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Abstract: Antisense oligonucleotides (ASOs) are synthetically prepared short single-stranded
deoxynucleotide sequences that have been validated as therapeutic agents and as a valuable tool in
molecular driving biology. ASOs can block the expression of specific target genes via complementary
hybridization to mRNA. Due to their high specificity and well-known mechanism of action, there
has been a growing interest in using them for improving vaccine efficacy. Several studies have
shown that ASOs can improve the efficacy of vaccines either by inducing antigen modification such
as enhanced expression of immunogenic molecules or by targeting certain components of the host
immune system to achieve the desired immune response. However, despite their extended use, some
problems such as insufficient stability and low cellular delivery have not been sufficiently resolved to
achieve effective and safe ASO-based vaccines. In this review, we analyze the molecular bases and
the research that has been conducted to demonstrate the potential use of ASOs in vaccines.
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1. Introduction

For more than two centuries, vaccines have contributed to the eradication or control of important
diseases, and they have participated greatly in the increased life expectancy and the improvement of
sanitary conditions throughout the world [1]. However, despite the great success of vaccination in
public health, there are still many challenges. The lack of effective vaccines against several diseases
such as HIV/AIDS, malaria, and leishmaniasis; the re-emergence of other diseases such as tuberculosis;
and the appearance of new pathogenic organisms or known pathogens with increased virulence
stimulate the search for more effective vaccines than those available today [2,3].

The last decades have been marked by important advances in vaccine research and development.
The technology of recombinant DNA and the synthesis of peptides, the development of modern
bioinformatic tools, and the use of improved adjuvants and delivery systems have allowed the
development of more effective and safer vaccines based on rational designs [2,4]. Moreover, the
successful completion of the human genome project in the early 2000s ushered the genomics revolution,
which is beginning to have a great impact on vaccine research [4,5].

For many years, nucleic acids and short nucleotide molecules have been used as vaccine
components. Their use has ranged from DNA [6,7] or RNA vaccines [8,9], to oligonucleotide
sequences containing unmethylated cytidine phosphate guanosine (CpG) motifs with significant
immunostimulatory (adjuvant) properties [10,11]. More recently, strategies to manipulate the expression
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of genes controlling the immune response or the expression of antigens of interest are being used to
improve immunogenicity and vaccine efficacy.

Antisense oligonucleotides (ASOs) are synthetically prepared short single strands (usually 18–21
deoxynucleotides in length), complementary to a preRNA or an mRNA sequence of the target gene.
ASOs modify the expression of specific target genes, by either splicing modifications or by recruiting
RNase H leading to RNA degradation of RNA–DNA hetero-duplex, thus blocking the expression of
the target gene [12,13]. The availability of human genome sequence information, freely and publicly,
offers the possibility to obtain inexpensive specific synthetic oligonucleotides designed against a
specific target gene. The strengths of their pharmacological effects evidenced in in vitro and in vivo
models have favored the development of several drugs based on oligonucleotides that have been
approved by the FDA [14]. Currently, several groups are making efforts to improve vaccine efficacy
using ASOs with encouraging advances achieved over the last years, but some problems are still
hampering further progress on these fronts. These are mainly related to ASOs bioavailability and the
occurrence of potential off-target effects. In this review, we focus on the recent design of ASOs that
have yielded promising results in terms of vaccine immunogenicity improvement. Current challenges
and opportunities are also analyzed.

1.1. Earlier Uses of Oligonucleotides in Vaccines

In 1893, William Coley reported that a mixture of bacterial cell lysate, named Coley’s toxin, could
reduce the progression of some carcinomas [15]. Since the first description of the possible anti-tumor
effect of Coley’s toxin, there was much debate about its mechanism of action. More than 60 years
after Coley’s report, Taliaferro and Jaroslow [16] reported that preparations of nucleases-degraded
DNA and RNA could partially restore hemolysin production after a single intravenous injection
of sheep red blood cells (RBC) in rabbits that received 400 r total body X radiation. However, the
development of synthetic oligonucleotides for medical use was only possible after the discovery of
two chemical modifications, namely 2’fluoro (2´-F) substitutions [17,18], and Phosphorothioate (PTO)
chemistry [19]. Another important 2´ modification was developed in 1969, 2´-O-Methyl (2´-O-Me) [20],
a major alternative in many synthetic oligonucleotides. These chemical modifications improved the
cellular uptake of oligonucleotides and conferred protection against enzymatic degradation.

Several studies showed that oligonucleotides can stimulate the production of specific antibodies in
mature animals after concurrent administration of an antigen with either DNA or RNA digest [21,22].
At the same time, the immunogenic capacity of nucleic acids and their influence in autoimmune
diseases was demonstrated [23]. Moreover, Field et al. identified that complexes of polyinosinic and
polycytidylic acids (poly (I:C)) were highly active as inducers of interferon [24]. The biological basis for
this observation was understood more than three decades later when Toll-like receptor 3 (TLR3) was
reported to be the receptor for double-stranded RNA [25]. Related to these findings, Tokunaga et al.
identified bacterial DNA as the underlying component of a fraction extracted from Mycobacterium bovis
strain BCG that elicited an antitumor response in different in vitro and in vivo models [26]. After that,
these researchers cloned mycobacterial genes, synthesized diverse oligodeoxynucleotides (ODNs),
and observed that certain palindromes in these ODNs were responsible for activating the immune
response [27,28].

In 1995, Krieg et al. reported that unmethylated CpG dinucleotides (CpG ODN) within bacterial
DNA activate host defense mechanisms leading to innate and adaptive immune responses [29].
CpG ODN is a ligand of Toll-like receptor 9 (TLR-9) in antigen-presenting cells (APCs). CpG
ODN/TLR-9 interaction induces an innate immune response that promotes the subsequent development
of adaptive immunity [10]. CpG ODN can be divided into classes A, B, C, P, and S [30]. Their utility as
vaccine adjuvants has been evaluated in different clinical trials and the achieved results indicate that
CpG ODN augments the induction of vaccine-specific cellular and humoral responses [11]. In 2017,
the FDA approved HEPLISAV-B, the first vaccine with a CpG ODN as an adjuvant for hepatitis B
vaccines [31]. On the other hand, it has been reported that CpG ODN can induce high levels of
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pro-inflammatory cytokines, with potential risk for developing or worsening autoimmune diseases
and systemic inflammatory response syndrome (SIRS) [32–35].

