homeostasis and to participate directly in processes such as the 
organization of perineural nets, the regulation of brain plasticity, CNS development, brain injury 
repair, axonal guidance, and even the altering of synaptic responses. ADAMTSs are a family of “A 
disintegrin and metalloproteinase with thrombospondin motifs” proteins that have been found to 
be involved in a multitude of processes through the degradation of lecticans and other 
proteoglycans. Recently, alterations in ADAMTS expression and activity have been found to be 
involved in neuronal disorders such as stroke, neurodegeneration, schizophrenia, and even 
Alzheimer’s disease, which in turn may suggest their potential use as therapeutic targets. Herein, 
we summarize the different roles of ADAMTSs in regulating CNS events through interactions and 
the degradation of ECM components (more specifically, the lectican family of proteoglycans). 

Keywords: ADAMTS; extracellular matrix; central nervous system; proteoglycan; lectican; 
hyalectan 

 

1. Introduction 

The extracellular matrix (ECM) constitutes a complex environment that is mainly formed by 
proteins and carbohydrates, where cells perform all required activities to control individual 
homeostasis [1]. In fact, cellular functions regulate the composition of the ECM by producing, 
degrading and remodeling all of its components. Inversely, ECM components not only participate in 
tissue organization but also contribute to processes such as cellular maintenance, proliferation, and 
migration, as well as support for various signaling pathways [2]. The main constituents of the ECM 
are specific (both in quality and quantity) to each tissue and include structural components as well 
as a wide variety of enzymes involved in ECM renewal [3]. It is tempting to underline the importance 
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of the participation of proteolytic events in ECM homeostasis, since they imply points of no return in 
terms of ECM composition. At the same time, a simple in vivo proteolytic analysis is complicated, 
since multiple regulatory mechanisms that involve different cofactors and inhibitors coexist. 
Furthermore, situations of nonspecificity and substrate redundancy are common in the proteolytic 
landscape of any given tissue [4]. Proteolysis not only causes ECM degradation as well as the 
inhibition of enzyme activity but also, in some cases, the appearance of new activities derived from 
products generated after the proteolytic event [5]. In any case, the involvement of members of various 
families of proteinases has been described in a myriad of processes, such as neural development [1,2]. 
ADAMTSs (A Disintegrin And Metalloprotease with ThromboSpondin motifs) are a family of 
proteinases in which some of its members have been described as participating in the degradation of 
ECM components of the central nervous system (CNS) and thus the regulation of neural 
physiological or pathological events [6,7]. 

As occurs in all tissues, the ECM components of the CNS play crucial roles in the organization 
and maintenance of cellular functions [8]. In fact, the ECM not only forms a scaffold to give support 
to neural cells but also contributes to stabilizing precise connections and interactions that influence 
processes such as synaptogenesis, cellular migration and proliferation, and mechanisms of signaling 
pathways [9–11]. These roles are essential for the normal development of the CNS and for repair 
following traumatic injuries or for repair related to neurogenerative disorders [12]. Again, ECM 
components and three-dimensional structures are subjected to modification, renewal, and 
reorganization, in which members of the proteinase family of enzymes participate. In particular, in 
this review, we will summarize the associations between the ADAMTS family of metalloproteases 
and normal and pathological situations within the CNS. 

2. Lecticans in the CNS 

Proteoglycans are major constituents of the ECM of the CNS that are involved in cell–cell 
interactions and cytokine-mediated signaling processes [13,14]. These glycosylated proteins consist 
of a protein core covalently linked to glycosaminoglycans (GAGs) [15]. GAGs are formed by 
negatively charged linear polysaccharides that are modified by sulfation and contain a high capacity 
to trap water, thus allowing the tissues to resist deformation following compressive loads. GAGs are 
also related to signaling functions, while the protein core is responsible for mediating cell–cell or cell–
ECM interactions. Such effects are particularly relevant following a traumatic injury, since the 
expression of proteoglycans increases considerably in response to damage in the CNS [16]. Astrocytes 
and neurons are mainly responsible for producing proteoglycans as a mechanism for protecting the 
damaged region [17–19]. In return, this excessive production of proteoglycans inhibits axonal growth 
and consequently impairs the regeneration process [12]. This inhibitory effect has to be subsequently 
abrogated through the proteolytic digestion of proteoglycans, which promotes the axonal regrowth 
process [19,20]. 

The lectican group, also known as hyalectans, includes some of the main proteoglycans 
expressed in the CNS [21]. This group comprises versican, aggrecan, brevican, and neurocan, which 
are molecules characterized by the presence of a central protein core containing attachment sites for 
GAGs (Figure 1). This long central region is flanked by two globular domains, G1 and G3, which are 
located at the amino-terminal and the carboxyl-terminal ends, respectively. Aggrecan is the only 
lectican that contains an additional interglobular domain, G2, which is located in close proximity to 
G1. Five different isoforms for versican—V0, V1, V2, V3, and V4—have been identified as a result of 
alternative splicing events that generate regions of different sizes for the attachment of GAGs [22]. 
Versican V0 is the largest isoform and contains up to 23 GAG attachment sites in two attachment 
regions, named GAGα and GAGβ. Versican V1 and V2 are isoforms that are shorter than versican 
V0, with a smaller number of positions for the anchoring of GAGs. In contrast, versican V3 lacks 
attachment sites for GAGs. Versican V4 is the newest isoform of versican, which has been identified 
so far in breast cancer and contains a shortened GAGβ region [23]. It is noteworthy that the four 
lecticans are noncovalently linked to hyaluronic acid through the G1 domain. Hapln proteins stabilize 
these interactions, preventing the diffusion of lecticans in the ECM. Four members compose the 
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family of Hapln proteins, of which three are found in the CNS (Hapln1, Hapln2, and Hapln4) [24]. 
Globally, the linked molecules and the interactions with other ECM components contribute to the 
formation of a three-dimensional network that has an essential role in the maintenance of 
homeostasis in the CNS [25]. This effect is particularly relevant in those situations in which the 
expression of lecticans is increased in specific brain areas, such as damaged regions, after traumatic 
brain injury or in late embryonic and early postnatal mammalian development stages [14,26]. For 
instance, aggrecan and versican have been found to be expressed in embryos on day 16 in developing 
rat CNS, in particular in areas of the cerebral cortex, amygdala, or optic and lateral olfactory tracts, 
among others [27]. Aggrecan is a common component of perineuronal nets, and neurons can 
influence the differential glycosylation of aggrecan to regulate the microheterogeneity of 
glycosylation and the organization of perineuronal nets [28]. The absence of the functional gene 
encoding for aggrecan results in lethality at birth due to major structural abnormalities [29]. However, 
culture systems derived from cartilage matrix-deficient mice, which lack aggrecan, have contributed 
to investigating the contribution of aggrecan in the function and composition of perineural nets [30]. 
The importance of aggrecan in the assembly of perineural nets has also been validated through the 
employment of an animal model. In fact, the characterization of mice containing a selective deletion 
in the visual cortex in the gene encoding for aggrecan has revealed the abolition of the perineural net 
structure [31]. This structural alteration modifies brain plasticity, restoring juvenile plasticity in the 
visual cortex, and improves the capacity to recognize objects. 

With regard to the different isoforms of versican, versican V2, which contains the GAGα region 
but lacks the GAGβ region, is the isoform expressed predominantly in the nervous system [26,32–
34]. Moreover, versican V2 can carry out functions other than those performed by the other isoforms. 
For instance, versican V2 hampers differentiation and activates apoptosis when it is exogenously 
expressed in PC12 cells, a pheochromocytoma-derived cell line commonly employed to study neural 
differentiation; however, in stark contrast, versican V1 promotes cell differentiation in this cell line 
[35,36]. The functional relevance of versican V2 has also been revealed in mice lacking the splice 
variant of V2 [37]. While the elimination of complete gene coding for full-length versican leads to 
early embryonic lethality [38], mice lacking isoform V2 are viable and fertile. However, these mice 
have an ECM that contains important structural aberrations in the nodes of Ranvier [37]. 

 

Figure 1. Schematic representation of (A) lecticans, (B) RPTP-β (receptor-type protein tyrosine 
phosphatase-β), phosphacan, and (C) reelin. 

Brevican is the smallest core protein of the lecticans (Figure 1), and its expression begins in late 
embryonic stages and continues through adulthood [39]. It is produced by oligodendrocytes and 
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astrocytes in white matter, but its expression is differently regulated during development in these 
two cell types [40]. As happens with aggrecan, brevican is also an important constituent of 
perineuronal nets, and the impact of this lectican in the spatial coupling of pre- and postsynaptic 
elements has recently been shown (it thus contributes to precise synaptic transmission in the cochlea) 
[41]. Likewise, brevican is associated with the axon initial segment through an interaction with 
neurofascin 186, a glycoprotein belonging to the Ig superfamily [42,43]. Brevican is closely related to 
neurocan, but the expression patterns of these lecticans differ. Indeed, while brevican is highly 
expressed in different areas of mature brains, the expression peaks for neurocan can be detected 
during embryo development, but they decline in adult brains in normal conditions [39,44]. Although 
both neurocan-deficient mice [44] and brevican-deficient mice [39] are viable and fertile, their 
phenotypic characterization indicates that these lecticans can display important structural and 
functional roles in the ECM of some areas of the CNS. Brevican and neurocan double-knockout mice 
are also viable, without obvious functional deficits [45]. However, the simultaneous absence of 
brevican and neurocan facilitates the growth of a subpopulation of sensory fibers in the spinal cord 
dorsal root entry zone (following rhizotomy). A recent study by Gottschling et al. [46] revealed new 
findings about the roles of brevican and neurocan in the CNS and their functional relationship with 
other ECM components in the perineuronal nets. These authors characterized quadruple 
brevican/neurocan/tenascin-C/tenascin-R-deficient mice to demonstrate alterations in their excitatory 
and inhibitory synaptic responses. In fact, the absence of these four ECM components increased the 
number of excitatory and reduced the number of inhibitory synaptic molecules. In addition, higher 
neuronal network activity and the reduction of perineuronal nets in the hippocampus could also be 
detected in the quadruple knockout mice. 

