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Abstract: We used a combination of density functional theory (DFT) calculations and the implicit
quantization of the acidic N–H and O–H bonds to assess the effect of deuteration on the binding of
agonists (2-methylhistamine and 4-methylhistamine) and antagonists (cimetidine and famotidine)
to the histamine H2 receptor. The results show that deuteration significantly increases the affinity
for 4-methylhistamine and reduces it for 2-methylhistamine, while leaving it unchanged for both
antagonists, which is found in excellent agreement with experiments. The revealed trends are
interpreted in the light of the altered strength of the hydrogen bonding upon deuteration, known as
the Ubbelohde effect, which affects ligand interactions with both active sites residues and solvent
molecules preceding the binding, thus providing strong evidence for the relevance of hydrogen
bonding for this process. In addition, computations further underline an important role of the
Tyr250 residue for the binding. The obtained insight is relevant for the therapy in the context of
(per)deuterated drugs that are expected to enter therapeutic practice in the near future, while this
approach may contribute towards understanding receptor activation and its discrimination between
agonists and antagonists.

Keywords: computational chemistry; DFT calculations; deuteration; heavy drugs; histamine receptor;
receptor activation; hydrogen bonding

1. Introduction

With at least 800 unique members, human G protein-coupled receptors (GPCRs) encompass the
largest superfamily of cell-surface receptors, which translate external cell signals into measurable
stimuli resulting in precise cell responses [1,2]. Some examples of physiological and pathological
responses controlled by GPCRs include the neurotransmission, secretion, contraction, cell growth and
differentiation, which make them excellent specific targets for a variety of therapeutic approaches.
Some estimates predict that GPCRs embody around 30% of the existing drug targets, while their
therapeutic potential might be even larger [3,4].

Receptor ligands are described as (i) agonists if they are capable of activating the receptor
and display full efficacy, (ii) partial agonists showing only partial biological response after receptor
activation, (iii) antagonists if their binding to receptor does not involve any change of basal receptor
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activity, or (iv) inverse agonist, as ligands with the negative efficacy. Considering thermodynamic
aspects, the binding of antagonists to their targets is typically associated with more favorable interaction
free energies (affinities) than it is with agonists. The available GPCR crystal structures broadly classify
three discrete conformations: (1) an “inactive state” when the receptor is crystallized in a complex
with an antagonist or inverse agonist, (2) an “agonist-bound state” lacking the G protein, and (3) a
“fully-active state” resulting from a ternary complex involving the receptor, an agonist and the G
protein (or G protein surrogate), where all these states are linked by intermediate conformations.
The mechanisms that control GPCR ligand binding and receptor activation are remarkably complex and
have been, until quite recently, hindered by a lack of structural knowledge of active and inactive states.
The design of new therapies with a required activating or inactivating profile could be significantly
improved with a more complete knowledge of how GPCRs operate at a molecular level, so that this
information could then be transferred to the ligand in question.

Literature reports many studies on how GPCRs are activated and transmit their signals from the
extracellular site through to the G protein coupling domain on the intracellular side [5]. Alternatively,
we have been interested in how different ligands, agonists and antagonists, bind to the receptor
binding site, and whether these processes are modulated upon deuteration, which could potentially
reveal factors affecting receptor´s distinction between its agonists and antagonists. This idea offers an
interesting extension of the recently observed fact that scent recognition is affected by deuteration,
namely that fruit flies (Drosophila melanogaster) can discriminate between several isotopomers that have
hydrogens replaced with deuteriums [6]. In addition, there is an remarkable observation that fruit
flies, trained to distinguish deuterated olefins, also differentiate non-deuterated olfactants with strong
infrared (IR) peaks in the 2300 cm−1 range [6,7], suggesting that a difference between C–H and C–D
vibrational modes is a prominent feature of odorant perception in this species. A likely rationalization
of this phenomena is that there is a spectroscopic component to olfaction [7–9], or that this is due to
inelastic scattering effects [10]. Isotopic substitution of a hydrogen (H) with heavier deuterium (D) shifts
the C–H stretching frequency from the 2850–3100 cm−1 range into the 2300 cm−1 range. Still, only few
molecules absorb in this IR region and there is little or no biological need or evolutionary pressure that
we know for detecting deuterated compounds. Unsurprisingly, this theory faced extensive skepticism,
since it contradicts a more commonly proposed model in which both the geometric shape and chemical
nature of the olfactant are the primary components of olfactory reception [11], being supported by
the fact that two chiral molecules may smell very differently. It is worth emphasizing here that in the
receptor activation processes, like in the enzyme catalysis, dynamical effects are likely irrelevant [12].

