
 

Biomolecules 2020, 10, 318; doi:10.3390/biom10020318 www.mdpi.com/journal/biomolecules 

Article 

Kernel Differential Subgraph Analysis to Reveal the 

Key Period Affecting Glioblastoma 

Jiang Xie 1,*, Jiamin Sun 1, Jiatai Feng 1, Fuzhang Yang 1, Jiao Wang 2,*, Tieqiao Wen 2 and Qing 

Nie 3 

1 School of Computer Engineering and Science, Shanghai University, NanChen Road 333, Shanghai 200444, 

China; jiaminsun@i.shu.edu.cn (J.S.); fjtoo@shu.edu.cn (J.F.); crevenyoung@shu.edu.cn (F.Y.) 
2 Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Nanchen Road 333, 

Shanghai 200444, China; wtq@shu.edu.cn (T.W.) 
3 Department of Mathematics, the Center for Mathematical and Computational Biology, and the Center for 

Complex Biological Systems, University of California-Irvine, Irvine, CA 92697, USA; qnie@math.uci.edu 

(Q.N.) 

* Correspondence:  jiangx@shu.edu.cn (J.X.); Jo717@shu.edu.cn (J.W.); Tel.: +86-021-6613-5539 (J.X.); +86-021-

6613-2665 (J.W.) 

Received: 23 October 2019; Accepted: 10 February 2020; Published: 17 February 2020 

Abstract: Glioblastoma (GBM) is a fast-growing type of malignant primary brain tumor. To explore 

the mechanisms in GBM, complex biological networks are used to reveal crucial changes among 

different biological states, which reflect on the development of living organisms. It is critical to 

discover the kernel differential subgraph (KDS) that leads to drastic changes. However, identifying 

the KDS is similar to the Steiner Tree problem that is an NP-hard problem. In this paper, we 

developed a criterion to explore the KDS (CKDS), which considered the connectivity and scale of 

KDS, the topological difference of nodes and function relevance between genes in the KDS. The 

CKDS algorithm was applied to simulated datasets and three single-cell RNA sequencing (scRNA-

seq) datasets including GBM, fetal human cortical neurons (FHCN) and neural differentiation. Then 

we performed the network topology and functional enrichment analyses on the extracted KDSs. 

Compared with the state-of-art methods, the CKDS algorithm outperformed on simulated datasets 

to discover the KDSs. In the GBM and FHCN, seventeen genes (one biomarker, nine regulatory 

genes, one driver genes, six therapeutic targets) and KEGG pathways in KDSs were strongly 

supported by literature mining that they were highly interrelated with GBM. Moreover, focused on 

GBM, there were fifteen genes (including ten regulatory genes, three driver genes, one biomarkers, 

one therapeutic target) and KEGG pathways found in the KDS of neural differentiation process from 

activated neural stem cells (aNSC) to neural progenitor cells (NPC), while few genes and no 

pathway were found in the period from NPC to astrocytes (Ast). These experiments indicated that 

the process from aNSC to NPC is a key differentiation period affecting the development of GBM. 

Therefore, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes 

and KDSs. 

Keywords: glioblastoma; kernel differential subgraph; complex networks; single-cell; scRNA-seq 

 

1. Introduction 

Glioblastoma (GBM) is one of the most common and lethal primary tumors, which has a poor 

prognosis and patients usually survive less than 15 months following diagnosis [1,2]. It is notoriously 

difficult to treat due to its diffuse nature and our limited knowledge of its molecular pathogenesis 
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[3]. The important steps for determining the optimal therapeutic strategies are understanding the 

mechanisms of the dynamic processes and identification of new potential biological modules. 

Compared with the bulk RNA sequencing, single-cell RNA sequencing (scRNA-seq) can 

provides important information for inter-cellular transcriptomic heterogeneity and dissecting the 

interplay between the cancer cells and the associated microenvironment. scRNA-seq is increasingly 

used to study gene expression at the level of individual cells and graduated processes such as 

development and differentiation, adding another dimension to understand gene expression 

regulation and dynamics [4]. Occurrence and development of cancers are governed by complex 

networks of interacting intercellular and intracellular signals [5,6].  

Complex biological networks are able to reveal biological mechanisms [7]. Moreover, differential 

network is often used to identify the kernel modules causing diversity by integrating dynamic gene 

expression changes. Bai Zhang proposed the differential dependency network (DNN) method [8], 

which is based on local dependency, to detect topological changes across different biological 

conditions. A differential network-based methodology [9] can identify candidate target genes and 

chemical compounds for reverting disease phenotypes. BioNetStat is a tool for biological networks 

differential analysis by the methods grounded on network theory [10]. Furthermore, crucial changes 

among networks of different states are capable of reflecting on the development of living organisms 

[11]. Therefore, it is critical to discover the kernel differential subgraph (KDS) which leads to drastic 

changes. Discovering the KDS is similar to the Steiner Tree problem which is a NP-hard problem [12]. 