Other proteoglycans expressed in the CNS include phosphacan and receptor-type protein 
tyrosine phosphatase-β (RPTP-β) [13]. Phosphacan is a secreted proteoglycan generated by the 
alternative splicing of the gene coding for RPTP-β [47]. Structurally, phosphacan and RPTP-β contain 
an amino-terminal carbonic anhydrase-like domain, followed by a fibronectin type III domain and 
by a region with attachment sites for GAGs. Phosphacan lacks the transmembrane domain and the 
two intracellular tyrosine phosphatase domains identified in the carboxy-terminal region of RPTP-β 
(Figure 1). Although obvious deficiencies were not initially observed in mice lacking the gene 
encoding for RPTP-β [48], the presence of phosphacan is essential in developing brains in those areas 
related to neural cell migration. In this regard, depending on the cellular context, both the promotion 
of neurite outgrowth in mesencephalic, cortical, and hippocampus neurons of rat embryos [49–51] 
and the inhibition of neurite outgrowth in ganglion cells in the retina [52] have been associated with 
phosphacan. Moreover, phosphacan has been related to essential roles in the organization of the 
neural stem cell niche [53]. 

Finally, reelin is a glycoprotein associated with synaptic plasticity and neurotransmission 
through the modulation of intracellular components such as Dab1 (Disabled-1) (after an interaction 
with specific transmembrane lipoprotein receptors such as ApoER2) [54,55]. The contribution of 
reelin to neuronal embryonic development as well as to adult nervous tissue physiology is 
demonstrated by the fact that the absence, or proteolytic processing, of this glycoprotein causes 
important brain abnormalities and might be implicated in neuronal disorders such as schizophrenia 
and Alzheimer’s disease [54–57]. Full-length reelin is a 420-kDa glycoprotein that can be 
proteolytically processed in vivo, which results in functional regulation either through its conversion 
to an active form or by negative modulation of its activity [56,58,59]. Members of the ADAMTS family 
of proteases are among the proteases involved in the cleavage of reelin and the concomitant 
functional implications for brain disorders. 

3. ADAMTSs in the CNS 

The ADAMTSs are a family of secreted proteins that is composed of 19 members in mammals 
[60,61]. ADAMTSs are involved in a wide variety of physiological and pathological processes that 
include, among other things, their participation in the degradation and thus the remodeling of 
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components of the extracellular matrix, the inhibition of angiogenesis, and the regulation of 
inflammatory processes [61,62]. 

ADAMTSs are secreted enzymes characterized by a complex structure (Figure 2) with different 
domains that, in general, adjust to the following linear architecture: a prodomain, a metalloprotease 
domain, a disintegrin domain, a central thrombospondin-1-like domain (TSP), a cysteine-rich region, 
and a variable number of TSP repeats at the C-terminal end [63]. Characteristic motifs are also present 
in some domains, for example, a furin recognition sequence at the end of the prodomain, a zinc-
binding motif in the metalloproteinase domain with an aspartic residue at the end of the catalytic 
center, and conserved patterns of cysteine residues in TSP- and cysteine-rich domains. In addition, 
differences between the family members arise from the presence of specific structural characteristics 
in terms of particular domains with additional functions for these ADAMTSs. For example, the GON-
1 motif is present at the C-terminal end of ADAMTS-9 and ADAMTS-20, and a cubillin (cub) motif 
can be found only in ADAMTS-13 [63–65]. Furthermore, the activity of ADAMTSs can be modulated 
not only by the presence or absence of certain domains, but also by proteolytic processing through 
the generation of fragments with new functions or even by protein–protein interactions with other 
proteins of the ECM [6,66]. 

 
Figure 2. Schematic representation of ADAMTSs involved in the proteolytic processing of 
components of the central nervous system extracellular matrix (ECM). 

ADAMTSs, as part of the family of metalloproteases, can subsequently be classified not only 
according to their structure but also according to their proteolytic activity toward specific substrates 
of the ECM. This fact causes ADAMTSs to be associated with processes that occur in specific tissues, 
depending on the presence or absence of their known substrates. Thus, ADAMTS-1, -4, -5, -8, -9, -15, 
and -20 are considered to be hyalectanases, since they are able to degrade one or more of the 
hyalectans that were described in the previous section [67]. Amino-procollagenase activity has been 
described for ADAMTS-2, -3, and -14, which implies the requirement of these enzymes in the 
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maturation and formation of collagen fibers within the ECM [68]. In cartilaginous tissue, the activity 
of ADAMTS-7 and -12 has been detected in one of its components, as is the case with the cartilage 
oligomeric matrix protein (COMP) [69]. Thrombotic thrombocytopenic purpura (TTP) is a rare blood 
disorder caused by the absence of the specific proteolytic activity of ADAMTS-13 toward the von 
Willebrand factor, which causes clots in small vessels throughout the whole body [63,70]. On the 
other hand, some of the ADAMTSs can be considered to be orphan enzymes, since their substrates 
have not yet been identified and, at present, their classification depends only on similarities in their 
structure, such as with ADAMTS-6 and -10, ADAMTS-16 and -18, and ADAMTS-17 and -19 [60]. The 
group of hyalectanases will be the main focus of this review, taking into account the importance of 
their substrates in physiology as well as their involvement in the mechanisms underlying important 
neuronal disorders. 

Aggrecan can be cleaved by several members of the ADAMTS family of proteinases. However, 
ADAMTS-4 and ADAMTS-5 can be considered to be the main aggrecanases, since they are more 
effectively able to degrade this proteoglycan [71,72]. In ADAMTS-4, this activity depends on an 
interaction between different motifs of both molecules, the central thrombospondin type-1 (TSP-1) 
motif of ADAMTS-4, and the glycosaminoglycans within the aggrecan structure [73]. Although both 
ADAMTS-4 and ADAMTS-5 can act upon aggrecan in vitro, the latter was shown to be the major in 
vivo aggrecanase in mouse cartilage in a mouse model of inflammatory arthritis. Furthermore, 
ADAMTS-5 also seems to be responsible for the cleavage of this proteoglycan in osteoarthritic 
patients [74]. 

Versican has been described as being processed by various ADAMTSs, particularly ADAMTS-
1, -4, -5, -9, -15, and -20 [67,75]. Interestingly, the cleavage of versican by ADAMTS-1 generates a 70-
kDa bioactive fragment called versikine that is involved in different processes such as apoptosis and 
the migration of immune cells, thus inhibiting the development of myeloma [5]. In addition, the 
cleavage of versican by ADAMTSs also plays a very important role in physiological processes such 
as angiogenesis, ovulation, tissue morphogenesis, and vascular disease [76–78]. 

Brevican is mainly degraded by ADAMTS-1, -4, and -5, generating two possible fragments, 55 
and 90 kDa. Both fragments have been associated with the pathological activities of brevican [79,80]. 
In particular, highly ECM-invasive properties of glioma cells are characterized by ADAMTS-4 
overexpression together with a great capacity for brevican cleavage. However, only ADAMTS-5 
overexpression has been detected in vivo in human glioma tissue [80]. Moreover, a correlation 
between an increase in brevican processing by ADAMTS-1 and -4 and the loss of synaptic density 
has been described [81]. 

More recently, neurocanase activity has been attributed to ADAMTS-12, and thus it can be 
considered to be a new hyalectanase [7]. Neurocan degradation by ADAMTS-12 is able to cause 
changes in the adhesion and migration profiles of the human neuroglioma H4 cell line. The in vivo 
participation of ADAMTS-12 in neurocan degradation is underlined by the fact that the absence of 
this protease causes neurocan accumulation in particular areas in the brain of ADAMTS-12-deficient 
mice [7]. 

In addition to hyalectans, these ADAMTSs can also degrade other proteoglycans such as 
phosphacan and reelin [82]. ADAMTS-4 in particular cleaves reelin, blocking its cellular signaling 
function (its expression and processing are altered during aging) and causing defects in synaptic 
plasticity and cognitive impairment [83]. 

The expression patterns of hyalectanases of the ADAMTS family have been detected by different 
techniques in most CNS structures, including the hippocampus, striatum, cortex, temporal lobe, brain 
stem, and spinal cord [81,83–87]. In particular, ADAMTS-4 is the most expressed metalloprotease in 
basal conditions in adult mice [88]. However, ADAMTS-4 mRNA expression increases progressively 
during the first weeks after birth, and then, in a similar way, its expression decreases in adult mice 
[37]. In addition, this enzyme has also been detected in postmortem human brains [89]. In vivo and 
in vitro data have shown that although microglia and neurons also express ADAMTSs, most of them 
are produced by astrocytes, specifically after a brain injury [90]. In rat brains, ADAMTS-4 has been 
detected in dentate granular neurons and pyramidal cells [81]. In vitro, the expression of ADAMTS-
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4 in cortical neurons and cortical microglia has also been described [91,92]. In cultured astrocytes (as 
mentioned before), ADAMTS-4 is expressed at basal levels, but the presence of tumor necrosis factor-
α (TNF-α) stimulates the production of ADAMTS-1 and ADAMTS-4 in these cells [91,93]. ADAMTS-
15 is expressed by excitatory thalamic relay neurons in the dorsal thalamus, while in the 
hippocampus and neocortex, it is generated by inhibitory interneurons [94]. ADAMTS-1 is expressed 
in mouse and rat brains during development; in motor neurons in injured mice; and in the frontal 
cortex of humans with Down’s syndrome, Alzheimer's disease, and Pick's disease [87,95–97]. 
ADAMTS-9 is expressed in a measured way in the CNS at all stages of mouse development, except 
in the floor plate of the diencephalon, cerebral cortex, dorsal root ganglia, and choroid plexus [84]. In 
general, ADAMTSs increase their expression in response to certain diseases, neuronal disorders, or 
CNS lesions [98]. For example, the expression of ADAMTS-4 increases in pathological situations such 
as Alzheimer's disease, ischemic stroke, amyotrophic lateral sclerosis, and spinal cord injury [89,99–
101]. Inside and outside the CNS, ADAMTSs also have inflammatory and antiangiogenic functions. 
ADAMTS-1 was the first member of the ADAMTS family to be identified with these properties [52], 
but other members, such as ADAMTS-12, are also involved in inflammatory processes (mice deficient 
in this protease have shown a prolonged inflammation phenotype in models of pancreatitis, colitis, 
and lipopolysaccharide (LPS)-induced inflammation [102]. 