In our previous work [13], we used a combination of experimental and computational techniques
to investigate the effects of deuteration on the binding of histamine to the 3H-tiotidine-labeled histamine
H2 receptor in neonatal rat astrocytes. The affinity of histamine to displace bound tritiated tiotidine
was significantly higher in deuterated (namely by 0.73 kcal mol–1) than in non-deuterated environment,
thus confirming the relevance of hydrogen bonding in the process of agonist-receptor binding.
Density functional theory (DFT) calculations on the cluster system, extracted from the homology H2
model, along with the implicit quantization of the acidic N–H and O–H bonds demonstrated that
these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon
deuteration known as the Ubbelohde effect [14], while reproduced the measured affinity difference with
excellent agreement at 0.51 kcal mol–1. The clinical relevance of the ligand H/D substitution lies in the
context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the
near future. Selective incorporation of deuterium in place of hydrogen has the unique effect of retaining
the biochemical potency and selectivity of physiologically active compounds while, in select instances,
enabling substantial benefits to the overall pharmacological profile of the resulting compounds [15,16],
including extension of elimination half-life, optimization of dose and dosing regimen, and mitigation
of risks associated with drug-drug interactions [17]. This strategy has attracted significant commercial
interest and has been the subject of recent reviews [18–20]. When applied to compounds with
well-understood therapeutic utility, selective deuteration can be a unique risk-reduced approach



Biomolecules 2020, 10, 196 3 of 10

to creating new chemical entity drugs that address significant unmet medical needs. With more
deuterium-containing compounds entering clinical evaluation, it appears increasingly likely that the
approach will succeed in producing important new remedies [21,22].

The present work builds on our earlier results [13] and considers here two histamine H2 receptor
agonists, 2-methylhistamine and 4-methylhistamine, and two antagonists, cimetidine and famotidine
(Figure 1), and computationally investigates the effect of deuteration on their affinity using a larger
cluster model of the receptor binding site. The presented analysis is likely to contribute towards
understanding receptor activation, while the in silico discrimination between agonists and antagonists,
based on the receptor structure, remains a distant goal.
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analogy with our previous study [13], enriched here with Lys175 and Thr190. According to the 
PROPKA 3.1 analysis [23] carried out on the entire homology structure [13], these residues were 
considered as deprotonated anions (Asp98, Asp186), protonated cations (Lys175), and unionized 
systems (Tyr250 and Thr190). Moreover, 1 and 2 were modeled as monocationic species in their most 
stable π–tautomeric forms in both the aqueous solution and receptor binding site, as suggested in 
the literature [24], while cimetidine 3 (pKa,EXP = 6.80 – 6.93) [25] and famotidine 4 (pKa,EXP = 6.76 – 6.89) 
[26] were considered as neutral systems in all phases. The latter pKa values indicate that, at 
physiological pH = 7.4, there will be a notable population of monoprotonated 3 and 4, yet these will 
be outnumbered by the unionized analogues, which will mainly be responsible for the receptor 
binding. The mentioned residues were truncated at their α-carbon atoms, which were kept fixed in 
all calculations during the geometry optimization with the DFT M06–2X methodology in 
conjunction with the 6–31+G(d,p) basis set, using the Gaussian16 software [27]. Total molecular 
electronic energies were extracted without thermal corrections, thus the results reported here 
correspond to differences in electronic energies. The effect of the rest of the protein environment was 
considered with the CPCM implicit solvation model using a dielectric constant of ε = 4.0, as 
suggested by Himo and co-workers [28], and a dielectric constant of ε = 78.4 for the aqueous 
solution, all in line with our previous reports [13], where we also demonstrated that a potential 
increase in the former dielectric constant to ε = 20.0 lowers the accuracy of the obtained results and 
even predicts wrong trends among ligands. Additionally, in our experience, such a truncated 
cluster-continuum model of the entire protein turned very useful in rationalizing various aspects of 
the catalytic activity [29], selectivity [30] and inhibition [31] of the monoamine oxidase family of 
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2. Computational Details