1.2. Birth of ASOs

In 1978, Zamecnik and Stephenson used a synthetic ASO, which was complementary to 13
nucleotides of Rous sarcoma virus (RSV) RNA, to inhibit the translation of the viral RNA and
subsequently block the virus replication in a chick embryo fibroblasts culture [36,37]. One year
later, Donis-Keller reported that RNase H catalyzes the cleavage of the RNA strand in RNA/DNA
heteroduplexes [38] in a site-specific manner. That report demonstrated for the first time that ASOs
can work through an enzyme-mediated process in addition to steric blocking. The decade of the 80s
was marked by other advances. In 1983, Simons and Kleckner showed evidence of the existence of
naturally occurring antisense RNAs and suggested a role in the regulation of gene expression [39].
After that report, other authors successfully inhibited mRNA translation by anti-sense RNA [40–43].
Moreover, in that decade, different methods for the automatic synthesis of oligonucleotides were
developed [44,45] and the first antisense patent was presented in 1987, although this was publicly
available from 1995 [46].

Despite the advances achieved, the experimental and clinical use of unmodified ASOs was
limited as they were easily degraded by intracellular endonucleases and exonucleases, usually via
3′-5′ activity [47]. Thus, diverse chemical modifications have been developed to protect them against
nuclease degradation, increase their affinity and potency, extend their tissue half-life, and reduce the
undesired off-target effects (Table 1).
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Table 1. Summary of three generations of the most studied ASOs chemical modifications.

Chemical Modifications Characteristics Mechanisms Clinical Use Limitations

First Generation

Phosphorothioate (PTO),
Methylphosphonate

(MPO)

Either a sulfur atom (PTO), or a
methyl group (MPO) substitutes
the non-bridging oxygen atoms

in the phosphodiester bond.

First generation ASOs promote degradation of
target mRNA by RNase H enzyme. They also
confer higher solubility, resistance to nuclease

degradation, antisense activity and longer
plasma half-life as compared with
phosphodiester oligonucleotides.

PTO is the most widely used modification
of ASOs. Fomivirsen, is a PTO-modified

ASO, used as local treatment of
cytomegalovirus (CMV) retinitis in patients

with acquired immunodeficiency
syndrome (AIDS) [48].

High affinity for various cellular
proteins and components of the
innate immune system, such as
Toll-like receptors (TLRs), with

proinflammatory effects.
Commonly reported side effects

following systemic administration of
PTO ASOs include fever, activated

partial thromboplastin time
prolongation, thrombocytopenia,

and leukopenia.

Second Generation

ASOs with 2’-O-alkyl
modifications of the ribose.
Chimeric ‘gapmer’ ASOs

2’-O-Methyl (2’-OMe) and
2’-O-Methoxyethyl (2’-MOE)
are the most widely studied.

Chimeric ‘gapmer’ ASOs
consist in a central ‘gap’ region

containing 10 DNA or PTO
DNA monomers, flanked on
both 5’ and 3’extremities by

alkyl modified nucleotides such
as 2′-OM or 2’-MOE.

The PTO DNA induces RNase H cleavage
while 2′-OME or 2′-MOE on both sides (5′-

and 3′-directions) confers nuclease-resistance,
and they can exert activity by a steric

interference of translation process.
They are safer than PTO-modified ASOs and

exhibit enhanced affinity towards the
complementary RNA with better tissue uptake

and longer in vivo half-life.

Mipomersen is used as an adjunct therapy
for homozygous familial

hypercholesterolemia [49].
Nusinersen was approved for spinal

muscular atrophy treatment [50].
Apatorsen is a HSP27 targeting ASO that is
being studied in phase II clinical trials in

patients with metastatic castration resistant
prostate cancer [51] and Untreated Stage IV

Non-Squamous-Non-Small-Cell Lung
Cancer [52].

A subset of 2´-MOE-modified ASOs
induced pro-inflammatory cytokines
and type I interferons (IFN-α/β) and

interaction with innate immune
receptors such as TLR9,

melanoma-differentiation
associated-5 (MDA-5) and IFN-β

promoter stimulator-1 (IPS-1).
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Table 1. Cont.

Chemical Modifications Characteristics Mechanisms Clinical Use Limitations

Third Generation

Peptide nucleic acid
(PNA)

PNA is a synthetic DNA in
which the deoxyribose

phosphate backbone is replaced
by polyamide linkages.

PNA block the protein expression, by steric
hindrance, forming sequence-specific duplex

with the targeted mRNA. They are biologically
stable and have good hybridization properties.

The potential of PNA as drugs in gene
therapy has been hampered by the poor
intrinsic uptake of PNA by living cells.
Current strategies for improving PNA
delivery into the cytosolic space and

nucleus include microinjection,
electroporation, co-transfection with DNA,

or conjugation to lipophilic moieties,
nanoparticles, cell-penetrating peptides
(CPPs), oligo-aspartic acid, or nuclear
localization signal (NLS) peptides to

enhance cellular internalization

PNA do not activate the RNase H to
cleave the target hybridized RNA.

PNA have low solubility and cellular
uptake.

Phosphoramidate
morpholino oligomer

(PMO)

PMOs are neutral ASOs. The
pentose sugar is substituted by

a morpholino ring and the
inter-nucleotide linkages are
phosphoramidate bonds in

place of phosphodiester bonds.

The mechanism of PMO is the translational
arrest mediated by steric interference of
ribosomal assembly. PMO show fewer

nonspecific properties and lesser toxicity
than PTO.

Eteplirsen was approved for Duchenne
muscular dystrophy (DMD) treatment [53].

Other potential applications include the
treatment of viral infections,

antibiotic-resistant bacterial infections, and
cancers [54].

PMOs exhibit reduced cellular
uptake. Conjugation with peptides
such as arginine-rich peptide (ARP)
can enhance its cellular uptake and

antisense efficacy.