Consequently, it cannot be ruled out that ADAMTSs contribute to the repair of damaged tissue 
after brain injuries and also to the progression of neurodegenerative disorders through the 
convergence of common inflammatory and antiangiogenic properties that have already been 
assigned to some ADAMTSs. Thus, these proteinases actively participate in all of these processes by 
regulating the renewal and modification of proteoglycans in the ECM of the CNS [98]. 

4. ADAMTS Functions in Normal and Pathological CNS 

As mentioned before, several characteristics make the ECM of the CNS unique in comparison to 
other organs and tissues of the organism, among them the fact that it contains several proteoglycans, 
such as reelin, aggrecan, versican, brevican, and neurocan. On the other hand, proteoglycans are 
responsible for maintaining the integrity of the extracellular matrix of the brain; at the same time, 
they are the major inhibitors of axon regeneration and plasticity through their presence in glial scar 
tissue and in perineuronal networks (PNNs) and may affect superior functions such as memory and 
influence inflammatory reactions after brain injury [103]. 

Due to their proven involvement in normal and pathological processes, not only in developed 
tissue but also during the different stages of brain development [21], the existence of finely tuned 
mechanisms controlling their production, modification, and replacement is essential. In this sense, 
several studies have described their involvement in the events of proteolytic mechanisms mediated 
by metalloproteases of the ADAMTS family [94], in particular after CNS damage [104]. Specifically, 
their participation is important in the degradation of glial scarring and in the posterior stimulation 
of axonal growth, thus increasing the neuronal synaptic plasticity induced after brain injury [98]. 
However, the role of ADAMTSs in chronic diseases of the central nervous system is complex and has 
not been sufficiently explored. For that reason, one of the current challenges is to unravel their specific 
role in normal and pathological processes in the CNS. For example, in the case of a brain injury 
derived from a traumatic injury (TBI) or from cerebral ischemia, a cascade of signals occurs that 
causes the elevation or migration of different components of the ECM to the injured area. The 
participation of ADAMTS-1, -4, -5, -9, -12, and -13 has been described in this repair process [7,100,105]. 

ADAMTS-13 has been widely studied for its ability to degrade the von Willebrand factor (vWF), 
a high-molecular-weight proteoglycan that participates in platelet aggregation by establishing 
interactions between platelet surfaces and vascular wall components [106]. ADAMTS-13 is 
responsible for degrading the multimeric vWF chains, contributing to proper homeostasis in 
thrombus formation [107]. As mentioned earlier, the loss of its function leads to the accumulation of 
the von Willebrand factor and causes thrombotic thrombocytopenic purpura (TTP) [108]. 
Analogously, and in the context of brain injury, the vWF plays an important role in hemostasis by 
recruiting platelets at the site of vascular injury. It is stored in Weibel–Palade bodies in endothelial 



Biomolecules 2020, 10, 403 8 of 18 

cells and in platelet granules and is released into circulation after trauma [105]. This release is 
mediated by ADAMTS-13, so that ADAMTS-13 deficiency is associated with occlusive diseases such 
as myocardial infarction and stroke, and its low activity is a predictor of unfavorable results in 
patients with ischemic stroke undergoing endovascular therapy [109]. 

In mice, recent studies have demonstrated that ADAMTS-13 proteolytic activity is able to exert 
a protective role during strokes. This function seems to be relevant in mice with fluid percussion 
injuries, since the administration of recombinant ADAMTS-13, both before and after injury, reduces 
the reactivity of the vWF, protects the integrity of endothelial cell barriers, and prevents TBI-induced 
coagulopathy. Recombinant ADAMTS-13 acts by enhancing vWF elimination, but does not affect 
basal hemostasis [110]. Similarly, inflammatory responses provoked by induced intracerebral 
hemorrhaging can be limited through the administration of recombinant ADAMTS-13 and a 
concomitant reduction of vWF activity. In one study, intracerebral hemorrhaging was induced in 
mice through an intracerebral blood infusion, and after the administration of the recombinant 
protein, a reduction in inflammatory mediators (such as IL-6), inflammatory cytokines, 
myeloperoxidase activity, microglial activity, and neutrophil recruitment was observed. Therefore, 
the treatment of mice with recombinant ADAMTS-13 reduces cerebral edema and, at the same time, 
the volume of the hemorrhagic lesion [111]. In a similar set of experiments, the administration of a 
gain-of-function variant of ADAMTS-13 (GoF ADAMTS-13) showed a protective effect in mice that 
had a cerebrovascular injury induced through occlusion of the middle cerebral artery [112]. 

It is not just the regulation of hemostasis that causes effects on the ECM of the CNS, since other 
members of the ADAMTS family of proteoglycanases, such as ADAMTS-1, -4, -5, -9, and -12, 
participate in its regulation and modification and have important functions in processes such as 
neuroplasticity, inflammation, and repair through the degradation of proteoglycans that may prevent 
axial growth or wound closure [7,90]. Thus, an increase in the expression of ADAMTS-1, -4, -5, and -
9 has been detected in isolated astrocytes from postnatal zero-day mouse brains in the presence of 
inflammatory cytokines such as IL-1 [90]. Inflammatory-responsible elements have been detected and 
characterized in the ADAMTS-9 gene promoter using chondrocytes and chondrosarcoma cells, which 
caused an increase in ADAMTS-9 levels in the presence of proinflammatory cytokines such as IL-1β 
[113]. These elements might also be responsible for the elevated levels of ADAMTS-9 (mRNA and 
proteins) that occur after brain injury provoked by the occlusion of the middle cerebral artery 
(tMCAo), a known model of focal cerebral ischemia in rats. Through in situ hybridization, the authors 
of one study showed that ADAMTS-9 expression was confined to neurons of the damaged tissue 
[114]. In addition, the contribution of ADAMTS-1 and -4 to resolving the experimental stroke elicited 
after tMCAo might be an important step in enabling the infiltration of inflammatory cells that 
contribute to brain injury and posterior resolution [93]. 

In all of the above situations, it seems that alterations in ADAMTS expression are somehow 
related to the development of inflammatory processes, e.g., TBI or ischemia, which, over time, is 
consistent with the generation of CNS damage. In the event of an injury, proteoglycan expression 
increases in the damaged area in order to promote the repair of the lesion. However, their expression 
has a dual role, since they are able to promote as well as inhibit neuronal growth depending on 
modifications of the ECM, which in turn serves to sustain cell formation, mobility, and growth factor 
and cytokine interactions [115]. Therefore, to maintain cellular homeostasis, this newly formed ECM, 
which is needed to support and sustain the repair process, has to be eliminated once it has fulfilled 
its scaffolding role in order to eliminate an environment that is nonpermissive of axonal regeneration 
in the glial scar. ADAMTS-1, -4, -5, -9, and -15 are the main ADAMTSs in the brain known to degrade 
different proteoglycans, as well as reelin [82,90]. In fact, inflammation markers such as IL-1 are able 
to induce ADAMTS-1, -4, -5, and -9, and these events correlate in time with an increase in 
proteoglycan degradation during the early phases of injury progression [116,117]. 

As mentioned earlier, ADAMTS-4 is the most frequently observed hyalectanase that is expressed 
at basal levels in the adult brain; at the same time, it is also the most relevant member of the ADAMTS 
family in terms of neuroreparation after CNS lesions. The in vitro efficiency of ADAMTS-4 in 
degrading proteoglycans has been widely demonstrated [118]. Furthermore, this proteolytic activity 
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toward proteoglycans seems to not be necessary to stimulate neurite extension in cultured neurons, 
but at the same time, proteolysis creates a more favorable matrix environment for neurite outgrowth 
[119]. The positive participation of ADAMTS-4 in enhancing neuroplasticity has also been described 
after the administration of tissue plasminogen activator (tPA) in a model of spinal cord injury in rats 
(compression-induced). There, tPA administration stimulated proteoglycan elimination through 
ADAMTS-4 activation, which contributed to axonal regeneration, sprouting, and functional recovery 
of the injured area [101]. The direct administration of ADAMTS-4 in rats with an induced spinal cord 
bruise injury was also able to restore motor function by enhancing axonal regeneration after the injury 
[92]. In another study, ADAMTS-4- and ADAMTS-5-deficient mice accumulated versikine (but not 
specific fragments derived from brevican or aggrecan proteolysis) after a spinal cord injury, which 
suggests that versican is the preferred mediator of both ADAMTSs in neuronal function regeneration 
[120]. In yet another study, ADAMTS-4-deficient mice showed a motor deficit that seemed to derive 
from abnormal myelination and electrical nerve activity in adult mice. In fact, ADAMTS-4 is 
expressed in wild-type animals in oligodendrocytes, which are the cells responsible for myelination 
in the CNS [121]. Therefore, the participation of ADAMTS-4 in axonal growth either in vivo or in 
vitro may depend in part on its contribution to myelination processes under normal conditions and 
thus the regulation of motor capacities in adult mice [122]. 