Topology-based KDS (TKDS) [13] is a method to discover the KDS from gene regulatory networks of 

omics datasets. SMT-Neurophysiology [12] is a tool in the form of an approximation to the Steiner 

Minimal Tree (SMT) algorithm, which is to find biomedically-meaningful KDS in neurophysiology. 

These methods could discover the KDS in different states. However, the accuracy of these methods 

was not high enough. And moreover, these methods did not fully consider the changes of topology. 

The kernel differential subgraph (KDS) is a small-scale connected network with the differential 

nodes and edges. Considering the multiple factors affecting the subgraph, we developed a criterion 

to discover the kernel differential subgraph (CKDS). Specially, the criterion considers the connectivity 

and scale of KDS, the topological difference of nodes and function relevance between genes in the 

KDS.  

To demonstrate the effectiveness of our method, we applied CKDS to simulated datasets and 

three scRNA-seq datasets including GBM, fetal human cortical neurons (FHCN) and neural 

differentiation. Additional network topology and functional enrichment analyses were performed on 

the extracted KDSs influencing GBM closely. 
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2. Materials and Methods  

2.1.A Framework of a Criterion to Discover the Kernel Differential Subgraph (CKDS) 

2.1.1. Raw Data Pre-Treatment and Differential Expressed Genes Identification 

Raw scRNA-seq counts data is usually downloaded from the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/). The raw counts data is converted to read-counts-per-million 

(CPM) gene expression matrix using the ‘cpm’ function by R package ‘edgeR’ [14]. The processed 

matrix is divided into cancer and normal gene expression matrix shown in Figure 1. 

 

Figure 1. The overall framework for criterion to explore the kernel differential subgraph (CKDS). 

KDS: kernel differential subgraph. 

Differential expressed genes (DEGs) are detected from the processed scRNA-seq data by R 

package ‘edgeR’. Similar to the analysis of differential gene expression, we use ‘p-value, p.adjust and  

log2FC’ to obtain the DEGs by the gene expression. The R function ‘p.adjust’ is to adjust the p-values 

by ‘false discovery rate (fdr)’ method [15]. Fold change (FC) [16] is calculated simply as the ratio of 

the difference between final value and the initial value over the original value. In the field of 

bioinformatics, we commonly use log2 for expressing the FC (log2FC). The genes with the p-value < 

0.01, p.adjust < 0.05 and |����FC| > 2 are considered as DEGs.  

2.1.2. Single-Cell Transcriptome Network Construction by Differential Expressed Genes 

Single-cell transcriptome data may lead to high false positives [17]. Therefore, integrated multi-

omics data analysis has become a trend to solve it in biological network analysis [18]. Proteomics and 

transcriptomics data are integrated to construct a network [19], in which protein–protein networks 

(PPN) are used as a backbone network, and Pearson correlation coefficient (PCC) between expression 

of each pair of genes is used as the weight of edge. In this work, DEGs are connected with known 

protein–protein interactions (PPIs) documented in STRING database (v10.5, https://string-

db.org/cgi/input.pl). Previous research has shown that when applied to real data, only edges with 

top 10% PCC were reserved [20]. In the generated STRING network, compared with the original one, 

over 90% edges disappear, and due to the generic property that the network structure would remain 

stable during the stable biological stage. At the same time, in order to ensure the effectiveness of PCC, 

we set |PCC| ≥ 0.6 [21]. Thus, the association of two differential genes is defined as the weight of the 

edge, and only genes with the value of top 10% PCC and |PCC| ≥ 0.6 are reserved. 
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2.1.3. Calculating Differential Value of Genes by Graphlet Vector 

Graphlets are small connected non-isomorphic induced subgraphs containing 2, 3, 4, or more 

nodes [22–24]. The graphlets of 2–4 nodes are shown in Figure 2. For 2, 3, and 4-node graphlets, the 

nodes in same color mean the nodes with the same topological structure (degree). There are 15 

different kinds of nodes labelled orbits0-orbits14. Each node in the network obtains specific graphlet 

vector by calculating the frequency in 15 dimensions.  

 

Figure 2. 2–4-node graphlets G0–G8 and their automorphism orbits0–orbits14 [25]. 

For the node � ∈ �, �� ∈ �′, ��  denotes the ith coordinate of its signature vector, i.e. �� is the 

number of times node � is touched by an orbit i in �. The distance  ��(�, ��) between the ith orbits 

of nodes � and �� is defined as [25]: 

                       ��(�, ��) = �� ×
|log(�� + 1) − log(��

� + 1)|

log(max{�� , ��
�} + 2)

                         (1) 

where ��  is the weight of orbit i that accounts for dependencies between orbits [25]. 

As shown in Equation (2), the d-value between nodes � and �� means the total distance. 