Locked nucleic acid (LNA)

LNAs are chemically modified
nucleotides with a ribose

containing a methylene bridge
between the 2′-oxygen and the

4′-carbon of the ribose.

LNA modifications improve the affinity of
ASO hybridization towards mRNA target, by

increase of the DNA/RNA heteroduplexes
thermal stability. LNAs avoid nuclease

degradation.

Diverse LNAs are currently in clinical trials
by several biotechnology firms.

LNA does not activate RNase. LNA
nucleotides can be incorporated at the
ends of RNA and DNA sequences to

form chimeric oligonucleotides
resulting in restoration of RNase
H-mediated cleavage of mRNA.
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After these first reports, notable progress has been made in ASOs pharmacology and now
different therapeutic ASOs against different diseases, including neurodegenerative, cardiovascular,
metabolic, inflammatory, infectious, and neoplastic diseases are being tested in clinical trials, and
several ASOs have been approved by the US Food and Drug Administration (FDA) to be used in
humans. Fomivirsen (Vitravene) was the first antisense drug approved in 1998 for cytomegalovirus
(CMV) retinitis [48]. In January 2013, the FDA approved mipomersen (Kynamro, Genzyme) for
homozygous familial hypercholesterolemia (HoFH) [49]. Both fomiversen and mipomersen were
developed by Isis Pharmaceuticals. More recently, nusinersen was approved for spinal muscular
atrophy [50] and eteplirsen for Duchenne Muscular Dystrophy [53]. There are many other ASOs in
different phases of clinical trials [14,54–56].

2. Molecular Basis of ASOs

ASOs and other forms of genetic therapies have emerged as an attractive therapeutic alternative
to monoclonal antibodies. Factors such as structure, stability, cellular, bioavailability, lack of
immunogenicity, specificity, relative low toxicity, and low cost indicate a great future perspective for
these molecules (Table 2).

Table 2. Key advantages of ASOs compared to monoclonal antibodies.

ASOs mAb

Molecular Weight ~6 to10 kDa ~150 kDa

Structure Relatively simple structure. Usually
13–20 mer with chemical modifications Glycoproteins with complex structure

Thermal Stability
Highly stable. Lyophilization and

freezing does not modify its biological
activity

Low stability. Cold chain through the
storage, handling, and transportation is

necessary

Cellular
Bioavailability

ASOs can penetrate the cells and act on
intracellular targets They are unable to penetrate the cells

Immunogenicity ASOs are not properly immunogenic
Highly immunogenic by xenogeneic
differences, e.g., between mice and

humans

Specificity Highly specific but off target
interaction can be observed

Highly specific but cross-reactivity can
be observed

Toxicity Relatively low toxicity Different grades of toxicity have been
described

Development and
Manufacturing

ASOs are obtained synthetically.The
use of vehicles can add complexity to

the manufacture process

The production for pharmacological
proposes requires high level of

technological complexity

2.1. Pharmacokinetics

Different factors such as the type of chemical modifications, the electric charge, and the use of
delivery systems are pivotal factors in the pharmacokinetic properties of ASOs, independently of
nucleotide sequence [57–59]. Following intravenous or subcutaneous administration, ASOs quickly
pass from the injection site to the circulation, and the highest plasma concentrations for first and
second-generation of ASOs are reached within 3–4 h with a rapid distribution phase to tissues in minutes,
followed by a slow elimination from tissues lasting a few hours [58]. Double-stranded RNA ASOs
and single-stranded neutral-backbone ASOs such as morpholinos exhibit low serum protein binding,
with limited tissue distribution, and they are rapidly eliminated by renal filtration [58,60]. In contrast,
first-generation PTO can interact with albumin and other serum proteins, extending their circulation
from minutes to a few hours and their tissue distribution [61]. Studies suggest that PTO-modified ASOs
can also interact with a large number of proteins on the cell surface and in the extracellular matrix and
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can be endocytosed into intracellular vesicles [62–64] After that, they bind to proteins that transport
them into the nucleus and perhaps promote the hybridization to RNAs [64–66]. The clearance and
elimination of PTO are facilitated by enzymatic degradation mediated by endo- and exonucleases that
results in small-molecular-weight fragments that are easily eliminated in urine [58]. Liver, kidneys,
bone marrow, adipocytes, and lymph nodes are the major systemic tissues of distribution [58,62]
Second-generation ASOs with 2’-O-alkyl modifications of the ribose are metabolized more slowly than
the first and third generation of ASOs, and the clearance half-lives occur in 2–4 weeks [58].

2.2. Mechanism of Action of ASOs

ASOs are designed to specifically block the transfer of the genetic information for the protein
synthesis by binding to a target RNA through Watson–Crick base pairing: A-T, C-G interaction [47].
They can modulate the processing, stability, or activity of specific RNAs by different mechanisms
that have been extensively analyzed in previous reviews [56,67,68]. Briefly, ASOs can directly stick to
pre-RNA or mRNA molecules and prevent the formation of the 5’-mRNA cap, modulate alternative
splicing, dictate the location of the polyadenylation site, and recruit RNAse H to cleave and degrade
the RNA target in the ASO-RNA complex. ASOs can also sterically block the ribosomal subunits from
attaching or running along with the mRNA transcript, hampering the translation process (Figure 1).

Biomolecules 2020, 10, 316 7 of 23 

to proteins that transport them into the nucleus and perhaps promote the hybridization to RNAs [64–
66]. The clearance and elimination of PTO are facilitated by enzymatic degradation mediated by 
endo- and exonucleases that results in small-molecular-weight fragments that are easily eliminated 
in urine [58]. Liver, kidneys, bone marrow, adipocytes, and lymph nodes are the major systemic 
tissues of distribution [58,62] Second-generation ASOs with 2’-O-alkyl modifications of the ribose are 
metabolized more slowly than the first and third generation of ASOs, and the clearance half-lives 
occur in 2–4 weeks [58]. 