Recently, it has been suggested that ADAMTS-12, a known enzyme involved in inflammatory 
processes [102,123], might also participate in CNS repair processes through the elimination of 
neurocan [7]. It is known that ADAMTS-12 accumulates in areas of inflammation, and at the same 
time, both neurocan expression and ADAMTS-12 expression are more evident during embryonic 
phases. This fact, together with neurocan accumulation in specific areas of the CNS in ADAMTS-12-
deficient mice, suggests that ADATMTS-12 neurocanase activity is responsible for the elimination of 
neurocan in affected tissues either during normal development or during repair processes [7,102]. 
Neurocan degradation by ADAMTS-12 produces a 50-kDa specific band that resembles those 
observed after the digestion of versican, brevican, and aggrecan by other ADAMTSs (versikine, for 
example). The evidence in the literature seems to support this link between neurocan and ADAMTS-
12, since they are also associated with certain brain disorders such as schizophrenia and bipolar 
disorder [124–127] (at least in the case of ADAMTS-12, also with narcolepsy) [128]. It is not just 
ADAMTS-12 that can be linked to neuropathies, since ADAMTS-1 (as an example) is overexpressed 
in the frontal cortex of brains of patients with Down’s syndrome, Alzheimer's disease (AD), and Pick's 
disease, and its presence has been suggested as being a good marker of neurodegeneration [87]. 

It is known that reelin is a secreted signaling glycoprotein that is largely expressed in the brain: 
it is crucial to development, both during embryonic and postnatal periods. Reelin is also a key in the 
regulation of brain functions and synaptic functions in adulthood, and it seems to be mandatory for 
neural superior functions such as learning and memory [54,55,64,129]. Reelin interacts with several 
cellular receptors, and a lack of reelin interaction is associated with the appearance of 
neuropsychiatric diseases such as AD and schizophrenia. Therefore, proteolytic activity against reelin 
is important for maintaining brain function. The elimination of reelin has been ascribed mainly to 
members of the ADAMTS family of proteases, more specifically to ADAMTS-2 and ADAMTS-3 [130]. 
In fact, both ADAMTSs have been involved in both pathologies because both proteases are capable 
of performing a specific proteolytic cleavage of reelin (N-t cleavage) that eliminates its biological 
activity. In addition, studies on ADAMTS-2-deficient and ADAMTS-3-deficient mice have shown 
that this N-t cleavage of reelin diminishes in an important way, specifically in the postnatal cerebral 
cortex and hippocampus [130–132]. The fact that reelin is able to antagonize the deposition and 
toxicity of beta amyloid (Aβ) peptides in AD suggests the possibility of using inhibitors of ADAMTS-
3 proteolytic activity to block reelin N-t cleavage. One study targeted this proteolytic activity by 
crossbreeding drug-inducible ADAMTS-3-deficient mice with a “next-generation” Alzheimer’s 
model, and it proved reelin is a putative treatment for this neurological disease [131]. Analogously, 
DISC1 (Disrupted in Schizophrenia 1) is a known gene that codes for a structural protein that is 
important in the developing cortex and that is involved in mental illness pathologies such as 
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schizophrenia. DISC1 acts upstream of reelin in the perinatal cerebral cortex and regulates its activity 
through ADAMTS-4-dependent proteolytic cleavage [56,133]. 

The processing of reelin by ADAMTS-4 and its implication in neuronal disorders has been 
described more deeply in terms of AD. For example, the treatment of primary cultures of astrocytes 
with deposits of Aβ peptides clearly induces ADAMTS-4 transcription [99]. In addition, in a model 
of transgenic AD mice, tPA was proven to activate both ADAMTS-4 and ADAMTS-5 proteolytic 
processing of reelin (with expression patterns overlapping in the hippocampus) [83,101]. Moreover, 
the levels of ADAMTS-5 and tPA increased in AD transgenic mice, while during normal aging, no 
significant changes were detected in the levels of these proteases or in the processing of reelin [83]. 
Finally, a recent study found a large fraction of insoluble Aβ peptides truncated at the N-terminus 
with Aβ4-x peptides in the brains of Alzheimer's patients (autopsies): this processing is carried out 
by ADAMTS-4. High levels of Aβ4-x peptides have been observed in animals deficient in ADAMTS-
4 in an 5xFAD mice model, which was used as an amyloidosis model for the study of the 
accumulation of this peptide [134]. 

5. Concluding Remarks 

The ECM composition of the CNS includes a myriad of components with very different natures 
that affect all aspects of tissue development and function. Within the CNS, proteoglycans are known 
to participate in cell–cell interactions and also in several signaling events. Therefore, the regulation 
of the synthesis, modification, and degradation of these ECM components is of crucial importance in 
physiological and pathological events of the CNS. In this review, we have tried to summarize how 
the degradation of CNS proteoglycans by members of the ADAMTS family of proteinases affects 
functions of the CNS, such as neuroplasticity, tissue repair, and neurological disorders (Table 1). The 
studies described herein illustrate the most relevant examples of the importance of proteoglycan 
degradation to the normal development and functioning of the CNS. In addition, the ECM 
environment should be considered to be a complex ecosystem in which proteolytic events elicited by 
ADAMTSs can also be modified by other components of the ECM [6]. A deep knowledge of the 
biology of the components of the ECM of the brain would help offer more achievable therapeutic 
approaches to enhancing repair mechanisms or even reducing pain episodes caused by injuries or 
illness. In this regard, the characterization of the enzymatic degradation of these components in both 
normal and pathological conditions may provide future therapeutic strategies for treating brain 
disorders [26,45]. 

Table 1. ADAMTSs in the central nervous system (CNS). 

ADAMTS Known Substrates Neuronal Process/Disorder 

ADAMTS-
1 

Versican; brevican 
Stroke [93]; spinal cord injury [117]; neuroplasticity [104]; inflammation 

[93,116,117]; Down’s syndrome [87]; Alzheimer’s disease [87] 

ADAMTS-
3 

Reelin Alzheimer’s disease [130,131]; schizophrenia [130] 

ADAMTS-
4 

Versican; aggrecan; 
reelin; brevican 

Stroke [93]; spinal cord injury [117]; neuroplasticity [83,119]; inflammation 
[93,116,117]; myelination [121]; Alzheimer’s disease [83,134]; schizophrenia [56] 

ADAMTS-
5 

Versican; aggrecan; 
reelin; brevican 

Stroke [93]; spinal cord injury [117]; neuroplasticity [83]; inflammation [116,117]; 
Alzheimer’s disease [83] 

ADAMTS-
9 

Versican Stroke [114]; spinal cord injury [117]; inflammation [113,116,117] 

ADAMTS-
12 

Neurocan Inflammation [7,123]; schizophrenia [7,124,127] 
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ADAMTS-
13 

von Willebrand factor Inflammation [111]; stroke [109,110,112] 

Author Contributions: All authors contributed equally to the writing and discussion of the manuscript. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Instituto Asturiano de Odontología (IAO). 

Acknowledgments: T.F. is the recipient of a contract from the Departamento de Investigación-Instituto Órdoñez 
(Oviedo-Spain). Y.M. is the recipient of a contract from the IAO. We would like to thank J.A. Vega and J. Cobo 
for their critical reading of the manuscript. 

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or 
financial relationships that could be construed as a potential conflict of interest. 

References 

1. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. 
Mol. Cell Biol. 2014, 15, 786–801, doi:10.1038/nrm3904. 

2. Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodeling. 
Nat. Rev. Mol. Cell Biol. 2007, 8, 221–233, doi:10.1038/nrm2125. 

3. Marinkovic, M.; Block, T.J.; Rakian, R.; Li, Q.; Wang, E.; Reilly, M.A.; Dean, D.D.; Chen, X.D. One size does 
not fit all: developing a cell-specific niche for in vitro study of cell behavior. Matrix Biol. 2016, 52–54, 426–
441, doi:10.1016/j.matbio.2016.01.004. 

4. Lopez-Otin, C.; Overall, C.M. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell 
Biol. 2002, 3, 509–519, doi:10.1038/nrm858. 

5. Hope, C.; Foulcer, S.; Jagodinsky, J.; Chen, S.X.; Jensen, J.L.; Patel, S.; Leith, C.; Maroulakou, I.; Callander, 
N.; Miyamoto, S.; et al. Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. 
Blood 2016, 128, 680–685, doi:10.1182/blood-2016-03-705780. 

6. Fontanil, T.; Mohamedi, Y.; Cobo, T.; Cal, S.; Obaya, A.J. Novel associations within the tumor 
microenvironment: fibulins meet ADAMTSs. Front. Oncol. 2019, 9, 796, doi:10.3389/fonc.2019.00796. 

7. Fontanil, T.; Mohamedi, Y.; Moncada-Pazos, A.; Cobo, T.; Vega, J.A.; Cobo, J.L.; Garcia-Suarez, O.; Cobo, 
J.; Obaya, A.J.; Cal, S. Neurocan is a new substrate for the ADAMTS12 metalloprotease: potential 
implications in neuropathies. Cell. Physiol. Biochem. 2019, 52, 1003–1016, doi:10.33594/000000069. 

8. McRae, P.A.; Porter, B.E. The perineuronal net component of the extracellular matrix in plasticity and 
epilepsy. Neurochem. Int. 2012, 61, 963–972, doi:10.1016/j.neuint.2012.08.007. 

9. Wright, J.W.; Reichert, J.R.; Davis, C.J.; Harding, J.W. Neural plasticity and the brain renin-angiotensin 
system. Neurosci. Biobehav. Rev. 2002, 26, 529–552, doi:10.1016/s0149-7634(02)00019-2. 

10. Dityatev, A.; Schachner, M. Extracellular matrix molecules and synaptic plasticity. Nat. Rev. Neurosci. 2003, 
4, 456–468, doi:10.1038/nrn1115. 

11. Sandvig, A.; Berry, M.; Barrett, L.B.; Butt, A.; Logan, A. Myelin-, reactive glia-, and scar-derived CNS axon 
growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004, 46, 
225–251, doi:10.1002/glia.10315. 