                           � − value(�, ��) =
∑ ��

��
��� (�, ��)

∑ ��
��
���

                                         (2) 

The distance � − value(�, ��) is in (0, 1), where distance 0 means that signatures of nodes � and 

�� are identical [25]. The more topological structure varies, the larger d-value is. Nodes with d-value 

larger than 0.4 [23] are selected into the differential nodes set D for the further analysis. 

2.1.4. The Criterion to Extract Kernel Differential Subgraph 

Kernel differential subgraph extraction is similar to Steiner Tree problem, which is an NP-hard 

problem. In this work, the criterion to extract KDS is present by four principles. Firstly, the subgraph 

should be connected. A connected subgraph can discover the dense relationship between molecules. 

Secondly, the scale of subgraph should be as small as possible. A KDS is the most core subgraph with 

small scale of the entire network. Thirdly, the d-value of nodes with large topological difference 

calculated by graphlet should be as large as possible. Nodes with large differences in topology are 

often key nodes in the network. These nodes will be selected to extract the KDS. Fourthly, the 

functional relevance between genes should be as strong as possible. It means the higher weight of 

edges will be chosen to extract the KDS. 

There is a cancer network �(�, �) and a normal network �′(�, �′) representing two different 

states. � represents the set of v common nodes; � and �′ represent the set of edges respectively. 

Algorithm 1 describes the criterion to discover the KDS (CKDS), where �� represents the weight set 

of edges. The set � = {��, ��, … , ��}  represents the set of differential nodes with d-value � =

{��, ��, … , ��}. According to the sorted d-value � in descending order, we selected the differential 

nodes ��  (�� ≥ 0.4) [23] to add in KDS. When considering a new path added to KDS, ∑ �� and ∑ �� 

mean the sum of d-value of all nodes and weight of all edges on the path. The parameter � and � 

were coefficient designed to measure the importance of ∑ �� and ∑ ��. The estimation of the vector 

(�, �) is discussed in Section 3. ���� (����  and ����) indicates the KDS of different state. The 

pseudo code of this algorithm is shown below. 
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Algorithm: the criterion to discover the KDS (CKDS)  

Input: network �, network �′, common differential node set � = {��, ��, … , ��} with their d-value 

� = {��, ��, … , ��}. 

Output: KDS of � and �′. 

Sort � by their d-value � in descending order 

For � from 1 to 2 

Add �� to ���� 

For ��(� ≥ 2 ��� �� ≥ 0.4) in sorted D do  

if ��  is existed in ����   

continue 

 else if 

  if ��  directly connect with any node existed in ���� 

   add �� and its edge to ����  

  else if 

calculate the score of the shortest paths from ��  to each node in ����  by 

Equation (3),  

��������� = � ∗ � �� + � ∗ � ��                                           (3) 

  Add the path that has the highest ��������� to ���� 

End 

Return ����  

End 

Intersect ���� and ���� to get KDS of � and �′ 

After getting the KDS of �  and �′ , the KDS was constructed by Cytoscape 

(http://www.cytoscape.org/) [26].  

2.2. Topological Analyses on Kernel Differential Subgraph 

The centrality indexes including degree centrality (DC) [27], betweenness centrality (BC) [28], 

closeness centrality (CC) [29], and eigenvector centrality (EC) [30] were used to analyze the KDS. For 

a KDS � = (�, �) , �  and �  represent the set of nodes and edges respectively. Four centrality 

indexes are defined as follows, 

DC: DC means how many nodes connected to node � , and it can measure node �’s centrality 

apparently. |��|  is the number of node  � ’s neighbors. The degree of node �  is formalized by 

Equation (4), where 

                                                             ��(�) = |��|                                                          (4) 

BC: BC is the average length of the shortest paths through node �. Equation (5) is as follow: 

                                                              ��(�) = �
���(�)

���
�����∈�

                                                            (5) 

In which, ��� is the total number of shortest paths from node � to node �. ���(�) means the 

number of those paths that go through node �. 

CC: In the network V with �  nodes, closeness centrality means the degree that node � 

communicates with other nodes set � = {��, ��, … , ��}, 0 ≤  m ≤ n − 1. It is calculated by Equation (6): 

                                                          ��(�) =
� − 1

∑ ����(�, ��)���
���

                                                   (6) 

����(�, �) is the distance of the shortest path from node � to node ��. 

EC: EC is a measure of the influence of node � on a network. It assigns relative scores to all 

nodes in the network based on the concept that connections to high-scoring nodes contribute more 

to the score of the node in question than equal connections to low-scoring nodes [30]. The EC score 

of node � is shown as Equation (7): 
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                                                                     ��(�) = ���� (�)                                                           (7) 

���� is the eigenvector corresponding to the largest eigenvalue from A which is the adjacency 

matrix of KDS. 

Different topology analysis methods rely on different network topology structures, which may 

not comprehensively balance the importance of genes in different biological states. Therefore, we 

employed four centrality indexes (one local measurement method ’DC’ and three global 

measurement methods ‘BC, CC, and EC’). According to four centrality indexes, four scores of each 

node in the subgraph was calculated and normalized to the number in the range 0 to 1. Each node 

would have a score to evaluate the topological differences in Equation (8). Multiple centralities can 

be considered comprehensively to evaluate the node topology. 