2.2. Mechanism of Action of ASOs 

ASOs are designed to specifically block the transfer of the genetic information for the protein 
synthesis by binding to a target RNA through Watson–Crick base pairing: A-T, C-G interaction [47]. 
They can modulate the processing, stability, or activity of specific RNAs by different mechanisms 
that have been extensively analyzed in previous reviews [56,67,68]. Briefly, ASOs can directly stick 
to pre-RNA or mRNA molecules and prevent the formation of the 5'-mRNA cap, modulate 
alternative splicing, dictate the location of the polyadenylation site, and recruit RNAse H to cleave 
and degrade the RNA target in the ASO-RNA complex. ASOs can also sterically block the ribosomal 
subunits from attaching or running along with the mRNA transcript, hampering the translation 
process (Figure 1). 

 

Figure 1. Main mechanisms of action of antisense oligonucleotides. (A) Normal gene and protein 
expression in the absence of ASO. (B) In cytoplasm, ASOs can bind to a complementary mRNA 
region. ASO-mRNA heteroduplex can induce the activation of RNase H, leading to mRNA 
degradation. Alternatively, ASOs can block the translation process without promoting RNA 
degradation by steric interference of ribosomal assembly. (C) ASO can enter the nucleus and hinder 
mRNA maturation by inhibition of 5′ cap formation, RNase H-mediated pre-RNA cleavage, and 
inhibition of mRNA splicing. 

2.3. Toxicology of ASOs 

In addition to the Watson–Crick interaction, ASOs can form other interactions, such as 
electrostatic links with polycations and positively charged proteins, noncanonical base-pairing with 
themselves and other nucleic acids, and sequence-specific interaction with proteins [69]. These non-
antisense interactions can cause different toxicity manifestations [70–75]. 

Figure 1. Main mechanisms of action of antisense oligonucleotides. (A) Normal gene and protein
expression in the absence of ASO. (B) In cytoplasm, ASOs can bind to a complementary mRNA region.
ASO-mRNA heteroduplex can induce the activation of RNase H, leading to mRNA degradation.
Alternatively, ASOs can block the translation process without promoting RNA degradation by steric
interference of ribosomal assembly. (C) ASO can enter the nucleus and hinder mRNA maturation by
inhibition of 5′ cap formation, RNase H-mediated pre-RNA cleavage, and inhibition of mRNA splicing.

2.3. Toxicology of ASOs

In addition to the Watson–Crick interaction, ASOs can form other interactions, such as electrostatic
links with polycations and positively charged proteins, noncanonical base-pairing with themselves
and other nucleic acids, and sequence-specific interaction with proteins [69]. These non-antisense
interactions can cause different toxicity manifestations [70–75].

The toxicity of ASOs is classified into two categories: hybridization-independent (non-
pharmacologic) or hybridization-dependent (pharmacologically based) mechanisms [72] (Figure 2).
Hybridization-independent toxicity is related to the specific chemical modification of the ASO and it does
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not involve base-pairing interactions. There are three general subcategories of hybridization-independent
toxicities: (a) ASO effects by excessive accumulation, which is manifested by basophilic cytoplasmic
granule accumulation, predominantly in kidney or liver epithelium that can produce degenerative
changes. Another common histologic finding is the presence of increased granular macrophages
or increased vacuolated macrophages related to cellular activation and proinflammatory cytokine
production [72]; (b) immunomodulation (proinflammatory mechanisms, caused by toll-like receptors
(TLR) and other innate immune receptors mediated mechanisms, complement proteins activation, and
immune complexes causing immune cell activation and inflammatory reactions [72–74]. The major
contributor to the proinflammatory effect is the backbone chemistry, although base-pair sequence
and base modifications can also contribute. Proinflammatory effects are often observed as lymphoid
hyperplasia in lymph nodes and spleen, associated to PTO ASOs, in rodents and monkeys, while
reversible glomerulonephritis and vasculitis after administration of some types of ASOs have also
been reported in monkeys [72]; (c) ASO interactions with extracellular, cell-surface, and/or intracellular
proteins with high affinity and specificity (named as aptameric binding) [72,74]. According to Frasier [72],
accumulation-related effects are the most encountered changes in preclinical toxicity studies.
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Figure 2. Types of ASOs-mediated toxicity: (1) Hybridization-independent toxicity represent those
effects that are not due to Watson–Crick base pairing between an ASO and RNA. This type
of toxicity occurs by three possible mechanisms: (A) ASOs accumulation effect is manifested
as cytoplasmic granule accumulation, degenerative changes in kidney or liver epithelium, and
presence of vacuolated macrophages. (B) Proinflammatory mechanisms due to ASOs interaction
with innate immune receptors, inducing macrophages activation, complement activation, and
immunocomplex formation. (C) Aptameric binding to intracellular cell surface or extracellular
proteins. (2) Hybridization-dependent toxicity can be caused by partial or complete ASO interaction
with unintended transcripts (hybridization-dependent off-target effects [OTEs]); or with intended
transcripts (on-target toxicity).

The hybridization-dependent toxicity can be caused by either (a) hybridization-dependent
off-target effects (OTEs) due to complete or partial complementary recognition of unintended transcripts
or (b) hybridization-dependent toxicity (on-target toxicity). OTEs have been detected in preclinical
studies after systemic administration of gapmers using biochemical markers of hepatotoxicity in
the blood, while it has not been observed in clinical trials involving therapeutic ASOs to date [70].
Some authors also consider the non-pharmacologic effects as a form of off-target toxicity. On the
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other hand, on-target toxicity can occur after over-silencing intended transcripts or as a result of
long-lasting treatment, and the adverse effects are specific to individual ASOs. For example, long
lasting knockdown of genes involved in the immunosuppressive activity of regulatory T cells (Tregs)
can potentially cause autoimmune manifestations.

Although the chemical modifications of ASOs have been important for their stability and delivery,
the introduction of some structural modifications can increase the risk of toxicity. Swayze et al. [76]
evaluated the toxicity of several ASOs containing either 2’-O-methoxyethylribose (MOE) or locked
nucleic acid (LNA). They showed that incorporation of LNAs in some sequences induced hepatotoxic
effects as early as 4 days after a single administration, whereas MOE-modified nucleotides in the
same sequences did not cause toxicity. In another work, the authors observed that many unintended
transcripts were downregulated in mice treated with hepatotoxic LNA ASOs, whereas in mice treated
with non-hepatotoxic LNA ASOs, the transcript knockdown was highly selective [77].