12. Barros, C.S.; Franco, S.J.; Muller, U. Extracellular matrix: functions in the nervous system. Cold Spring Harb. 
Perspect. Biol. 2011, 3, a005108, doi:10.1101/cshperspect.a005108. 

13. Cui, H.; Freeman, C.; Jacobson, G.A.; Small, D.H. Proteoglycans in the central nervous system: role in 
development, neural repair, and Alzheimer's disease. IUBMB Life 2013, 65, 108–120, doi:10.1002/iub.1118. 

14. George, N.; Geller, H.M. Extracellular matrix and traumatic brain injury. J. Neurosci. Res. 2018, 96, 573–588, 
doi:10.1002/jnr.24151. 

15. Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. 
Mol. Cell Biol. 2014, 15, 771–785, doi:10.1038/nrm3902. 

16. Miller, G.M.; Hsieh-Wilson, L.C. Sugar-dependent modulation of neuronal development, regeneration, and 
plasticity by chondroitin sulfate proteoglycans. Exp. Neurol. 2015, 274, 115–125, 
doi:10.1016/j.expneurol.2015.08.015. 

17. Silver, J.; Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5, 146–156, 
doi:10.1038/nrn1326. 



Biomolecules 2020, 10, 403 12 of 18 

18. Myer, D.J.; Gurkoff, G.G.; Lee, S.M.; Hovda, D.A.; Sofroniew, M.V. Essential protective roles of reactive 
astrocytes in traumatic brain injury. Brain 2006, 129, 2761–2772, doi:10.1093/brain/awl165. 

19. Siebert, J.R.; Conta Steencken, A.; Osterhout, D.J. Chondroitin sulfate proteoglycans in the nervous system: 
inhibitors to repair. BioMed Res. Int. 2014, 2014, 845323, doi:10.1155/2014/845323. 

20. McKeon, R.J.; Hoke, A.; Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated 
axon growth on astrocytic scars. Exp. Neurol. 1995, 136, 32–43, doi:10.1006/exnr.1995.1081. 

21. Bandtlow, C.E.; Zimmermann, D.R. Proteoglycans in the developing brain: new conceptual insights for old 
proteins. Physiol. Rev. 2000, 80, 1267–1290, doi:10.1152/physrev.2000.80.4.1267. 

22. Nandadasa, S.; Foulcer, S.; Apte, S.S. The multiple, complex roles of versican and its proteolytic turnover 
by ADAMTS proteases during embryogenesis. Matrix Biol. 2014, 35, 34–41, 
doi:10.1016/j.matbio.2014.01.005. 

23. Kischel, P.; Waltregny, D.; Dumont, B.; Turtoi, A.; Greffe, Y.; Kirsch, S.; De Pauw, E.; Castronovo, V. 
Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor 
targeting. Int. J. Cancer 2010, 126, 640–650, doi:10.1002/ijc.24812. 

24. Oohashi, T.; Edamatsu, M.; Bekku, Y.; Carulli, D. The hyaluronan and proteoglycan link proteins: 
Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity. Exp. 
Neurol. 2015, 274, 134–144, doi:10.1016/j.expneurol.2015.09.010. 

25. Maeda, N. Structural variation of chondroitin sulfate and its roles in the central nervous system. Cent. Nerv. 
Syst. Agents Med. Chem. 2010, 10, 22–31, doi:10.2174/187152410790780136. 

26. Zimmermann, D.R.; Dours-Zimmermann, M.T. Extracellular matrix of the central nervous system: from 
neglect to challenge. Histochem. Cell Biol. 2008, 130, 635–653, doi:10.1007/s00418-008-0485-9. 

27. Popp, S.; Andersen, J.S.; Maurel, P.; Margolis, R.U. Localization of aggrecan and versican in the developing 
rat central nervous system. Dev. Dyn. 2003, 227, 143–149, doi:10.1002/dvdy.10282. 

28. Matthews, R.T.; Kelly, G.M.; Zerillo, C.A.; Gray, G.; Tiemeyer, M.; Hockfield, S. Aggrecan glycoforms 
contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 2002, 22, 7536–7547. 

29. Rittenhouse, E.; Dunn, L.C.; Cookingham, J.; Calo, C.; Spiegelman, M.; Dooher, G.B.; Bennett, D. Cartilage 
matrix deficiency (cmd): a new autosomal recessive lethal mutation in the mouse. J. Embryol. Exp. Morphol. 
1978, 43, 71–84. 

30. Giamanco, K.A.; Morawski, M.; Matthews, R.T. Perineuronal net formation and structure in aggrecan 
knockout mice. Neuroscience 2010, 170, 1314–1327, doi:10.1016/j.neuroscience.2010.08.032. 

31. Rowlands, D.; Lensjo, K.K.; Dinh, T.; Yang, S.; Andrews, M.R.; Hafting, T.; Fyhn, M.; Fawcett, J.W.; Dick, 
G. Aggrecan directs extracellular matrix-mediated neuronal plasticity. J. Neurosci. 2018, 38, 10102–10113, 
doi:10.1523/JNEUROSCI.1122-18.2018. 

32. Asher, R.A.; Morgenstern, D.A.; Shearer, M.C.; Adcock, K.H.; Pesheva, P.; Fawcett, J.W. Versican is 
upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J. Neurosci. 2002, 22, 2225–
2236. 

33. Oohashi, T.; Hirakawa, S.; Bekku, Y.; Rauch, U.; Zimmermann, D.R.; Su, W.D.; Ohtsuka, A.; Murakami, T.; 
Ninomiya, Y. Bral1, a brain-specific link protein, colocalizing with the versican V2 isoform at the nodes of 
Ranvier in developing and adult mouse central nervous systems. Mol. Cell. Neurosci. 2002, 19, 43–57, 
doi:10.1006/mcne.2001.1061. 

34. Gu, W.L.; Fu, S.L.; Wang, Y.X.; Li, Y.; Wang, X.F.; Xu, X.M.; Lu, P.H. Expression and regulation of versican 
in neural precursor cells and their lineages. Acta Pharmacol. Sin. 2007, 28, 1519–1530, doi:10.1111/j.1745-
7254.2007.00659.x. 

35. Vaudry, D.; Chen, Y.; Hsu, C.M.; Eiden, L.E. PC12 cells as a model to study the neurotrophic activities of 
PACAP. Ann. N. Y. Acad. Sci. 2002, 971, 491–496, doi:10.1111/j.1749-6632.2002.tb04513.x. 

36. Wu, Y.; Sheng, W.; Chen, L.; Dong, H.; Lee, V.; Lu, F.; Wong, C.S.; Lu, W.Y.; Yang, B.B. Versican V1 isoform 
induces neuronal differentiation and promotes neurite outgrowth. Mol. Biol. Cell 2004, 15, 2093–2104, 
doi:10.1091/mbc.e03-09-0667. 

37. Dours-Zimmermann, M.T.; Maurer, K.; Rauch, U.; Stoffel, W.; Fassler, R.; Zimmermann, D.R. Versican V2 
assembles the extracellular matrix surrounding the nodes of ranvier in the CNS. J. Neurosci. 2009, 29, 7731–
7742, doi:10.1523/JNEUROSCI.4158-08.2009. 

38. Mjaatvedt, C.H.; Yamamura, H.; Capehart, A.A.; Turner, D.; Markwald, R.R. The Cspg2 gene, disrupted in 
the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 1998, 
202, 56–66, doi:10.1006/dbio.1998.9001. 



Biomolecules 2020, 10, 403 13 of 18 

39. Brakebusch, C.; Seidenbecher, C.I.; Asztely, F.; Rauch, U.; Matthies, H.; Meyer, H.; Krug, M.; Bockers, T.M.; 
Zhou, X.; Kreutz, M.R.; et al. Brevican-deficient mice display impaired hippocampal CA1 long-term 
potentiation but show no obvious deficits in learning and memory. Mol. Cell. Biol. 2002, 22, 7417–7427, 
doi:10.1128/mcb.22.21.7417-7427.2002. 

40. Ogawa, T.; Hagihara, K.; Suzuki, M.; Yamaguchi, Y. Brevican in the developing hippocampal fimbria: 
differential expression in myelinating oligodendrocytes and adult astrocytes suggests a dual role for 
brevican in central nervous system fiber tract development. J. Comp. Neurol. 2001, 432, 285–295, 
doi:10.1002/cne.1103. 

41. Sonntag, M.; Blosa, M.; Schmidt, S.; Reimann, K.; Blum, K.; Eckrich, T.; Seeger, G.; Hecker, D.; Schick, B.; 
Arendt, T.; et al. Synaptic coupling of inner ear sensory cells is controlled by brevican-based extracellular 
matrix baskets resembling perineuronal nets. BMC Biol. 2018, 16, 99, doi:10.1186/s12915-018-0566-8. 

42. Hedstrom, K.L.; Xu, X.; Ogawa, Y.; Frischknecht, R.; Seidenbecher, C.I.; Shrager, P.; Rasband, M.N. 
Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 2007, 178, 
875–886, doi:10.1083/jcb.200705119. 

43. Frischknecht, R.; Seidenbecher, C.I. Brevican: a key proteoglycan in the perisynaptic extracellular matrix of 
the brain. Int. J. Biochem. Cell Biol. 2012, 44, 1051–1054, doi:10.1016/j.biocel.2012.03.022. 

44. Zhou, X.H.; Brakebusch, C.; Matthies, H.; Oohashi, T.; Hirsch, E.; Moser, M.; Krug, M.; Seidenbecher, C.I.; 
Boeckers, T.M.; Rauch, U.; et al. Neurocan is dispensable for brain development. Mol. Cell. Biol. 2001, 21, 
5970–5978, doi:10.1128/mcb.21.17.5970-5978.2001. 

45. Quaglia, X.; Beggah, A.T.; Seidenbecher, C.; Zurn, A.D. Delayed priming promotes CNS regeneration post-
rhizotomy in neurocan and brevican-deficient mice. Brain 2008, 131, 240–249, doi:10.1093/brain/awm279. 