                                               ������(�) = ��
�(�) + ��

� (�) + ��
�(�) + ��

�(�)                             (8) 

��
�(�), ��

� (�), ��
�(�), ��

�(�)  means four normalized centrality indexes of node � . In the 

following study, we focused on the nodes with top 10% score, which were with large topological 

differences in the KDS. 

2.3. Functional Enrichment Analyses 

The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 

were performed to understand the underlying biological mechanisms. GO analyses explored the 

biological significance of genes by R package ‘clusterProfiler’ [31]. The enriched GO terms with Gene-

Count > 5 and p-value < 0.05 were selected for further assessment [32]. In this paper, we also focused 

on the top 10% frequently occurring genes in the GO terms. The KEGG analyses were performed on 

pathways with p-value < 0.05.  

2.4. Evaluation Indicators 

The number of essential genes in the KDS could evaluate the performance of the algorithm. The 

more essential genes were found, the better the performance of the algorithm was.  

                                                                        ���� =
��

��

=
��

�� + ���

                                                     (9) 

As shown in Equation (9), ����  is calculated to evaluate the performance. ��  means the 

number of essential genes. �� is the number of essential genes in KDS, and ��� is the number of 

essential genes which are not predicted in KDS. ���� is similar to the evaluation indicator ‘Precision’ 

in binary classification problem. 

To better evaluate the performance, true negative (TN), false positive (FP), false negative (FN), 

and true positive (TP) [33] are used to calculate evaluation indicators, including Accuracy, Precision 

(����), Recall, and F1-Score as following. 

                                                           �������� =
�� + ��

�� + �� + �� + ��
                                          (10) 

                                                                  ��������� (����) =
��

�� + ��
                                              (11) 

                                                              ����������� = ������ =
��

�� + ��
                                         (12) 

                                                                �� =
2 ∗ ��������� ∗ ������

��������� + ������
                                                (13) 

Moreover, F1-Score is a handy indicator for measuring the accuracy of a binary classification 

model. F1-Score takes Precision and Recall into account, which ranges from 0 to 1. The algorithm is 

more excellent if the F1-Score is closer to 1. 

  



Biomolecules 2020, 10, 318 7 of 18 

3. Results and Discussion 

3.1. Simulated Data Generation 

According to the principles of biomolecular network [34], we used a simulated data generating 

algorithm [35] to generate simulated data.  

The algorithm could generate two networks with a list of essential genes and two sets of gene 

expression based on some parameters. The parameters of �� and �� mean the number of nodes, and 

� means the number of essential genes in the two networks. The parameter � means the proportion 

of differential edges driven by perturbed genes [35]. The smaller � is, the more difficult it is to find 

essential genes. In this paper, �� = �� = 100, � = 10, � = 0.1. 

Two hundred groups of simulated datasets were generated, in which 100 groups (Dataset I) 

were to get the vector (�, �)  in Equation (3) and 100 groups (Dataset II) were to compare the 

performance of CKDS with other methods.  

As the Equation (3) shows, the score of path is influenced by ∑ �� and ∑ ��, and parameter 

� and � were designed to measure the importance of ∑ �� and ∑ ��. In order to distinguish which 

variable is more influential, the sum of � and � was designed to be 1. For each of the 100 groups 

(Dataset I), the parameter � and � were taken from 0 to 1 respectively. Thus, the optimal ratio of 

� and �  can be generated by conducting experiments on resulted KDS’s prediction precision by 

Equation (11). 

As shown in Figure 3, the parameter � and � around 0.5 (�: b = 1: 1) gets the KDS with the 

highest Precision ( ����) . It reflects that ∑ ��  is as important as ∑ ��.  According to the four 

principles, the CKDS algorithm considers the connectivity and scale of KDS, the topological 

difference of nodes and function relevance between genes in the KDS. The reason why the ratio of a 

to b is 1:1 is that when a new shortest path is added to the KDS, the ratio of the number of the points 

and edges is 1:1. The newly shortest added path meets four principles very well. The value of �� and 

�� are between 0 and 1 respectively. The ratio of ∑ �� to ∑ ��  is close to 1.  

 

Figure 3. Three-dimensional (3D) Surface Graph of the result of Dataset I. The x-axis and y-axis 

represent the value of a and b respectively, and the z-axis represents the value of evaluation indicator 

precision (����). 

The experiment results showed that when the ratio of � and � is about to 1, the generated KDS 

can perform well and acquire the reliable result. According to the four principles of CKDS, the final 

equation to calculate the path in this paper is shown as Equation (14). 
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                                                       ��������� = � �� + � ��                                                     (14) 

3.2. Comparison with other Methods on Simulated Datasets 

In our work, we compared CKDS with other three differential kernel subgraph extraction 

algorithms: SMT-Neurophysiology (KDS-SMT) [12], TDKS [13] and KDS based on Floyd (KDS-Floyd) 

[36]. Each algorithm would get a KDS with essential genes. One hundred groups of simulated 

datasets(Dataset II) with 10 essential genes were generated to assess the performance of the four 

algorithms.  