Two forms of thrombocytopenia have been reported following several ASOs treatments. The most
common form is mild, reversible, and dose-dependent thrombocytopenia, typically observed at
high doses in monkeys and rodents after treatment with first-generation ASOs. In humans,
transient thrombocytopenia without hemorrhagic manifestation has been reported after the use
of first-generation ASOs such as oblimersen, aprinocarsen, ISIS 2503, and ISIS 5132 and less frequently
with second-generation ASOs, including mipomersen, ISIS 104838, LY2275796 for cancer. A second
form of thrombocytopenia with marked platelet depletion and hemorrhages is a rare but serious
adverse event related to repeated exposure of ASOs [72,74,78].

2.4. Strategies to Improve ASOs Cell Targeting and Overcome Toxicity

Diverse reports have shown that naked ASOs are poorly internalized by cells, and they tend to
be localized in endosomes, where they are unavailable for antisense purposes [47]. Thus, difficulties
in biodistribution and cellular internalization are the main obstacles for clinical applications of
ASOs. Diverse methods have been developed to improve cellular uptake of ASOs and their
pharmacological activity, to increase their stability, to reduce the therapeutic dose, and to limit
the off-target effects [79–82]. Conjugation of ASOs to molecules that can bind to certain ligands
in the cell can improve their cell uptake and internalization. Small hydrophobic molecules, such
as cholesterol [83], lipids [84], or fluorinated chains [85,86] may increase ASOs stability and their
membrane permeation. Multivalent N-acetylgalactosamine (GalNAc) conjugation is another important
way for ASOs delivery to hepatocytes [87]. Basic peptides such as Drosophila melanogaster homeotic
transcription factor, Antennapedia peptide [88], and Tat protein of HIV-1 [89] have also been used to
increase ASOs passage through the plasma membrane by a receptor- and transporter-independent
mechanism delivering them directly into the cytoplasm and, hence, ultimately the nucleus.

In addition to direct conjugation of ASOs with defined molecules, the use of nanoparticles as
vehicles for ASOs has been widely evaluated. The first generation of ASOs vehicles were liposomes,
which are sphere-shaped vesicles consisting of one or more bilayers of phospholipids and cholesterol [90].
The ASO can be encapsulated into the aqueous compartment of the liposome or can be bound to the
liposome surface by electrostatic interactions. Under physiological conditions, positively charged
liposomes have high affinity for the negatively charged cell membranes and can easily bind to cells.
Because these liposomes use the endosomal pathway to deliver ASOs into cells, they can be formulated
with certain molecules inducing endosomal membrane destabilization, such as chloroquine and
1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, to allow the scape of ASOs from the endosomes
and be actively transported in high concentration to the nucleus [91–95].

Lipid nanoparticles (LNP) are other important formulations that have been used to enhance the
delivery of ASOs to target tissues. Delivery using LNPs increases the stability and circulation time
of ASOs [96,97]. LNPs contain ionizable amino lipids that self-assemble into nanoparticles when
mixed with polyanionic oligonucleotides. The electrostatic interaction of LNPs with polyanionic
nucleic acids promotes their encapsulation, allowing the escape to cell cytoplasm from the endosomal
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compartment [98]. Several ligands for overexpressed receptors on the target cell surface can be linked
to LNPs, to facilitate the cellular uptake. These ligands include cell transferrin [99], penetrating
peptides [100], folate [101], polysaccharides [102] and antibodies [103].

Besides liposomes and LNPs, cationic polymers, including poly-L-lysine [104,105],
polyalkylcyanoacrylate nanoparticles [106–108]; polyethyleneimine (PEI) [109,110], and poly(amido
amide) (PAMAM) dendrimers [111] have been also developed for ASOs delivery. These polyamines
cause endosomal rupture via a “molecular sponge” mechanism and are less used than the cationic
liposomes due to their toxicity [47]. Moreover, niosomes are an interesting alternative to liposomes for
ASOs delivery. They are vesicles composed of non-ionic surfactants, amphipathic compounds with an
overall neutral charge [80,112,113].

3. ASOs in Vaccines

The use of ASOs for vaccine improvement has been mainly based on the following strategies:
(1) antigen modification; (2) targeting the host immune system by overexpression/inhibition of
molecules involved in the immune response. In the following sections, we will analyze the main
advances in these areas and the challenges still to be solved.

3.1. Antigen Modification

The first attempts using ASOs for antigen manipulation started in 1990. Goudsmit´s group used a
phosphate-methylated ASO complementary to the tat responsive region (TAR) of the HIV-1 isolate
CBL-4 (RUT) to reduce the viral infectivity [114,115]. However, some technical errors and interpretation
of results that were subsequently corrected by the same authors caused the retraction of the article
published in Science [116], as well as the conclusion issued that the observed inhibitory effect of viral
infectivity should be ascribed to the phosphate methylation of natural DNA.

Tumor cells escape from immune surveillance by means of mechanisms to prevent tumor
antigens recognition by the immune system. Several methods have been developed to increase the
immunogenicity of the tumor cells. The most efficient methods can force tumor cells to present their own
tumor antigens to the immune system [117]. In the early 1990s, the group led by Dr. Ostrand–Rosenberg
demonstrated that tumor cells transfected with MHC class II molecules can generate a potent tumor cell
vaccine, which protects against challenge with the parental tumor [118]. Moreover, supra-transfecting
MHC class II+ tumor cells with li gene, coding for li protein (CD74), the invariant chain that normally
blocks the binding of self-peptide fragments to MHC class II molecules, abrogated the immunogenicity
of the modified cells [119].