46. Gottschling, C.; Wegrzyn, D.; Denecke, B.; Faissner, A. Elimination of the four extracellular matrix 
molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory 
synapses. Sci. Rep. 2019, 9, 13939, doi:10.1038/s41598-019-50404-9. 

47. Snyder, S.E.; Li, J.; Schauwecker, P.E.; McNeill, T.H.; Salton, S.R. Comparison of RPTP zeta/beta, 
phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of 
RPTP zeta/beta and phosphacan mRNA following brain injury. Brain Res. Mol. Brain Res. 1996, 40, 79–96, 
doi:10.1016/0169-328x(96)00039-3. 

48. Harroch, S.; Palmeri, M.; Rosenbluth, J.; Custer, A.; Okigaki, M.; Shrager, P.; Blum, M.; Buxbaum, J.D.; 
Schlessinger, J. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta. 
Mol. Cell. Biol. 2000, 20, 7706–7715, doi:10.1128/mcb.20.20.7706-7715.2000. 

49. Faissner, A.; Clement, A.; Lochter, A.; Streit, A.; Mandl, C.; Schachner, M. Isolation of a neural chondroitin 
sulfate proteoglycan with neurite outgrowth promoting properties. J. Cell Biol. 1994, 126, 783–799, 
doi:10.1083/jcb.126.3.783. 

50. Garwood, J.; Schnadelbach, O.; Clement, A.; Schutte, K.; Bach, A.; Faissner, A. DSD-1-proteoglycan is the 
mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal 
lineage. J. Neurosci. 1999, 19, 3888–3899. 

51. Maeda, N. Proteoglycans and neuronal migration in the cerebral cortex during development and disease. 
Front. Neurosci. 2015, 9, 98, doi:10.3389/fnins.2015.00098. 

52. Inatani, M.; Honjo, M.; Otori, Y.; Oohira, A.; Kido, N.; Tano, Y.; Honda, Y.; Tanihara, H. Inhibitory effects 
of neurocan and phosphacan on neurite outgrowth from retinal ganglion cells in culture. Invest. Ophthalmol. 
Vis. Sci. 2001, 42, 1930–1938. 

53. Theocharidis, U.; Long, K.; ffrench-Constant, C.; Faissner, A. Regulation of the neural stem cell 
compartment by extracellular matrix constituents. Prog. Brain Res. 2014, 214, 3–28, doi:10.1016/B978-0-444-
63486-3.00001-3. 

54. Negron-Oyarzo, I.; Lara-Vasquez, A.; Palacios-Garcia, I.; Fuentealba, P.; Aboitiz, F. Schizophrenia and 
reelin: a model based on prenatal stress to study epigenetics, brain development and behavior. Biol. Res. 
2016, 49, 16, doi:10.1186/s40659-016-0076-5. 

55. Armstrong, N.C.; Anderson, R.C.; McDermott, K.W. Reelin: Diverse roles in central nervous system 
development, health and disease. Int. J. Biochem. Cell Biol. 2019, 112, 72–75, doi:10.1016/j.biocel.2019.04.009. 

56. Bradshaw, N.J.; Trossbach, S.V.; Kober, S.; Walter, S.; Prikulis, I.; Weggen, S.; Korth, C. Disrupted in 
Schizophrenia 1 regulates the processing of reelin in the perinatal cortex. Schizophr. Res. 2017, 215, 506–513, 
doi:10.1016/j.schres.2017.04.012. 



Biomolecules 2020, 10, 403 14 of 18 

57. Won, S.J.; Kim, S.H.; Xie, L.; Wang, Y.; Mao, X.O.; Jin, K.; Greenberg, D.A. Reelin-deficient mice show 
impaired neurogenesis and increased stroke size. Exp. Neurol. 2006, 198, 250–259, 
doi:10.1016/j.expneurol.2005.12.008. 

58. Jossin, Y.; Gui, L.; Goffinet, A.M. Processing of Reelin by embryonic neurons is important for function in 
tissue but not in dissociated cultured neurons. J. Neurosci. 2007, 27, 4243–4252, 
doi:10.1523/JNEUROSCI.0023-07.2007. 

59. Lemarchant, S. Relevance of the proteolytic processing of Reelin by ADAMTS-3 in brain functions. J. 
Neurosci. 2017, 37, 6814–6815, doi:10.1523/JNEUROSCI.1077-17.2017. 

60. Porter, S.; Clark, I.M.; Kevorkian, L.; Edwards, D.R. The ADAMTS metalloproteinases. Biochem. J. 2005, 386, 
15–27, doi:10.1042/BJ20040424. 

61. Dancevic, C.M.; McCulloch, D.R.; Ward, A.C. The ADAMTS hyalectanase family: biological insights from 
diverse species. Biochem. J. 2016, 473, 2011–2022, doi:10.1042/BCJ20160148. 

62. Mead, T.J.; Apte, S.S. ADAMTS proteins in human disorders. Matrix Biol. 2018, 71–72, 225–239, 
doi:10.1016/j.matbio.2018.06.002. 

63. Cal, S.; Obaya, A.J.; Llamazares, M.; Garabaya, C.; Quesada, V.; Lopez-Otin, C. Cloning, expression 
analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases 
with disintegrin and thrombospondin-1 domains. Gene 2002, 283, 49–62, doi:10.1016/s0378-1119(01)00861-
7. 

64. Gurses, M.S.; Ural, M.N.; Gulec, M.A.; Akyol, O.; Akyol, S. Pathophysiological function of ADAMTS 
enzymes on molecular mechanism of Alzheimer's Disease. Aging Dis. 2016, 7, 479–490, 
doi:10.14336/AD.2016.0111. 

65. Llamazares, M.; Cal, S.; Quesada, V.; Lopez-Otin, C. Identification and characterization of ADAMTS-20 
defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and 
a unique GON domain. J. Biol. Chem. 2003, 278, 13382–13389, doi:10.1074/jbc.M211900200. 

66. Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase 
with Thrombospondin motifs) family. Genome Biol. 2015, 16, 113, doi:10.1186/s13059-015-0676-3. 

67. Stanton, H.; Melrose, J.; Little, C.B.; Fosang, A.J. Proteoglycan degradation by the ADAMTS family of 
proteinases. Biochim. Biophys. Acta 2011, 1812, 1616–1629, doi:10.1016/j.bbadis.2011.08.009. 

68. Colige, A.; Vandenberghe, I.; Thiry, M.; Lambert, C.A.; Van Beeumen, J.; Li, S.W.; Prockop, D.J.; Lapiere, 
C.M.; Nusgens, B.V. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high 
homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 2002, 277, 5756–5766, 
doi:10.1074/jbc.M105601200. 

69. Perez-Garcia, S.; Carrion, M.; Villanueva-Romero, R.; Hermida-Gomez, T.; Fernandez-Moreno, M.; 
Mellado, M.; Blanco, F.J.; Juarranz, Y.; Gomariz, R.P. Wnt and RUNX2 mediate cartilage breakdown by 
osteoarthritis synovial fibroblast-derived ADAMTS-7 and -12. J. Cell. Mol. Med. 2019, 23, 3974–3983, 
doi:10.1111/jcmm.14283. 

70. Fujikawa, K.; Suzuki, H.; McMullen, B.; Chung, D. Purification of human von Willebrand factor-cleaving 
protease and its identification as a new member of the metalloproteinase family. Blood 2001, 98, 1662–1666, 
doi:10.1182/blood.v98.6.1662. 

71. Westling, J.; Fosang, A.J.; Last, K.; Thompson, V.P.; Tomkinson, K.N.; Hebert, T.; McDonagh, T.; Collins-
Racie, L.A.; LaVallie, E.R.; Morris, E.A.; et al. ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) 
and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular 
domain. J. Biol. Chem. 2002, 277, 16059–16066, doi:10.1074/jbc.M108607200. 

72. Verma, P.; Dalal, K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J. Cell. Biochem. 2011, 112, 
3507–3514, doi:10.1002/jcb.23298. 

73. Tortorella, M.; Pratta, M.; Liu, R.Q.; Abbaszade, I.; Ross, H.; Burn, T.; Arner, E. The thrombospondin motif 
of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J. Biol. Chem. 2000, 
275, 25791–25797, doi:10.1074/jbc.M001065200. 

74. Zhang, E.; Yan, X.; Zhang, M.; Chang, X.; Bai, Z.; He, Y.; Yuan, Z. Aggrecanases in the human synovial fluid 
at different stages of osteoarthritis. Clin. Rheumatol. 2013, 32, 797–803, doi: 10.1007/s10067-013-2171-0. 

75. Cross, N.A.; Chandrasekharan, S.; Jokonya, N.; Fowles, A.; Hamdy, F.C.; Buttle, D.J.; Eaton, C.L. The 
expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: 
relevance to the accumulation of versican. Prostate 2005, 63, 269–275, doi:10.1002/pros.20182. 



Biomolecules 2020, 10, 403 15 of 18 

76. Fu, Y.; Nagy, J.A.; Brown, L.F.; Shih, S.C.; Johnson, P.Y.; Chan, C.K.; Dvorak, H.F.; Wight, T.N. Proteolytic 
cleavage of versican and involvement of ADAMTS-1 in VEGF-A/VPF-induced pathological angiogenesis. 
J. Histochem. Cytochem. 2011, 59, 463–473, doi:10.1369/0022155411401748. 

77. Silver, D.L.; Hou, L.; Somerville, R.; Young, M.E.; Apte, S.S.; Pavan, W.J. The secreted metalloprotease 
ADAMTS20 is required for melanoblast survival. PLoS Genet. 2008, 4, e1000003, 
doi:10.1371/journal.pgen.1000003. 