After calculating the evaluation indicators by Equations (10)–(13), the results show CKDS is 

superior to other three algorithms on those measures (Table 1). It proves that CKDS has a good 

performance to find KDS with essential genes. This is because that CKDS combines multiple 

principles, which is capable of taking various kinds of differences into consideration. 

Table 1. The evaluation indicators of three classical methods compared with CKDS. TKDS: 

Topology-based KDS; KDS-SMT: kernel differential subgraph-Steiner Minimal Tree. 

Methods 

Indicators 
KDS-SMT 

KDS-

Floyd 
TKDS CKDS 

Accuracy 87.51% 81.30% 83.72% 88.86% 

Precision (����) 0.684 0.793 0.797 0.871 

Recall 42.30% 32.29% 35.87% 46.93% 

F1-Score 0.523 0.459 0.495 0.610 

3.3. The Kernel Differential Subgraph Analyses for Single-Cell RNA-Seq Datasets of Glioblastoma 

3.3.1. Single-Cell RNA-Seq Datasets of Glioblastoma and Fetal Human Cortical Neuron 

The raw scRNA-seq data was downloaded from the GEO database. To compare GBM and 

normal cells, 134 fetal human cortical neurons (FHCN) [37] (GSE67835, 25 June, 2019) and 3589 

human glioblastoma cells from Darmanis et al [38] (GSE84465, 25 June, 2019) were downloaded to 

discover the KDS between two states. 

Using two scRNA-seq datasets, differential expressed analyses were performed by ‘egdeR’ [14]. 

As shown in Figure 4(a), 3547 genes were defined as DEGs. Two networks were constructed by the 

method illustrated in section 2.1.2. The GBM network consists of 912 nodes with 1986 edges and the 

FHCN network consisted of 518 nodes with 594 edges. There were 387 common genes in two 

networks. The common genes were sorted by calculating the graphlet vector in descending order. 

Finally, using the CKDS algorithm, the KDS of GBM and FHCN was discovered, consisting of 106 

genes with a total of 141 interactions in Figure 4(b). 
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Figure 4. The datasets and KDS of glioblastoma (GBM) and fetal human cortical neurons (FHCN). (a) 

The pre-treatment datasets of GBM and FHCN. (b) The KDS of GBM and FHCN. The bolded border 

indicates the genes with high topological differences. The genes marked in red are frequently 

occurring in Gene Ontology (GO) terms. The genes marked in blue are enriched in glioma pathway 

by KEGG enrichment analysis. The half blue half red nodes indicate that the genes occur frequently 

in GO terms and are enriched in glioma pathway by Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analyses. 

3.3.2. The Analyses of Kernel Differential Subgraph 

In order to explore the biological mechanisms of GBM, we used network topology and functional 

enrichment analysis methods on the extracted KDS. However, there is no golden standard in evaluate 

KDSs in real bio-network. In this paper, the effectiveness of the method can be accessed by literature 

mining. 

According to four centrality indexes, each node in KDS was calculated by Equation (6). We 

focused on the top 10% nodes with the highest score in KDS. Eleven genes with large topological 

differences (TGFB1, ITPKB, HRAS, NFKB1, PML, MYD88, ACTN1, CSF1, GAS6, DAB2 and CSNK2B) 

were chosen from the KDS of GBM and FHCN in Figure 4(b). Eight of the eleven genes were 

supported by the literature arguing that they had great influence on GBM. Among them, TGFB1, PML 

and GAS6 are therapeutic targets for GBM. NFKB1, CSF1 and LYN are regulatory genes which 

facilitate progression of GBM. MYD88 is a biomarker to divide GBM patient. ACTN1 is regulated 

during the development of astrocytoma cells. HRAS is a driver gene that expression of oncogenic 

HRAS results in a malignant phenotype in glioma cell lines (Table 2.).  

Table 2. The biological functions, corresponding PubMed IDs and literatures for genes with large 

topological changes between GBM and FHCN. 

Symbol: Gene name Function roles in GBM PMID Reference 

TGFB1: transforming 

growth factor beta 1 

the oncogenic MSH6-CXCR4-TGFB1 feedback loop 

is a novel therapeutic target for GBM 
30867843 [39] 

HRAS: HRas proto-

oncogene, GTPase 

expression of oncogenic HRAS results in a 

malignant phenotype in glioma cell lines 
27834733 [40] 

NFKB1: nuclear factor 

kappa B subunit 
increase glioma cancer risk 

30450997 [41] 

 

PML: promyelocytic 

leukemia 

a PML/SLIT1 axis regulates sensitivity to the 

PML-targeting drug arsenic trioxide in 

primary GBM cells 

28700942 [42] 
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MYD88: MYD88 innate 

immune signal 

transduction adaptor 

divide GBM patient 29168084 [43] 

ACTN1: actinin alpha 1 
influence the development of astrocytoma 

cells 
20156433 [44] 

CSF1: colony stimulating 

factor 1 

CSF1 signaling is oncogenic during 

gliomagenesis through a mechanism distinct 

from modulating GAM polarization status. 