Based on this principle, Qiu et al. treated cancer cells expressing, naturally or by induction, MHC
class II molecules and Ii protein, with anti-Ii ASO to induce the MHC-II–mediated presentation of
diverse antigenic peptides to helper T cells (Figure 3). In each line of transfected tumor cells, the ASO
profoundly suppressed Ii protein in 35% ± 55% cells, without affecting the expression of MHC class
II molecules. The absence of the Ii protein increased the range of cancer-related epitopes presented
to CD4+ helper T cells and generated effective tumor cell vaccines [120]. They also created several
antisense Ii-reverse gene constructs (Ii-RGC) that inhibited Ii expression in A20 B lymphoma cells
in vitro and Renca renal adenocarcinoma tumors in vivo. Subcutaneous Renca tumors in BALB/c
mice were treated by intratumoral injection with a plasmid containing the gene for MHC class II
transactivator (CIITA) and Ii-RGC. A subtherapeutic dose of IL-2 was also used to upregulate the
activation of T cells. Significant tumor reduction and a decrease in the progression rates of the
established tumors in the groups injected with Ii-RGC were observed, compared to the groups treated
with IL-2 plus empty plasmid controls (p < 0.002) [121]. In another study, a single recombinant
adenovirus with both interferon-gamma (IFN-γ) and Ii-RGC (rAV/IFN-γ/Ii-RGC) genes efficiently
induced the MHC Class II+/Ii- phenotype in MC-38 colon adenocarcinoma cells and Renca tumors.
Injection of tumor nodules with rAV/Ii-RGC and rAV/CIITA/IFN-γ, associated with a suboptimal dose
of rAV/IL-2 induced a potent antitumor immune response. Control mice developed growing tumors
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by day 8 after injection. On the other hand, mice treated with rAV/CIITA/IFN-γ + rAV/IL-2 + rAV(wild
type) showed delayed tumor growth in three of five mice, with tumor re-growing in two of these
mice, resulting in one of five mice being tumor-free on day 60. Mice treated with rAV/CIITA/IFN-γ +

rAV/IL-2 + rAV/Ii-RGC showed tumor regression in three of four animals. Finally, tumor-free mice
were challenged on day 63 with Renca cells. Naive mice injected with the same number of Renca
cells developed tumors while those tumor-free mice did not develop tumors in a follow-up of 34 days
post-challenge. Similar results were observed in repeated experiments under the same conditions [122].
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Figure 3. Tumor cells are forced to present their own tumor antigens to the immune system by anti-li
ASO treatment. Left, MHC class I presents endogenous tumor antigens to CD8+ cytotoxic T cells (CTL).
Ii protein blocks the binding of endogenous antigens to MHC class II in the endoplasmic reticulum (ER).
Right, anti li-ASO blocks Ii protein expression, and endogenous tumor antigens are also presented by
MHC class II molecules and recognized by specific Th1 lymphocytes. The simultaneous presentation
of tumor antigens by both MHC class I to CTL and MHC II to Th1 lymphocytes induces a stronger
antitumor response. (Adapted from [117]).

Rubenstein et al. evaluated the effect of bispecific ASOs targeting BCL-2 and epidermal growth
factor receptor (EGFR) in the in vitro growth and prostatic antigen expression on androgen-sensitive
human prostate adenocarcinoma (LNCaP) cells. Cultured cells were treated with 6.25 µM of either
mono or bispecific ASOs and significant inhibition of the cellular growth was observed after treatment
with bispecific ASOs. Interestingly, the bispecific ASO treatment also enhanced the expression
of non-targeted proteins: prostate-specific cell surface antigens (PSMA), and IFN-γ. However,
monospecific ASOs directed solely against BCL-2 did not stimulate the production of these proteins.
The authors concluded that enhanced expression of cell surface differentiation antigens (such as PSMA)
could increase their recognition and targeting by antitumor immunologic mechanisms and increase the
effectiveness of tumor vaccines [123]. In other studies, the authors showed that LNCaP cells treated with
ASOs directed against BCL2 administered in a nanoparticle suspension of lipofectin as vehicle exhibited
non-target effects by suppressing the expression of apoptosis promoter caspase-3 [124]. In addition,
they observed compensatory enhanced expression of other molecules such as (a) apoptosis inhibitor
serine/threonine protein kinase (AKT1) [125], (b) androgen receptor (AR) and their co-activators
p300 [126,127], (c) interleukin-6 (IL6) [128], (d) programmed death 1 (PD1) and its ligand PDL1, and
(e) FAS-ligand, which activate apoptosis [129]. These and other reports of this group suggest that the
use of ASOs to suppress BCL2 to restore apoptosis can lead to altered expression of non-targeted genes
with different effects, including the stimulation of tumor proliferation [130].
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3.2. Targeting Host Immune Mechanisms

It has been demonstrated that different isoforms of transforming growth factor-beta (TGF-β)
with immunosuppressive activity are overexpressed in different malignant tumors such as
melanoma, gliomas, prostate, gastric, colorectal, ovarian, gastric, and non-small cell lung
cancers (NSCLC). Enhanced TGF-β2 expression in malignant cells is suggested to be a pivotal
factor for tumor progression by inducing immunosuppression, metastasis, angiogenesis, and
proliferation [131–137]. Tumor-infiltrating tolerogenic DCs and suppressor T cells are related to
tumor-associated immunosuppression and tumor escape. These processes are mediated by TGF-β and
IL-10 expression [133]. Elevated levels of TGF-β are inversely correlated with prognosis in patients
with NSCLC [135,137].

The immunosuppressive effect of a TGF-β-producing autologous tumor vaccine was abrogated
and rendered immunogenic when suppressing its TGF-β secretion with antisense strategy [138]. In that
study, Tzai et al. used an MBT-2 tumor cell line [MBT-2/TGF-beta(-)#3] treated with ASOs against TGF-β
and demonstrated that the amounts of this protein were significantly decreased in both irradiated and
non-irradiated MBT-2/TGF-beta(-)#3 after 48 h of in vitro culture. This was associated to an increased
expression of MHC class I molecule and Fas on the surface of MBT-2 tumor cells. This tumoral
transformation enhanced vaccine immunogenicity and promoted a better survival rate in vaccinated
mice when they were challenged with a two-fold higher amount of wild-type MBT-2 tumor cells.