78. Kenagy, R.D.; Plaas, A.H.; Wight, T.N. Versican degradation and vascular disease. Trends Cardiovasc. Med. 
2006, 16, 209–215, doi:10.1016/j.tcm.2006.03.011. 

79. Gary, S.C.; Kelly, G.M.; Hockfield, S. BEHAB/brevican: a brain-specific lectican implicated in gliomas and 
glial cell motility. Curr. Opin. Neurobiol. 1998, 8, 576–581, doi:10.1016/s0959-4388(98)80083-4. 

80. Nakada, M.; Miyamori, H.; Kita, D.; Takahashi, T.; Yamashita, J.; Sato, H.; Miura, R.; Yamaguchi, Y.; Okada, 
Y. Human glioblastomas overexpress ADAMTS-5 that degrades brevican. Acta Neuropathol. 2005, 110, 239–
246, doi:10.1007/s00401-005-1032-6. 

81. Yuan, W.; Matthews, R.T.; Sandy, J.D.; Gottschall, P.E. Association between protease-specific proteolytic 
cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats. Neuroscience 2002, 114, 
1091–1101, doi:10.1016/s0306-4522(02)00347-0. 

82. Hisanaga, A.; Morishita, S.; Suzuki, K.; Sasaki, K.; Koie, M.; Kohno, T.; Hattori, M. A disintegrin and 
metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) cleaves Reelin in an isoform-dependent 
manner. FEBS Lett. 2012, 586, 3349–3353, doi:10.1016/j.febslet.2012.07.017. 

83. Krstic, D.; Rodriguez, M.; Knuesel, I. Regulated proteolytic processing of Reelin through interplay of tissue 
plasminogen activator (tPA), ADAMTS-4, ADAMTS-5, and their modulators. PloS ONE 2012, 7, e47793, 
doi:10.1371/journal.pone.0047793. 

84. Jungers, K.A.; Le Goff, C.; Somerville, R.P.; Apte, S.S. Adamts9 is widely expressed during mouse embryo 
development. Gene Expr. Patterns 2005, 5, 609–617, doi:10.1016/j.modgep.2005.03.004. 

85. Cross, A.K.; Haddock, G.; Surr, J.; Plumb, J.; Bunning, R.A.; Buttle, D.J.; Woodroofe, M.N. Differential 
expression of ADAMTS-1, -4, -5 and TIMP-3 in rat spinal cord at different stages of acute experimental 
autoimmune encephalomyelitis. J. Autoimmun. 2006, 26, 16–23, doi:10.1016/j.jaut.2005.09.026. 

86. Ajmo, J.M.; Eakin, A.K.; Hamel, M.G.; Gottschall, P.E. Discordant localization of WFA reactivity and 
brevican/ADAMTS-derived fragment in rodent brain. BMC Neurosci. 2008, 9, 14, doi:10.1186/1471-2202-9-
14. 

87. Miguel, R.F.; Pollak, A.; Lubec, G. Metalloproteinase ADAMTS-1 but not ADAMTS-5 is manifold 
overexpressed in neurodegenerative disorders as Down syndrome, Alzheimer's and Pick's disease. Brain 
Res. Mol. Brain Res. 2005, 133, 1–5, doi:10.1016/j.molbrainres.2004.09.008. 

88. Lemarchant, S.; Wojciechowski, S.; Vivien, D.; Koistinaho, J. ADAMTS-4 in central nervous system 
pathologies. J. Neurosci. Res. 2017, 95, 1703–1711, doi:10.1002/jnr.24021. 

89. Lemarchant, S.; Pomeshchik, Y.; Kidin, I.; Karkkainen, V.; Valonen, P.; Lehtonen, S.; Goldsteins, G.; Malm, 
T.; Kanninen, K.; Koistinaho, J. ADAMTS-4 promotes neurodegeneration in a mouse model of amyotrophic 
lateral sclerosis. Mol. Neurodegener. 2016, 11, 10, doi:10.1186/s13024-016-0078-3. 

90. Lemarchant, S.; Pruvost, M.; Montaner, J.; Emery, E.; Vivien, D.; Kanninen, K.; Koistinaho, J. ADAMTS 
proteoglycanases in the physiological and pathological central nervous system. J. Neuroinflammation 2013, 
10, 133, doi:10.1186/1742-2094-10-133. 

91. Hamel, M.G.; Mayer, J.; Gottschall, P.E. Altered production and proteolytic processing of brevican by 
transforming growth factor beta in cultured astrocytes. J. Neurochem. 2005, 93, 1533–1541, 
doi:10.1111/j.1471-4159.2005.03144.x. 

92. Tauchi, R.; Imagama, S.; Natori, T.; Ohgomori, T.; Muramoto, A.; Shinjo, R.; Matsuyama, Y.; Ishiguro, N.; 
Kadomatsu, K. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional 
recovery after spinal cord injury. J. Neuroinflammation 2012, 9, 53, doi:10.1186/1742-2094-9-53. 

93. Cross, A.K.; Haddock, G.; Stock, C.J.; Allan, S.; Surr, J.; Bunning, R.A.; Buttle, D.J.; Woodroofe, M.N. 
ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and 
their expression is modulated by TNF in cultured astrocytes. Brain Res. 2006, 1088, 19–30, 
doi:10.1016/j.brainres.2006.02.136. 

94. Levy, C.; Brooks, J.M.; Chen, J.; Su, J.; Fox, M.A. Cell-specific and developmental expression of lectican-
cleaving proteases in mouse hippocampus and neocortex. J. Comp. Neurol. 2015, 523, 629–648, 
doi:10.1002/cne.23701. 



Biomolecules 2020, 10, 403 16 of 18 

95. Thai, S.N.; Iruela-Arispe, M.L. Expression of ADAMTS1 during murine development. Mech. Dev. 2002, 115, 
181–185, doi:10.1016/s0925-4773(02)00115-6. 

96. Gunther, W.; Skaftnesmo, K.O.; Arnold, H.; Bjerkvig, R.; Terzis, A.J. Distribution patterns of the anti-
angiogenic protein ADAMTS-1 during rat development. Acta Histochem. 2005, 107, 121–131, 
doi:10.1016/j.acthis.2004.07.009. 

97. Sasaki, M.; Seo-Kiryu, S.; Kato, R.; Kita, S.; Kiyama, H. A disintegrin and metalloprotease with 
thrombospondin type1 motifs (ADAMTS-1) and IL-1 receptor type 1 mRNAs are simultaneously induced 
in nerve injured motor neurons. Brain Res. Mol. Brain Res. 2001, 89, 158–163, doi:10.1016/s0169-
328x(01)00046-8. 

98. Gottschall, P.E.; Howell, M.D. ADAMTS expression and function in central nervous system injury and 
disorders. Matrix Biol. 2015, 44–46, 70–76, doi:10.1016/j.matbio.2015.01.014. 

99. Satoh, K.; Suzuki, N.; Yokota, H. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin 
motifs) is transcriptionally induced in beta-amyloid treated rat astrocytes. Neurosci. Lett. 2000, 289, 177–180, 
doi:10.1016/s0304-3940(00)01285-4. 

100. Lemarchant, S.; Dunghana, H.; Pomeshchik, Y.; Leinonen, H.; Kolosowska, N.; Korhonen, P.; Kanninen, 
K.M.; Garcia-Berrocoso, T.; Montaner, J.; Malm, T.; et al. Anti-inflammatory effects of ADAMTS-4 in a 
mouse model of ischemic stroke. Glia 2016, 64, 1492–1507, doi:10.1002/glia.23017. 

101. Lemarchant, S.; Pruvost, M.; Hebert, M.; Gauberti, M.; Hommet, Y.; Briens, A.; Maubert, E.; Gueye, Y.; 
Feron, F.; Petite, D.; et al. tPA promotes ADAMTS-4-induced CSPG degradation, thereby enhancing 
neuroplasticity following spinal cord injury. Neurobiol. Dis. 2014, 66, 28–42, doi:10.1016/j.nbd.2014.02.005. 

102. Moncada-Pazos, A.; Obaya, A.J.; Llamazares, M.; Heljasvaara, R.; Suarez, M.F.; Colado, E.; Noel, A.; Cal, 
S.; Lopez-Otin, C. ADAMTS-12 metalloprotease is necessary for normal inflammatory response. J. Biol. 
Chem. 2012, 287, 39554–39563, doi:10.1074/jbc.M112.408625. 

103. Fawcett, J.W. The extracellular matrix in plasticity and regeneration after CNS injury and 
neurodegenerative disease. Prog. Brain Res. 2015, 218, 213–226, doi:10.1016/bs.pbr.2015.02.001. 

104. Howell, M.D.; Gottschall, P.E. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in 
the central nervous system extracellular microenvironment. Neuroscience 2012, 217, 6–18, 
doi:10.1016/j.neuroscience.2012.05.034. 

105. Kozar, R. ADAMTS-13 in traumatic brain injury? Blood 2018, 132, 985–986, doi:10.1182/blood-2018-07-
861732. 

106. Levi, M.; Scully, M.; Singer, M. The role of ADAMTS-13 in the coagulopathy of sepsis. J. Thromb. Haemost. 
2018, 16, 646–651, doi:10.1111/jth.13953. 

107. Dong, J.F.; Moake, J.L.; Nolasco, L.; Bernardo, A.; Arceneaux, W.; Shrimpton, C.N.; Schade, A.J.; McIntire, 
L.V.; Fujikawa, K.; Lopez, J.A. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand 
factor multimers on the endothelial surface under flowing conditions. Blood 2002, 100, 4033–4039, 
doi:10.1182/blood-2002-05-1401. 

108. Hussein, E.; Teruya, J. Evaluating the impact of the ABO blood group on the clinical outcome of thrombotic 
thrombocytopenic purpura associated with severe ADAMTS13 deficiency. Vox Sang. 2017, 112, 434–442, 
doi:10.1111/vox.12511. 