27013192 [45] 

 

GAS6: growth arrest 

specific 6 

represent a potential new approach for 

glioma treatment 
18172262 [46] 

 

The eleven genes that top 10% frequently occurred in the enriched GO terms were selected from 

GBM and FHCN and marked in red in Figure 4(b). Supported by the literature, ten of the eleven 

genes had great influence on GBM. Among them, EGFR, DAXX, ANXA1, ANXA2 and LYN are 

regulatory genes which promote glioma growth. HSPA1B, EPHA3, INSR and TGFB1 are functional 

therapeutic targets in glioblastoma (Table 3). MAP2K1 is enriched in the KEGG pathway(hsa05214) 

for GBM. 

Table 3. The biological functions, corresponding PubMed IDs and literature references for enriched 

genes by GO enrichment analyses between GBM and FHCN. 

Symbol: Gene name Function roles in GBM 
PMID 

Reference 

EGFR: Epidermal growth 

factor receptor 
promote glioma growth and angiogenesis 

22139077 

[47] 

 

DAXX: death domain 

associated protein 

targeting telomerase and ATRX/DAXX inducing tumor 

senescence and apoptosis in the malignant glioma 

30625996 

[48] 

 

ANXA1: Annexin A1 enhance cancer growth and migration 
29263330 

[49] 

ANXA2: Annexin A2 

affect the proliferation of human glioma cells through 

the STAT3 cyclin D1 pathway via direct interaction with 

STAT3 in U251 and U87 glioma cells 

31115554 

[50] 

 

LYN: LYN proto-

oncogene, Src family 

tyrosine kinase 

facilitate glioblastoma cell survival under conditions of 

nutrient deprivation by promoting autophagy 

23936469 

[51] 

 

HSPA1B: heat shock 

protein family A (Hsp70) 

member 1B 

therapeutic targets for enhancing the efficacy of 

erlotinib against GBMs 

19301967 

[52] 

EPHA3: EPH receptor A3 
a functional tumour-specific therapeutic target in 

glioblastoma 

30562956 

[53] 

INSR: insulin receptor 

activation of the InsR/IGF1R pathway confers resistance 

to EGFR inhibitors in EGFR-dependent glioblastoma 

through AKT regulation 

26561558 

[54] 

 

TGFB1: transforming 

growth factor beta 1 

the oncogenic MSH6-CXCR4-TGFB1 feedback loop is a 

novel therapeutic target for GBM 

30867843 

[39] 

 

By KEGG enrichment analysis, there was an enriched KEGG pathway (hsa05214: HRAS, 

MAP2K1, EGFR and CCND1) for GBM.  

In summary, by the topology and functional enrichment analyses on the KDS, seventeen genes 

(nine regulatory genes, six therapeutic targets, one driver gene, one biomarker) and one pathway 

were found, which were closely interrelated with GBM. The experiments indicated that the KDS 

extracted by CKDS reflected the large differences between GBM and FHCN, which highly influenced 

on the development of GBM. 
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3.4. The Kernel Differntial Subgraph Analyses for Single-Cell RNA-Seq Datasets of Neural Differentiation 

3.4.1. Single-Cell RNA-Seq Datasets of Neural Differentiation 

To further explore the effects of neurodevelopmental stages and the development of GBM, the 

raw scRNA-seq data of neural differentiation about neural stem cell lineages from adult mice, 

including 152 activated neural stem cells (aNSCs), 64 produce neural progenitor cells (NPCs) and 31 

astrocytes (Asts) were downloaded from the reference [55]. Three different stages of neural stem cell 

lineage are divided to Group A (aNSCs and NPCs) and Group B (NPCs and Asts). 

Differential expressed analysis was performed by ‘egdeR’ packages. 1039 DEGs and 790 DEGs 

were extracted from two groups respectively (Figure 5(a) and Figure 5(b)). The networks were 

constructed by section 2.1.2. In Group A, the aNSCs network consisted of 504 nodes with 1492 edges 

and the NPCs network consisted 686 nodes with 2682 edges. In Group B, the NPCs network consisted 

of 544 nodes with 2686 edges and the Asts network consisted of 559 nodes with 2724 edges. There 

were 485 and 517 common genes in two groups respectively. The common genes in each group were 

sorted by calculating the graphlet vector in descending order.  