Using a “double-punch” approach to overcome the escape of glioblastoma cells to the
immune surveillance, [139] blocked the TGF-β production by TGF-β ASO. They used polybutyl
cyanoacrylate nanoparticles (NPs) as vehicle for delivery of TGF-β ASO (NP-anti-TGF-β), to increase
the immune response induced by active specific immunization with tumor cells infected with
Newcastle-Disease-Virus (NDV). Glioblastoma cells were implanted into the brain of Fischer rats and
then received intracutaneous vaccination with 1 × 105 F98 cells infected with NDV. In addition, the
rats were intraperitoneally injected with 9.34 nmol of TGF-β2 ASOs attached to 2.5 mg NPs coated
with Polysorbate 80, suspended in sodium chloride solution. This treatment was repeated on days
1, 2, 10, 11, and 12 after tumor implantation. Three control groups were also used: one group was
not treated at all, another group was treated by immunization only at days 0 and 10 and the third
group only received ASOs attached to NPs without immunization. The treatment with NP-anti-TGF-β
after immunization led to a rat mean survival rate of 25 days, which was significantly longer than
the control animals’ survival. Moreover, the enhanced rat survival rate induced by the combined
treatment was associated with reduced levels of TGF-β and increased rates of activated CD25+ T cells
with significant differences to the control groups.

Belagenpumatucel-L (LucanixR), an allogeneic tumor cell vaccine gene-modified with TGF-β
antisense, has been evaluated in locally advanced and metastatic NSCLC patients with an unfavorable
response to chemotherapy. Results from a phase 2 trial showed a clear dose-dependent increase in
overall survival (OS) with no significant adverse events [140]. A phase III trial that enrolled 270
patients treated with belagenpumatucel-L confirmed that the treatment was well tolerated. In contrast,
there was no difference in survival between patients receiving belagenpumatucel-L compared with the
placebo group, and there were no differences in progression-free survival [141].

Trabedersen [AP12009; OT-101] is a synthetic ASO that hybridizes with RNA sequences to block
TGF-β translation, which is being used against advanced tumors overproducing TGF-β2 [142,143].
It has been reported that Trabedersen reduces the levels of this cytokine in human pancreatic cancer
cell lines [136,142]. During a phase I/II clinical trial, Trabedersen improved OS in a subset of patients
with advanced pancreatic cancer who received ASO treatment followed by subsequent chemotherapy.
Levels of IL-8 and IL-15 were positively associated with OS across 12 of these patients and have been
suggested as potential predictive biomarkers for this associated therapy in pancreatic cancer [144].
Trabedersen was also tested on patients with glioblastoma and anaplastic astrocytoma [145]. The ASO
treatment exhibited an improved profile of efficacy and safety compared to that of conventional
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chemotherapy. More recently, it was reported that targeting TGF-β expression with two new ASOs
named ISTH1047 and ISTH0047 results in strong anti-glioma activity in vitro and in vivo [146].

Another study demonstrated that immunization with C4HD, a hormone-dependent ductal breast
tumor cell line, pretreated with PTO ASO against type I insulin-like growth factor receptor and
irradiated, provided protection against C4HD wild-type tumor challenge. The ASO treatment induced
expression of CD86 and heat shock protein 70 in the tumor cells. These molecules are involved in the
induction of the immunogenic phenotype. Immunized mice exhibited a tumor growth inhibition of
53.4%, 61.6%, and 60.2% when compared with PBS-treated mice, wild-type C4HD cell-injected mice,
and PTO ASO-treated C4HD cell-injected mice, respectively. The specificity of the antitumor effect
was proved since no cross-protection was observed against other syngeneic mammary tumor cell
lines. In addition, immunization induced splenocytes to produce Ag-dependent IFN-γ, indicating
the presence of an antitumor Th1 response. Moreover, a cellular CD8+-dependent immune response,
acting through the Fas/Fas ligand death pathway, was observed [147].

Our group evaluated the effect of silencing Foxp3 on antitumor efficacy of a genetically modified
tumor cell vaccine against B16 mouse melanoma cells. Miguel et al. transplanted B16 mouse tumor cells
to mice prior to treating them with irradiated GM-CSF (granulocyte and macrophage colony-stimulating
factor) tumor-producing cells combined with anti-Foxp3 2’-O-methyl phosphorotioate-modified
oligonucleotides (2’-OMe-PS-ASOs). Antitumor response and mice survival rate improved in animals
treated with therapeutic vaccine combined with Foxp3 antisense when compared to vehicle-treated
control. In that study, an ASO against CTLA4 was also evaluated, but this resulted less efficacious
than anti-Foxp3. These data supported the hypothesis that silencing Foxp3 can be a potential adjuvant
strategy to improve antitumor vaccines based on the reduction of Treg-mediated immunosuppressive
effects in the tumor microenvironment [148].

ASOs as Vaccine Adjuvants in Subunit Vaccines

In the last years, there has been a growing interest in the rational design of vaccines using
defined molecules with well-characterized cellular and molecular mechanisms of action. One of
the current directions of this approach is the development of subunit vaccines that contain only the
minimal microbial component necessary to stimulate long-lasting protective or therapeutic immune
responses [149]. In the meantime, another direction is targeting immune regulatory networks with
molecular adjuvants for improving vaccine immunogenicity with the lowest possible toxicity [150].
Several ASOs have been evaluated as adjuvants to enhance the immune response in experimental
vaccines. These ASOs were designed against suppressor components such as cytokines [151,152],
checkpoints [153,154], or transcription factors [148] (Figure 4).
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Using a neonatal mouse model of respiratory syncytial virus (RSV) infection, Ripple et al. evaluated
if local inhibition of IL-4Rα expression using an ASO specific for IL-4Rα during primary RSV infection
would prevent Th2-biased responses to secondary RSV infection and improve long-term pulmonary
function. Mice were initially infected with RSV at one week after birth and re-infected at six weeks of
age. Intranasal administration of IL-4Rα ASO during primary RSV infection does not hinder viral
clearance; however, the ASO treatment abolished the pulmonary dysfunction normally observed
following reinfection in the adult with a significant response (p < 0.05) compared with non-treated mice.
The parameters evaluated were lung resistance in response to increasing doses of methacholine (MeCh)
and histology after secondary RSV infection, including a measure of % inflammation and mucus index.
This protection was achieved by decreasing the Th2 immune modulation responses associated with an
increased Th1 immune activation (i.e., elevated Th1 cell numbers and type I antibodies and cytokines).
The authors suggested that vaccine strategies based on IL-4Rα ASO might offer significant benefits to
preventing RSV-mediated pulmonary disease in infants [151].

