Supplementary Figures and Tables

Figure 1 Currents elicited by GlyR α_1 are an order of magnitude greater than those elicited by GlyTs. Glycine dose-response curves for oocytes expressing only (A) GlyR α_1 , (B) GlyT1 or GlyT2. Currents elicited by GlyR α_1 activation are in the thousands of nA whereas GlyT1 and GlyT2 currents are in the hundreds of nA. Raw currents were fit to the Hill equation. Symbols are mean ± SEM (n = 5).

Figure 2 Contribution of GlyT current to peak current amplitude in co-expressed cells. (A) Strychnine dose-response curves for oocytes expressing $GlyR\alpha_1$, $GlyR\alpha_1/GlyT1$ or $GlyR\alpha_1/GlyT2$ in the presence of 10 µM glycine. Co-expression of GlyTs with $GlyR\alpha_1$ does not appear to affect sensitivity to strychnine. Currents were normalised to the response elicited by 10 µM glycine and fit to the Hill equation. Symbols are mean ± SEM (n = 3). (B) Example traces showing the stop-flow reduction of currents in cells expressing GlyT1 (left) and GlyT (right) alone. (C) The fast-flow (left) and stop-flow (right) current value recorded in the presence of strychnine was calculated as a percentage of the peak current value

without strychnine. The contribution of GlyT currents to peak currents amplitude measured in coexpressed cells decreases with increased glycine concentration. Symbols are mean \pm SEM (n = 5).

Figure 3 Fluorescent tags do not significantly change the sensitivity of GlyR α_1 or GlyT2 to glycine. Glycine dose responses of cells expressing (A) GlyR α_1 and GlyR α_1 -mCherry or (B) GlyT2 and GlyT2-GFP show fluorescent tags do not significantly change glycine-dose response profiles. Currents were normalised to I_{max} and fit to the Hill equation. Symbols are mean ± SEM, n = 5.

Figure 4 GlyR α_1 -mCherry and GlyT2-GFP have similar functional properties compared to untagged proteins. GlyT2-GFP membrane surface expression increases with greater amounts of injected cRNA whereas the membrane surface expression of GlyR α_1 -mCherry does not change. (A) Glycine dose-responses for oocytes expressing GlyR α_1 -mCherry alone, or with different ratios of GlyT2-GFP. Currents were normalised to I_{max} and fit to the Hill equation. Symbols are mean ± SEM, n = 5. Example images of GlyT-GFP and GlyR α_1 -mCherry expressed in the same cell for (B, C) 1:3 or (D, E) 1:10 cRNA injected ratios. (F, G) No fluorescence was detected from uninjected oocytes. (H) Mean fluorescence intensity of GlyT-GFP was significantly greater in 1:10 ratio injected oocytes compared to 1:3. There was no significant difference in GlyR α_1 -mCherry fluorescence between 1:3 and 1:10 cRNA ratio injected oocytes. Symbols represent mean ± SEM, n = 12 **** denotes p ≤ 0.0001 and n.s denotes p > 0.05.

Figure 5 Glycine efflux by GlyT1 in low Na⁺ can be blocked with a GlyT1 inhibitor. Application of the GlyT1 inhibitor, ALX-5407, prevents the stop-flow efflux of glycine by GlyT1 in 1mM Na⁺ extracellular buffer. (A) Example trace showing stop flow current reduction, potentiation and no change in ND96 (96 mM Na⁺) buffer (left), 1 mM Na⁺ buffer (middle) and 1 mM Na⁺ buffer + 1 μ M ALX-5407 respectively. (B) Histograms show normalised I_{stop}/I_{flow} values for different conditions. 1 mM Na⁺ buffer + 1 μ M ALX-5407 was compared to 1 mM Na⁺ buffer using a one-way ANOVA and Tukey's post-hoc test. Symbols represent mean ± SEM, *n* = 5 and ** denotes p ≤ 0.01.

	Glycine EC₅₀ (μM)	95% CI
GlγRα1	13.2	12.2 – 14.3
GlyRα1-mCherry	15.7	14.9 – 16.5
GlyT2	21.8	11.5 – 44.2
GlyT2-GFP	28.1	23.3 - 35.1
GlyRα ₁ / GlyT1 (1:3)	39.5 ****	36.9 - 42.2
GlyRα1 / GlyT2 (1:3)	23.0 ****	21.1 - 24.8
GlyRa1-mCherry/GlyT2-GFP (1:3)	21.9 ****	21.1 - 22.6
GlyRα1/ GlyT1 (1:10)	48.8 ****	46.6 - 51.0
GlyRα1 / GlyT2 (1:10)	41.6 ****	38.8 - 44.7
GlyR α_1 -mCherry/ GlyT2-GFP (1:10)	31.3 ****	29.3 - 33.8

Table 1 Glycine sensitivity is similar between tagged and untagged proteins

Glycine EC₅₀ values from GlyR α_1 /GlyT (1:3) or (1:10) were compared to GlyR α_1 . The same comparisons were made between cells expressing corresponding fluorescently tagged proteins. Data are EC₅₀ and 95% confidence interval (95% CI) ($n \ge 5$). Significance between values were tested using a one-way ANOVA and Dunnett's post-hoc test and **** denotes p ≤ 0.0001 .

Proteino	Mean fluorescence intensity	
	mCherry	GFP
GlyRa ₁ -mCherry/GlyT2-GFP (1:3)	1881 ± 121	1709 ± 78
GlyR α_1 -mCherry/GlyT2-GFP (1:10)	1698 ± 97 Ns	3061 ± 244 ****

Table 2 Mean fluorescence intensity of $GlyR\alpha_1$ -mCherry and GlyT2-GFP in cells expressing tagged proteins

Data is mean \pm SEM (n = 11). Values between GlyR α_1 -mCherry/GlyT2-GFP (1:10) expressing cells were compared to GlyR α_1 -mCherry/GlyT2-GFP (1:3) expressing cells. Significance between values were tested using an unpaired t-test **** denotes p \leq 0.0001 and ns denotes p > 0.05.