The starting point of our analysis was the homology model of the histamine H2 receptor built
earlier [13], while the structure with the bound histamine was used as a template to manually
bind agonists 2-methylhistamine (1) and 4-methylhistamine (2), and antagonists cimetidine (3) and
famotidine (4) into the cluster model of the binding site. In doing so, we tried several conformations
for each ligand to avoid errors associated with arbitrary spatial arrangements and proceeded with
the most stable complexes. The binding site was composed of Asp98, Asp186 and Tyr250 residues,
in analogy with our previous study [13], enriched here with Lys175 and Thr190. According to the
PROPKA 3.1 analysis [23] carried out on the entire homology structure [13], these residues were
considered as deprotonated anions (Asp98, Asp186), protonated cations (Lys175), and unionized
systems (Tyr250 and Thr190). Moreover, 1 and 2 were modeled as monocationic species in their most
stable π–tautomeric forms in both the aqueous solution and receptor binding site, as suggested in the
literature [24], while cimetidine 3 (pKa,EXP = 6.80 – 6.93) [25] and famotidine 4 (pKa,EXP = 6.76 – 6.89) [26]
were considered as neutral systems in all phases. The latter pKa values indicate that, at physiological
pH = 7.4, there will be a notable population of monoprotonated 3 and 4, yet these will be outnumbered
by the unionized analogues, which will mainly be responsible for the receptor binding. The mentioned
residues were truncated at their α-carbon atoms, which were kept fixed in all calculations during the
geometry optimization with the DFT M06–2X methodology in conjunction with the 6–31+G(d,p) basis
set, using the Gaussian16 software [27]. Total molecular electronic energies were extracted without
thermal corrections, thus the results reported here correspond to differences in electronic energies.
The effect of the rest of the protein environment was considered with the CPCM implicit solvation
model using a dielectric constant of ε = 4.0, as suggested by Himo and co-workers [28], and a dielectric
constant of ε = 78.4 for the aqueous solution, all in line with our previous reports [13], where we also
demonstrated that a potential increase in the former dielectric constant to ε = 20.0 lowers the accuracy
of the obtained results and even predicts wrong trends among ligands. Additionally, in our experience,
such a truncated cluster-continuum model of the entire protein turned very useful in rationalizing
various aspects of the catalytic activity [29], selectivity [30] and inhibition [31] of the monoamine
oxidase family of enzymes, and is broadly used by different groups to decipher various biological
phenomena [32–36], which justifies its use here. We note in passing that, despite its practical usefulness,
the proposed value of ε = 4 is, in some cases, apparently too small to prevent the proton transfer from
protonated to anionic residues, which then occurred spontaneously during the geometry optimization,
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provided the involved pair is in close vicinity. Still, this is consistent with literature reports on the
prevalence of neutral over ionic hydrogen bonds in low polarity environments such as can be the case
with some protein interiors [37–40].

Literature reports on a range of methods for the quantization of nuclear motion; yet, these are
limited to only a few degrees of freedom. However, here we have several critical protons directly
involved in the H2 receptor-ligand recognition and water hydration process. As such, we decided to
employ an approximate empirical treatment of the nuclear quantum effects involved in the binding.
To evaluate the effects linked with the isotopic substitution, we considered the work by Bordalo and
co-workers [41], who used a very precise neutron diffraction analysis on alanine zwitterion to show
that deuteration reduces the electrostatic attraction in the acidic N–D bonds by 2.3% relative to the
matching N–H bonds. This results in the shortening of the N–D distances, as already noticed in various
papers [42–46]. Considering both of these aspects, we imposed the empirical quantization in the
following way. Initially, all systems were fully optimized, corresponding to the case with lighter H
nuclei. After that, all acidic N–H and O–H bonds were shortened by 2.3% and kept frozen during
the optimization of other geometric parameters, thus mirroring the situation with heavier D nuclei.
The choice of such a computational setup was facilitated by its success in reproducing changes in the
binding of histamine to the histamine H2 receptor binding site induced by deuteration [13].

