Large scale conversion of trilobolide into the payload of Mipsagargin: 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin

Tomáš Zimmermann¹, Pavel Drašar¹, Silvie Rimpelová², S. Brøgger Christensen³, Vladimir A. Khripach⁴ and Michal Jurášek^{1*}

- ¹ Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, The Czech Republic; tomas.zimmermann@vscht.cz, michal.jurasek@vscht.cz, pavel.drasar@vscht.cz
- ² Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, The Czech Republic; silvie.rimpelova@vscht.cz
- ³ Department of Drug Design and Pharmacology, University of Copenhagen; Jagtvej 162, DK-2100 Copenhagen Ø, Denmark, soren.christensen@sund.ku.dk
- ⁴ Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St. 5, 220141 Minsk, Belarus; khripach@iboch.by
- * Correspondence: michal.jurasek@vscht.cz

Table of Contents:

Product 1 (TZ81) – Figures S1	2-5
Product 2 (TZ82) – Figures S2	6-9
Product 3 (TZ84) – Figures S3	10-13
Product 4 (TZ87) – Figures S4	14-17
Product 5 (TZ92) – Figures S5	18-21
Product 6 (TZ96) – Figures S6	22-25
Product 7 (TZ99) – Figures S7	26-29
2,4,6-Trichlorobenzoic (Z)-2-methylbut-2-enoic anhydride – Figures S8	30-32
Boc-N-12-aminododecanoic acid – Figures S9	33-34
Scheme S1	35
Scheme S2	36
	1

Product 1 (3-oxo-3-desangeloyl trilobolide)

Figure S1A – ¹H NMR of product 1 (400 MHz, CDCl₃)

Figure S1B – ¹³C NMR of product 1 (100 MHz, CDCl₃)

Figure S1C - HMQC of product **1**

Figure S1D - HRMS of product **1** - [C₂₂H₃₀O₉+Na]⁺ = 461.17824

Product 2 (2-octanoyl-3-oxo-3-desangeloyl trilobolide)

Figure S2B ¹³C NMR of product 2 (100 MHz, CDCl₃)

Figure S2D LCMS of product **2** - [C₃₀H₄₄O₁₁+Na]⁺ = 603.27795

Product **3** ((3*S*)-hydroxy-2-octanoyl-3-desangeloyl trilobolide)

Figure S3A ¹H NMR of product 3 (400 MHz, CDCl₃)

Figure S3B ¹³C NMR of product 3 (100 MHz, CDCl₃)

Figure S3C HMQC of product 3

Figure S3D HRMS of product **3** - [C₃₀H₄₆O₁₁+Na]⁺ = 605.29364

Product 4 (8-O-((2S)-Methylbutanoyl)-8-O-debutanoyl thapsigargin)

Figure S4A ¹H NMR of product 4 (400 MHz, CDCl₃)

Figure S4D HRMS of product **4** - [C₃₅H₅₂O₁₂+Na]⁺ = 687.33542

Product 5 (8-O-debutanoyl thapsigargin)

Figure S5A ¹H NMR of product 4 (400 MHz, CDCl₃)

Product 6 (8-O-(Boc-12-aminododecanoyl)-8-O-debutanoyl thapsigargin)

Figure S6A ¹H NMR of product 6 (400 MHz, CDCl₃)

Figure S6C HMQC of product 6

Figure S6D HRMS of product **6** - [C₄₇H₇₅NO₁₄+Na]⁺ = 900.50827

Product 7 (8-O-(12-Aminododecanoyl)-8-O-debutanoyl thapsigargin)

Figure S7A ¹H NMR of product 7 (400 MHz, CD₃OD)

Figure S7D HRMS of product 7 - [C₄₂H₆₇NO₁₂+H]⁺ =778.47428

2,4,6-trichlorobenzoic (Z)-2-methylbut-2-enoic anhydride (8)

Boc-N-12-aminododecanoic acid (9)

Figure S9A ¹H NMR of product 9 (400 MHz, CD₃Cl)

Figure S9B HRMS of product **9** - [C₁₇H₃₃NO₄+Na]⁺ = 338.23052

Scheme S1. The reactions addopted from the literature published [s1*, s2**, s3***]. *Reagents and conditions:* a) CrO₃, HF, AcCN, MW-95 °C, 2 h; b) octanoic acid, $Mn(OAc)_3 \cdot 2H_2O$, 120 °C, 6 h; c) $Zn(BH_4)_2$, Et_2O , -20 °C, 3.5 h, then H₂O; d) *in situ preparation of* 2,4,6-trichlorobenzoic (*Z*)-2-methylbut-2-enoic anhydride = acyl chloride, AngOH, TEA, in toluene; 90 °C, 18 h; e) TEA, MeOH, 0 °C \rightarrow 20 °C, 21 h; f) Boc-12-aminododecanoic acid, DCC, 4-DMAP, DCM, RT, 0 °C \rightarrow RT, 6 h; g) TFA, DCM, H₂O, RT, 45 min. Under the arrows, the scale of the starting material is specified in green.

Scheme S2. Proposed mechanism of α -oxylation

References

[s1] Crestey, F.; Toma, M.; Christensen, S. B. Concise synthesis of thapsigargin from nortrilobolide. Tetrahedron Lett. 2015, 56 (43), 5896-5898.

[s2] Doan, N. T. Q.; Crestey, F.; Olsen, C. E.; Christensen, S. B. Chemo- and regioselective functionalization of nortrilobolide: Application for semisynthesis of the natural product 2-acetoxytrilobolide. *J. Nat. Prod.* **2015**, 78 (6), 1406-1414.

[s3] Jakobsen, C. M.; Denmeade, S. R.; Isaacs, J. T.; Gady, A.; Olsen, C. E.; Christensen, S. B. Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells. *J. Med. Chem.* **2001**, *44*, 4696-4703.