Using the CKDS algorithm, two KDSs of the two groups were discovered, consisting of 107 genes 

with 151 interactions in KDS-A and 109 genes with 144 edges in KDS-B, as shown in Figure 5(c) and 

Figure 5(d). 
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Figure 5. The datasets and KDSs of neural differentiation. The pre-treatment datasets of Group A (a) 

and Group B (b). The KDSs of Group A (c) and Group B (d). In (c) and (d), the bolded border indicates 

the genes with high topological differences. The genes marked in red are frequently occurring in GO 

terms. The genes marked in blue are enriched in Glioma pathway by KEGG enrichment analyses. The 

half blue half red nodes indicate that the genes occur frequently in GO terms and are enriched in 

Glioma pathway by KEGG enrichment analyses. 

3.4.2. Kernel Differential Subgraph Analyses 

In Group A, according to four centrality indexes, top 10% genes with large topological 

differences in KDS-A was calculated by Equation (6). Eleven genes (Src, Egfr, Gab1, App, Numb, Plcg1, 

Efnb3, Ptprk, Actn1, Notch2 and Gsn) were chosen from the KDS-A. The border lines of these genes 

are bolded in Figure 5(c). Supported by the literature (Table 4), eight of the eleven genes have 

influence on GBM. Among them, Src is a driver gene which inhibit the growth of GBM and reduce 

its survival. Egfr, Gab1, App and Efnb3 are regulatory genes which promote glioma cell proliferation. 

Numb has effective anti-cancer therapy in glioblastoma. Plcg1 induces GBM radioresistance. Notch2 

and miR-181a have potential prognostic value as tumor biomarkers in GBM patients.  

Compare with Group A, only few genes (Hsp90aa1, Eprs and Hsp90ab1) supported by the 

literature references in KDS-B which have influence on GBM (Table 5). 

Table 4. The biological functions, corresponding PubMed IDs and literatures for genes with large 

topological changes between activated neural stem cell (aNSC) and neural progenitor cells (NPC). 

Symbol: Gene name Function roles in GBM 
PMID 

References 

Src: SRC proto-oncogene, non-

receptor tyrosine kinase 

Reduce human glioma stem cell migration, 

invasion, and survival 

28712848 [56] 

 

Egfr: Epidermal growth factor 

receptor 
Promote glioma growth and angiogenesis 22139077 [47] 

Gab1: GRB2 associated binding 

protein 1 
Promote glioma cell proliferation 30016785 [57] 

App: amyloid beta precursor 

protein 

Promote the proliferation of glioma cells to inhibit 

the differentiation of glioma cells 
28789439 [58] 

Numb: NUMB endocytic adaptor 

protein 
Effective anti-cancer therapy 31116627 [59] 

Plcg1: phospholipase C gamma 1 Induce Glioblastoma Radioresistance 26896280 [60] 

Efnb3: ephrin B3 Support glioblastoma growth 28423606 [61] 

Notch2: notch receptor 2 Tumor biomarkers in GBM  28389242 [62] 

 

Table 5. The biological functions, corresponding PubMed IDs and literatures for genes with large 

topological changes between NPC and astrocytes (Ast). 

Symbol: Gene name Function roles in GBM 
PMID 

Reference 

Hsp90aa1: heat shock protein 90 alpha family class 

A member 1 
survival signatures in GBM 22952576 [63] 

Eprs: glutamyl-prolyl-tRNA synthetase 
the protein coding genes in 

GBM 
30572911 [64] 

Hsp90ab1: heat shock protein 90 alpha (cytosolic), 

class B member 1 

predict prognosis in astrocytic 

tumors 
27258564 [65] 

 

From aNSCs to NPCs stage, top 10% frequently occurring genes in the enriched GO terms 

(Rab4a, Pten, Egfr, Rab10, Rac1, Fgfr1, Gnai1, Ntrk2, Rhob, Kras and Rhou) were selected to look for the 

biomarkers. These 11 gene nodes are marked in red in Figure 5(c). Supported by the literature, eight 

of the eleven genes have influence on GBM. Among them, Pten and Rac1 are driver genes which 

inhibit the migration and invasion of GBM. Egfr, Kras, Gnai1, Ntrk2 and Rhob are regulatory genes 
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which drive the initiation and progression of glioma. Fgfr1 induces GBM Radioresistance. In KDS-B, 

seven genes (Hsp90aa1, Hsp90ab1, Atp1b2, Trp53, Hspa8, Usp22 and Atp1a2) are supported by the 

literature references which have influence on GBM (Table 6 and Table 7).  

Table 6. The biological functions, corresponding PubMed IDs and literature references for enriched 

genes by GO enrichment analyses between aNSC and NPC. 