3. Results and Discussion

In order to evaluate differences in the binding of investigated ligands to the H2 receptor upon
deuteration, we must recall that this process occurs in two stages. Initially, a ligand is located in the
aqueous solution surrounded by water molecules, while, ultimately, it is found within the receptor
binding site. As such, the thermodynamic picture of the entire process involves two components:
the energy of hydration, ∆EHYDR, and the energy of interaction with the receptor binding site, ∆∆EINTER,
in the same order. With this in mind, the deuteration-induced change in the overall binding energy,
∆∆EBIND, becomes a difference in the mentioned hydration and interaction energies (Table 1):

∆∆EBIND(H→ D) = ∆EHYDR(H→ D) − ∆EINTER(H→ D)

Table 1. Calculated deuteration-induced changes in the hydration energy (∆EHYDR), H2 receptor
interaction energy (∆EINTER) and the overall receptor binding energy (∆EBIND) as obtained by the
(CPCM)/M06–2X/6–31+G(d,p) model. Experimental ∆∆EBIND,EXP values are taken from reference 13.

Ligand In H2O In D2O
∆∆EBIND,CALC ∆∆EBIND,EXP

∆EHYDR ∆EINTER ∆EBIND ∆EHYDR ∆EINTER ∆EBIND

2-methylhistamine (1) –66.92 –71.99 –5.07 –66.88 –69.57 –2.69 2.38 2.08
4-methylhistamine (2) –67.38 –86.13 –18.75 –67.55 –87.40 –19.85 –1.10 –0.49

cimetidine (3) –19.69 –27.27 –7.58 –19.54 –27.21 –7.67 –0.09 0.00
famotidine (4) –14.29 –31.17 –17.88 –13.97 –31.90 –17.93 –0.05 0.00

In other words, the substitution of exchangeable H-atoms with deuterium results in changes in the
corresponding geometric parameters, but also in the altered energies of the matching hydrogen bonds.
Disruption of this delicate and fine-tuned equilibrium has potential effects on the ligand-receptor
binding affinities, which could be harnessed for therapeutic uses. As a note, deuteration typically
attenuates hydrogen bonding interactions, yet, since any deuteration-prompted changes in the binding
affinity are brought about as a difference between two quantities, the overall effect can be either
positive or negative, depending on the ligand. Previously, we demonstrated that if one uses a
cluster-continuum methodology to investigate aqueous phase phenomena, it requires at least five
explicit solvent molecules to accurately model the conformational and tautomeric properties of the
physiological histamine monocation in water [47]. In this context, we constructed a set of reactions
(Figure 2) to evaluate the hydration energies, ∆EHYDR, of each ligand in water. This approach maintains
the number of hydrogen bonds on each side of the equation, being fully in line with the model of
homodesmotic reactions [48]. For the histamine monocation, it gives the water hydration free energy
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of –67.5 kcal mol–1 [47], being in a very close quantitative agreement with the MP2/6–31++G(2d,2p)
and Langevin dipole calculated value of –68.6 kcal mol–1 [49], thus lending credence to the choice of
this computational setup.
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Figure 2. Computational scheme of 2-methylhistamine monocation 1 (top) and cimetidine 3 (bottom)
interacting with water molecules to calculate the hydration energy. The selection of the dielectric
constant is specified in round brackets. Analogous schemes were employed to calculate the hydration
energies for 4-methylhistamine 2 and famotidine 4 and are presented in Figure S1.

On the other hand, the interaction energies, ∆EINTER, are obtained utilizing a scheme described in
Figure 3, which considers placing a ligand from the gas-phase into the cluster model of the binding
site. It turns out that all four ligands 1–4 are stabilized in water as evidenced in negative hydration
energies, ∆EHYDR. These are significantly higher for 1 and 2 (around –67 kcal mol–1) than for 3 and 4
(between –14 and –20 kcal mol–1), which is not surprising given that the first two systems are charged
monocations protonated at the corresponding free ethylamino groups. A slightly higher hydration
free energy of 3 over 4 can be qualitatively related with its around 110 times higher solubility in
water [50], which lends credence to these results. In addition, ∆EHYDR is somewhat higher for 2 than
for 1, which appears to be in line with slightly higher basicity of the former, as seen in pKa(2) = 7.3 and
pKa(1) = 7.1 [24]. In D2O, ∆EHYDR values are a bit lower, except for 2, where it is 0.17 kcal mol–1 higher.
This implies that, in all systems but 2, the hydration works in the direction of promoting the binding of
deuterated systems to the receptor.