109. Schuppner, R.; Dirks, M.; Grosse, G.M.; Bockmann, M.; Goetz, F.; Pasedag, T.; Bode-Boger, S.M.; Martens-
Lobenhoffer, J.; Budde, U.; Lanfermann, H.; et al. ADAMTS-13 activity predicts outcome in acute ischaemic 
stroke patients undergoing endovascular treatment. Thromb. Haemost. 2018, 118, 758–767, doi:10.1055/s-
0038-1637732. 

110. Wu, Y.; Liu, W.; Zhou, Y.; Hilton, T.; Zhao, Z.; Liu, W.; Wang, M.; Yeon, J.; Houck, K.; Thiagarajan, P.; et al. 
von Willebrand factor enhances microvesicle-induced vascular leakage and coagulopathy in mice with 
traumatic brain injury. Blood 2018, 132, 1075–1084, doi:10.1182/blood-2018-03-841932. 

111. Cai, P.; Luo, H.; Xu, H.; Zhu, X.; Xu, W.; Dai, Y.; Xiao, J.; Cao, Y.; Zhao, Y.; Zhao, B.Q.; et al. Recombinant 
ADAMTS 13 attenuates brain injury after intracerebral hemorrhage. Stroke 2015, 46, 2647–2653, 
doi:10.1161/STROKEAHA.115.009526. 

112. South, K.; Denorme, F.; Salles, C., II; De Meyer, S.F.; Lane, D.A. Enhanced activity of an ADAMTS-13 
variant (R568K/F592Y/R660K/Y661F/Y665F) against platelet agglutination in vitro and in a murine model 
of acute ischemic stroke. J. Thromb. Haemost. 2018, 16, 2289–2299, doi:10.1111/jth.14275. 



Biomolecules 2020, 10, 403 17 of 18 

113. Yaykasli, K.O.; Oohashi, T.; Hirohata, S.; Hatipoglu, O.F.; Inagawa, K.; Demircan, K.; Ninomiya, Y. 
ADAMTS9 activation by interleukin 1 beta via NFATc1 in OUMS-27 chondrosarcoma cells and in human 
chondrocytes. Mol. Cell. Biochem. 2009, 323, 69–79, doi:10.1007/s11010-008-9965-4. 

114. Reid, M.J.; Cross, A.K.; Haddock, G.; Allan, S.M.; Stock, C.J.; Woodroofe, M.N.; Buttle, D.J.; Bunning, R.A. 
ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in 
the rat. Neurosci. Lett. 2009, 452, 252–257, doi:10.1016/j.neulet.2009.01.058. 

115. Schwartz, N.B.; Domowicz, M.S. Proteoglycans in brain development and pathogenesis. FEBS Lett. 2018, 
592, 3791–3805, doi:10.1002/1873-3468.13026. 

116. Abali, O.; Gokce, E.C.; Cemil, B.; Erdogan, B.; Yonezawa, T.; Demircan, K. Early induction of ADAMTS 1, 
-4, -5 and -9 in IL-stimulated mouse astrocytes. Turk. Neurosurg. 2014, 24, 519–524, doi:10.5137/1019-
5149.JTN.9043-13.2. 

117. Demircan, K.; Yonezawa, T.; Takigawa, T.; Topcu, V.; Erdogan, S.; Ucar, F.; Armutcu, F.; Yigitoglu, M.R.; 
Ninomiya, Y.; Hirohata, S. ADAMTS1, ADAMTS5, ADAMTS9 and aggrecanase-generated proteoglycan 
fragments are induced following spinal cord injury in mouse. Neurosci. Lett. 2013, 544, 25–30, 
doi:10.1016/j.neulet.2013.02.064. 

118. Cua, R.C.; Lau, L.W.; Keough, M.B.; Midha, R.; Apte, S.S.; Yong, V.W. Overcoming neurite-inhibitory 
chondroitin sulfate proteoglycans in the astrocyte matrix. Glia 2013, 61, 972–984, doi:10.1002/glia.22489. 

119. Hamel, M.G.; Ajmo, J.M.; Leonardo, C.C.; Zuo, F.; Sandy, J.D.; Gottschall, P.E. Multimodal signaling by the 
ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension. 
Exp. Neurol. 2008, 210, 428–440, doi:10.1016/j.expneurol.2007.11.014. 

120. Demircan, K.; Topcu, V.; Takigawa, T.; Akyol, S.; Yonezawa, T.; Ozturk, G.; Ugurcu, V.; Hasgul, R.; 
Yigitoglu, M.R.; Akyol, O.; et al. ADAMTS4 and ADAMTS5 knockout mice are protected from versican but 
not aggrecan or brevican proteolysis during spinal cord injury. BioMed Res. Int. 2014, 2014, 693746, 
doi:10.1155/2014/693746. 

121. Pruvost, M.; Lepine, M.; Leonetti, C.; Etard, O.; Naveau, M.; Agin, V.; Docagne, F.; Maubert, E.; Ali, C.; 
Emery, E.; et al. ADAMTS-4 in oligodendrocytes contributes to myelination with an impact on motor 
function. Glia 2017, 65, 1961–1975, doi:10.1002/glia.23207. 

122. Chapman, T.W.; Hill, R.A. Myelin plasticity in adulthood and aging. Neurosci. Lett. 2020, 715, 134645, 
doi:10.1016/j.neulet.2019.134645. 

123. Wei, J.; Richbourgh, B.; Jia, T.; Liu, C. ADAMTS-12: a multifaced metalloproteinase in arthritis and 
inflammation. Mediators Inflamm. 2014, 2014, 649718, doi:10.1155/2014/649718. 

124. Muhleisen, T.W.; Mattheisen, M.; Strohmaier, J.; Degenhardt, F.; Priebe, L.; Schultz, C.C.; Breuer, R.; Meier, 
S.; Hoffmann, P.; Investigators, G., et al. Association between schizophrenia and common variation in 
neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophr. Res. 2012, 138, 69–73, 
doi:10.1016/j.schres.2012.03.007. 

125. Oruc, L.; Kapur-Pojskic, L.; Ramic, J.; Pojskic, N.; Bajrovic, K. Assessment of relatedness between neurocan 
gene as bipolar disorder susceptibility locus and schizophrenia. Bosn. J. Basic Med. Sci. 2012, 12, 245–248, 
doi:10.17305/bjbms.2012.2446. 

126. Schultz, C.C.; Muhleisen, T.W.; Nenadic, I.; Koch, K.; Wagner, G.; Schachtzabel, C.; Siedek, F.; Nothen, 
M.M.; Rietschel, M.; Deufel, T.; et al. Common variation in NCAN, a risk factor for bipolar disorder and 
schizophrenia, influences local cortical folding in schizophrenia. Psychol. Med. 2014, 44, 811–820, 
doi:10.1017/S0033291713001414. 

127. Bespalova, I.N.; Angelo, G.W.; Ritter, B.P.; Hunter, J.; Reyes-Rabanillo, M.L.; Siever, L.J.; Silverman, J.M. 
Genetic variations in the ADAMTS12 gene are associated with schizophrenia in Puerto Rican patients of 
Spanish descent. Neuromolecular Med. 2012, 14, 53–64, doi: 10.1007/s12017-012-8169-y. 

128. Koike, A.; Nishida, N.; Inoue, I.; Tsuji, S.; Tokunaga, K. Genome-wide association database developed in 
the Japanese Integrated Database Project. J. Hum. Genet. 2009, 54, 543–546, doi:10.1038/jhg.2009.68. 

129. Ishii, K.; Kubo, K.I.; Nakajima, K. Reelin and neuropsychiatric disorders. Front. Cell. Neurosci. 2016, 10, 229, 
doi:10.3389/fncel.2016.00229. 

130. Ogino, H.; Hisanaga, A.; Kohno, T.; Kondo, Y.; Okumura, K.; Kamei, T.; Sato, T.; Asahara, H.; Tsuiji, H.; 
Fukata, M.; et al. Secreted metalloproteinase ADAMTS-3 inactivates Reelin. J. Neurosci. 2017, 37, 3181–3191, 
doi:10.1523/JNEUROSCI.3632-16.2017. 



Biomolecules 2020, 10, 403 18 of 18 

131. Yamakage, Y.; Tsuiji, H.; Kohno, T.; Ogino, H.; Saito, T.; Saido, T.C.; Hattori, M. Reducing ADAMTS-3 
inhibits smyloid beta feposition in App knock-in mouse. Biol. Pharm. Bull. 2019, 42, 354–356, 
doi:10.1248/bpb.b18-00899. 

132. Yamakage, Y.; Kato, M.; Hongo, A.; Ogino, H.; Ishii, K.; Ishizuka, T.; Kamei, T.; Tsuiji, H.; Miyamoto, T.; 
Oishi, H.; et al. A disintegrin and metalloproteinase with thrombospondin motifs 2 cleaves and inactivates 
Reelin in the postnatal cerebral cortex and hippocampus, but not in the cerebellum. Mol. Cell. Neurosci. 
2019, 100, 103401, doi:10.1016/j.mcn.2019.103401. 

133. Ma, J.H.; Sun, X.Y.; Guo, T.J.; Barot, E.; Wang, D.F.; Yan, L.L.; Ni, D.W.; Huang, N.H.; Xie, Q.; Zeng, J.; et 
al. Association on DISC1 SNPs with schizophrenia risk: A meta-analysis. Psychiatry Res. 2018, 270, 306–309, 
doi:10.1016/j.psychres.2018.09.056. 

134. Walter, S.; Jumpertz, T.; Huttenrauch, M.; Ogorek, I.; Gerber, H.; Storck, S.E.; Zampar, S.; Dimitrov, M.; 
Lehmann, S.; Lepka, K.; et al. The metalloprotease ADAMTS4 generates N-truncated Abeta4-x species and 
marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer's disease. Acta Neuropathol. 
2019, 137, 239–257, doi:10.1007/s00401-018-1929-5. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