In a recent report, Zhang et al. [152] evaluated the effect of an interleukin 10 (IL-10)- PTO
targeted ASO as an immune adjuvant in intradermal vaccination using ovalbumin (OVA), a standard
T-dependent antigen. Their results showed that the specific antibody titer of OVA increased 100-fold
upon the addition of IL-10 ASO as adjuvant compared to that of OVA alone (p < 0.01). According to the
authors, IL-10 ASO potentiated the immune response in a similar way to that of Freund’s incomplete
adjuvant, used as the positive control, without detectable cell or tissue toxicity. They also confirmed
that IL-10 ASO enhanced the T-mediated specific immune responses by temporal inhibition of the
IL-10 produced by local DCs.

The synergistic effect of two ASOs against cytotoxic T lymphocyte antigen 4 (CTLA-4), a widely
studied checkpoint inhibitor of T-cell proliferation and activation, was evaluated in experimental
vaccines. These vaccines were prepared with either recombinant PCV2b capsid protein or inactivated
foot-and-mouth disease virus (FMDV) in ICR and BALB/c mice. The sequences of these anti-CTLA-4
ASOs, named CMD-1 and CMD-2, were complementary to conserved regions that are identical between
human and mouse CTLA-4 mRNA present in 3’ untranslated region (3’ UTR) [153]. The authors found
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that CMD-1 inhibited the antigen-induced CTLA-4 up-regulation on the CD4+ T cells and enhanced
the antibody response against both recombinant PCV2b capsid protein and inactivated FMDV in both
ICR and BALB/c mice compared with the control group without ASOs (p < 0.05). Moreover, CMD-1
promoted high expression levels of CD80 and CD86 on the CD11c+ populations and the recalled
proliferation of CD4+ T cells and CD19+ B cells.

In another recent study, the same group designed an interfering ASO (LIO-1) against lymphocyte
activation gene-3 (LAG3) to enhance the immune response induced by both ISA35- formulated
recombinant protein vaccines and ISA35-formulated inactivated influenza virus vaccines. LAG3 is a
transmembrane protein expressed on activated T cells that triggers inhibitory signals for the activation
of B cells to produce antibodies. The authors demonstrated that LIO-1 induced the degradation of LAG3
mRNA and decreased the LAG3 expression on CD4+ T cells, promoting the activation and increasing
the production of IFN-γ, IL-2, and IL-6 CD4+ T cells re-stimulated with specific antigens. Moreover, they
found that LIO-1 enhanced the antibody responses induced by both vaccine formulations in mice [154].

4. Challenges and Opportunities for ASOs Application in Vaccinology

Since the discovery, more than two decades ago, that ASOs could be used in clinical pharmacology
to modulate protein expression, several antisense drugs have been approved for clinical use in the
last years. Nowadays, there is a great interest in ASOs-based drugs, due to the development of more
specific and nuclease resistant structures, as well as more efficient vehicles that enhance the ASOs
delivery to target tissues. The application of ASOs to improve vaccines is more recent but undoubtedly
with promissory perspectives. They can be used for antigen modification of whole cell immunogens or
as vaccine adjuvant by enhancing the host immune response.

Although most of the uses of ASOs in vaccines have been directed to the transformation of tumor
cells to increase their immunogenicity [117,155], various factors including the tumor microenvironment
complex [156], constitute real challenges to achieve homogeneous results.

Only recently it has been reported that it is possible to successfully use ASOs as part of vaccine
formulation for single antigens [151–154]. This strategy can avoid the administration of systemic higher
doses of ASOs, potentially reducing undesired events such as off-target effects and adjuvant-mediated
immunotoxicity [157,158]. However, despite their specificity and broadness of use, some problems
remain unsolved in ASOs for vaccine use. The experiences in the use of ASOs as adjuvants to improve
the immune response are still scarce, and the possibility of toxicity by immune overstimulation
needs to be deeply studied. ASO toxicities including off-target effects can be both sequences- and
chemistry-dependent, and thus, each ASO molecule must be considered independently during
toxicological studies [159]. In this way, bioinformatic tools are being developed to identify suitable
target regions and to analyze potential off-target effects of therapeutic ASOs [157]. A recent guideline
offers a set of recommendations and standards for designing and evaluating experiments using ASOs
and double-stranded RNAs that help to achieve a better interpretation of data in the pharmacological
evaluation of these molecules [69]. This list summarizes several of the current trends in ASOs research
for vaccine development:

• Discovery of new suitable genes to improve vaccine protective immunogenicity against specific
infectious or tumoral disease using ASOs.

• Development of bioinformatic tools and in vitro systems for ASOs screening to vaccine application.
• Discovery of delivery systems that can promote effective ASOs cellular uptake in the

immune system.
• Studies of stability and antigen-ASOs compatibility in vaccine formulations.
• Immunotoxicity studies to discover potential consequences of immune overstimulation.
• Studies of efficacy/safety in different genetic contexts.
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5. Concluding Remarks

Roughly 40 years have passed since the birth of synthetic ASOs, meanwhile the medical application
of ASOs has advanced rapidly in understanding and clinical/regulatory acceptance. Herein, we
have reviewed recent progress in ASOs research focusing on prophylactic and therapeutic vaccine
applications. The widespread availability of various types of ASOs with well-characterized structures
and mechanisms of action suggests that this is an emerging field of potential application for the next
generation of vaccines. Experimental and clinical evidence shows that ASOs can be used to control
the expression of certain genes, favoring the induction of stronger antigen immune responses. Recent
reports suggest that ASOs can be use as vaccine adjuvant, but further studies are necessary to provide a
better understanding of the ASOs-mediated immunostimulation and potential risk of toxicity. The next
few years promise relevant achievements in this emergent area.
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