In contrast, interaction energies, ∆EINTER, are consistently much higher than ∆EHYDR values due
to the polar nature of the binding site involving charged amino acid residues. It is worth pointing out
that agonists 1–2 show similar receptor binding motif, already observed for histamine [13], involving
Asp98, Asp186 and Tyr250 residues, which predominantly bind 1 and 2 to their ethylamino group,
N–H moiety on the imidazole ring and imino nitrogen atom of the same group, respectively (Figure 3).
It is very important to underline that this binding pattern is different from the model by Birdsall and
co-workers [51] proposed on the basis of the site-directed mutagenesis studies carried out by Gantz and
co-workers [52], which suggested Thr190 to bind histamine on its imino nitrogen. However, as we have
already noticed [13], Thr190 residue is not appropriately positioned for such interaction. Instead, it is
located in the close vicinity of the Asp186 residue forming hydrogen bonding interactions to it. 3 and 4
are bulkier and unionized molecules, and their interaction energies ∆EINTER are lower to those of 1 and
2. For 3 and 4, these cluster between –27 and –32 kcal mol–1 in both solvents, while for the other two
systems one notices a large increase in ∆EINTER value for 2 relative to 1. Figure 3 reveals that this is due
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to the unfavorable steric hindrance of the imidazole methyl group in 1 that is positioned close to the
Tyr250 residue, thus favoring π·····π and C–H·····π interactions instead of Tyr250–OH·····N(imidazole)
hydrogen bonding. In 2, the analogous methyl group in the 4-position points in the other direction,
thus allowing Tyr250 to optimize its interaction with the ligand.
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Figure 3. Computational scheme to calculate the interaction energy between 2-methylhistamine
monocation 1 (top) and cimetidine 3 (bottom) with the receptor binding site. The selection of the
dielectric constant is specified in round brackets. Analogous schemes for 4-methylhistamine 2 and
famotidine 4, and are presented in Figure S2.

Combining the mentioned hydration and interaction energies, one arrives to the overall binding
energies for the receptor-ligand recognition, which yield interesting conclusions. It turns out that,
for antagonists cimetidine 3 and famotidine 4, deuteration produces almost identical binding energies
∆EBIND. More precisely, both systems slightly increase their interaction with the receptor upon
deuteration, but only marginally, by –0.09 and –0.05 kcal mol–1, respectively. Nevertheless, both of
these values are found in excellent agreement with the experimentally determined zero difference in the
binding affinity following deuteration (Table 1). Nevertheless, we can conclude that the deuteration of
these two systems does not exert any impact on their antagonistic features nor on their thermodynamic
binding parameters. On the other hand, quite contrary, deuteration has a notable effect on the binding
of both agonists 1–2. For 1, the interaction with the receptor becomes lower by 2.38 kcal mol–1,
being in excellent agreement with the measured value of 2.08 kcal mol–1. Alternatively, deuteration
increases the binding of 2 by –1.10 kcal mol–1, again matching the experimental value of –0.49 kcal
mol–1, thus increasing its potency toward the H2 receptor by almost 10 times. This is a particularly
significant observation given the fact that 4-methylhistamine 2 was originally described as human
H2 agonist [53], but, regardless of the low sequence identity of the human H2 and H4 receptors
(22%), 2 turned out to be a potent and selective full H4 receptor agonist with more than 100-fold
selectivity for the H4 receptor over the other histamine receptor subtypes. Since 2 is well accessible,
it has become the most frequently used human H4 receptor agonist [24]. Let us mention that our
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previous results position histamine in between these two agonists, with calculated and experimentally
measured increase in the binding of –0.51 and –0.73 kcal mol–1, respectively [13]. The agreement
between these sets of data is rather impressive, especially given the simplicity of the model employed
for the quantization of nuclear motion performed on only a small but carefully selected part of the
receptor molecule. However, it should be clear that the activation of GPCRs is a complex and dynamic
process, linked with large conformational changes between receptor states. These are difficult to
investigate experimentally, while, at the same time, occurring on time scales that are too slow for direct
molecular simulations. However, it is gratifying to know that, for membrane receptors, high-resolution
structures of the active and inactive conformation are slowly becoming available, which promotes
understanding the nature of GPCR receptor activation on the atomic and electronic level as a foremost
challenge [54]. Nevertheless, the results of this study offer convincing arguments that hydrogen
bonding interactions are involved in the receptor activation and strongly demonstrate that deuteration
can have a significant impact on the binding. This opens the door for the development of perdeuterated
drugs, which could have different, in some instances more favorable clinical profile to already marketed
substances. In finishing this section, we would like to emphasize that very recently, the US Food
and Drug Administration approved the first deuterated drug, Austedo (deutetrabenazine), for the
treatment of Huntington´s-disease-related movement disorders [55]. Austedo is also the first new
treatment in over a decade for this indication, and preliminary studies show it is more efficacious [56]
and is better tolerable [57] than its non-deuterated analogue.