Symbol: Gene name Function roles in GBM 
PMID 

Reference 

Pten: phosphatase and 

tensin homolog 

Reduce human glioma stem cell migration, invasion, 

and survival 

28712848 

[56] 

Egfr: Epidermal growth 

factor receptor 
Promote glioma growth and angiogenesis 

22139077 

[47] 

Rac1: Rac family small 

GTPase 1 
Inhibit the migration and invasion of glioma 

28714015 

[66] 

Fgfr1: fibroblast growth 

factor receptor 1 
Induce Glioblastoma Radioresistance 

26896280 

[60] 

Gnai1: G protein subunit 

alpha i1 

The growth of subcutaneous and orthotopic glioma 

xenografts 

29520106 

[67] 

Ntrk2: neurotrophic 

tyrosine kinase, receptor, 

type 2 

Promote tumor growth 
29625067 

[68] 

Rhob: ras homolog family 

member B 

Differential implication of Rho GTPases in 

morphology, proliferation rate and motility of human 

glioblastoma cells 

26741994 

[69] 

Kras: KRAS proto-

oncogene, GTPase 
Drive the initiation and progression of glioma 

30946839 

[70] 

 

Table 7. The biological functions, corresponding PubMed IDs and literature references for enriched 

genes by GO enrichment analyses between NPC and Ast. 

Symbol: Gene name Function roles in GBM 
PMID 

Reference 

Hsp90aa1: heat shock protein 

90 alpha family class A 

member 1 

Survival signatures in GBM 
30572911 

[63] 

Hsp90ab1: heat shock protein 

90 alpha (cytosolic), class B 

member 1 

predict prognosis in astrocytic tumors 
27258564 

[65] 

Atp1b2: ATPase Na+/K+ 

transporting subunit beta 2 

Na⁺/K⁺-ATPase β2-subunit (AMOG) expression 

abrogates invasion of glioblastoma-derived brain 

tumor-initiating cells. 

23887941 

[71] 

 

Trp53: tumor protein p53 
Induce G1/S phase cell cycle arrest in glioblastoma 

cells 

31001122 

[72] 

Hspa8: heat shock protein 

family A (Hsp70) member 8 

Inhibition of nestin suppresses stem cell phenotype 

of glioblastomas 

25527454 

[73] 

Usp22: ubiquitin specific 

peptidase 22 

Increase the abilities of proliferation, migration and 

invasion of glioma cells, and promote the growth 

and development of glioma 

30223389 

[74] 

Atp1a2: ATPase, Na+/K+ 

transporting, alpha 2 

polypeptide 

Induce tumor progression and temozolomide 

resistance in glioma 

27837435 

[75] 

 

By KEGG enrichment analyses, the KDS enriched lots of KEGG pathways related to cancer, 

particularly, the KEGG pathway mmu05214 (Egfr, Plcg1, Kras and Pten) is exactly the pathway of 

GBM.  
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In summary, the KDS-A involved ten regulatory genes, three driver genes, one biomarkers, one 

therapeutic target of GBM. These fifteen genes and the KEGG pathway in KDS-A highly influenced 

on the development of GBM. However, there was few genes and no pathway of GBM in KDS-B.  

The topological and functional enrichment analyses indicated the genes and pathways 

associated with glioma and cancers are significantly reduced during the period from NPC to Ast. It 

suggests that the critical period of GBM development is from aNSC to NPC other than NPC to Ast.  

Gliomas are malignant primary tumors of the central nervous system. Their cell-of-origin is 

thought to be a neural progenitor or stem cell that acquires mutations leading to oncogenic 

transformation [76]. By the CKDS algorithm, we proved that the stage of aNSCs to NPCs is a critical 

period affecting the development of GBM. 

4. Conclusion 

Complex biological networks are used to explore the mechanisms in complex diseases. Crucial 

changes in different networks reflect on the development of living organisms. Therefore, it is 

significant to discover the KDS leading to drastic changes. 

In this work, we developed a criterion to discover KDS called CKDS. The criterion fully 

considered the factors affecting KDS, including the connectivity and scale of KDS, the topological 

difference of nodes and function relevance between genes in the KDS. As a result, the CKDS 

algorithm discovered the KDS in different states. 

The CKDS algorithm was applied to simulated datasets and three scRNA-seq datasets including 

GBM, FHCN, and neural differentiation. Compared with the other state-of-art methods, the CKDS 

algorithm outperformed in simulated datasets to discover the KDSs. In the scRNA-seq datasets, we 

performed the network topology and functional enrichment analyses on the extracted KDSs. Many 

genes, including genetic biomarkers, driver genes, regulatory genes, and therapeutic targets, and 

pathways in the KDSs are closely interrelated to GBM, indicating that CKDS could express the kernel 

difference between different states. Moreover, the KEGG pathway of GBM is only in neural 

differentiation period from aNSC to NPC other than NPC to Ast, indicating that the period from 

aNSC to NPC is an important neural differentiation period affecting the development of GBM. In 

addition, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes 

and KDSs. 

Based on the prediction of CKDS, the genes that were not supported by literature will be verified 

by conducting a series of biological experiments in the future. Moreover, the CKDS algorithm can be 

extended to scRNA-seq datasets of other complex diseases for detecting the molecular features of 

pathogenesis mechanisms and biomarkers. 
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