4. Conclusions

This study reveals the importance of the hydrogen bonding interactions for the binding of
histaminergic ligands to the histamine H2 receptor and computationally evaluates how these are
affected by deuteration. We considered two agonists, 2-methylhistamine (1) and 4-methylhistamine
(2), and two antagonists, cimetidine (3) and famotidine (4), and performed DFT calculations on a
truncated model of the receptor´s binding site including Asp98, Asp186, Tyr250, Lys175, and Thr190
residues, in line with our previous studies. The overall binding was delineated in two contributions,
that arising from the interaction with the receptor and the one originating from the interaction with the
solvent preceding the binding. These were both modeled with the implicit CPCM solvation associated
with the corresponding dielectric constants of ε = 4.0 for the receptor environment, and ε = 78.4
for the aqueous solution. The effect of the isotope substitution was introduced through an implicit
quantization, by 2.3% shortening of all acidic N–H and O–H bonds [41–46].

The results show that both antagonists show weaker interactions with both the receptor and water
solution than their agonist counterparts, and that these are only marginally affected by deuteration.
As a result, our calculations predict practically no differences in the binding energies ∆∆EBIND,CALC for
3 and 4, which is found in excellent agreement with experiments. In addition, our preliminary results
for the antagonist mepyramine also show no effect of deuteration on its affinity for the H2 receptor
(Figure S3). On the other hand, both agonists 1 and 2 are more polar and charged monocationic
species, and their ability to interact with the solvent or the receptor binding site is much higher
relative to uncharged antagonists considered here. Accordingly, deuteration exerts a much evident
impact on these interactions, and our calculations show that 1 interacts less strongly with the H2
receptor by ∆∆EBIND,CALC(1) = 2.38 kcal mol–1 upon deuteration, while the same effect works in
the opposite direction for 2 increasing the overall binding by ∆∆EBIND,CALC(2) = –1.10 kcal mol–1.
Interestingly, these are also found in excellent match with experiments, which predict ∆∆EBIND,EXP of
2.08 kcal mol–1 for 1 and –0.49 kcal mol–1 for 2. The obtained agreement between these sets of data is
impressive, particularly given the simplicity of the model used here for the quantization of nuclear
motion performed on only a small but carefully selected part of the receptor.

The results of this study provide convincing arguments that hydrogen bonding interactions are
involved in the receptor activation, and strongly demonstrate that deuteration can have a significant
impact on the binding. This opens the door for the development of perdeuterated drugs, which could
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have different, in some instances, more favorable, clinical profile to already marketed systems,
and further progress in this area is highly recommended. In addition, the selective replacement of
exchangeable hydrogen atoms with deuterium does not significantly impact the pharmacological
profile of drugs and can elongate the duration of action due to slower decomposition [58]. Clinical trials
of deuterated drugs are in progress [59], and there is still a long way towards the proper understanding
of the receptor activation. Still, besides traditional methods of molecular pharmacology, computational
work will play an important role in clarifying this process, which is likely to lead towards improved
understanding of receptor activation and the design of new drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/2/196/s1,
Figure S1: Computational scheme of 2 and 4 interacting with water molecules to calculate the energy of hydration;
Figure S2: Computational scheme to calculate the interaction energy between 2 and 4 with the receptor binding
site; Figure S3: Inhibition of the specific 3H-tiotidine binding to the histamine H2 receptor with mepyramine,
revealing that deuteration did not cause any change in its affinity.
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