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Abstract: Nuclear DNA sensors are critical components of the mammalian innate immune system,
recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei
of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA
viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding
to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well
as to suppress viral gene expression. These host defense responses involve complex signaling
processes that, through protein–protein interactions (PPIs) and post-translational modifications
(PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to
generate an antiviral environment. As such, a holistic understanding of these changes is required to
understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques
has revolutionized the speed and scale at which biological research is conducted and has been used
to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review
the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery
of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral
environment. We also highlight the value of and future need for integrative multiomic efforts to gain
a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic
alterations during infection.
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1. Introduction

Eukaryotic cells are relentlessly assailed by a myriad of pathogens, thereby needing to constantly
evolve and expand their mechanisms for pathogen detection and host defense. During infection,
pathogens bring foreign sugars, lipids, proteins, and nucleic acids into host cells. These foreign
molecules can act as pathogen-associated molecular patterns (PAMPs), and the ability of the cell to
detect them is critical for the initiation of host defense mechanisms and the inhibition of virus production
and spread. Thus, cells utilize specialized proteins known as pattern-recognition receptors (PRRs)
to detect PAMPs [1]. A common PAMP detected by host cells is the pathogenic double-stranded DNA
(dsDNA) from bacteria, DNA viruses, and some RNA viruses (i.e., retroviruses) [2]. PRRs for dsDNA,
known as DNA sensors, bind to the pathogenic DNA and initiate defense programs that include innate
immune signaling, inflammatory responses, and apoptosis. It was long believed that DNA sensors
can only function outside of the nucleus, in order to avoid recognition of self-DNA and spurious
activation of immune responses. However, the majority of the known human dsDNA viruses replicate
within the nucleus, thereby depositing their viral genomes in the nuclei of infected cells. Examples
of nuclear-replicating DNA viruses are herpesviruses, such as herpes simplex virus type 1 (HSV-1),
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human cytomegalovirus (HCMV), and Kaposi’s sarcoma-associated herpesvirus (KSHV). Herpesviruses
are ancient viruses that arose hundreds of millions of years ago, having ample time to co-diverge
with their hosts [3–5]. The co-evolution and co-adaptation of viruses with hosts are evidenced by
the diversification of PRRs and their ligand-recognition abilities [6]. Indeed, research during the
past decade has demonstrated the existence of PRRs that function in nuclear sensing of pathogenic
DNA [7,8].

To date, four proteins have been shown to have the ability to perform nuclear DNA
sensing—in chronological order of discovery of nuclear function: interferon-inducible protein
16 (IFI16 [9–11]), interferon-inducible protein X (IFIX [12]), cyclic GMP-AMP synthase (cGAS [13–16]),
and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1 [17]). The structures of these four
proteins and their currently understood mechanisms for induction of antiviral responses are illustrated
in Figure 1. Each nuclear DNA sensor was shown to help to induce ifnβ expression, which in turn
activates numerous critical antiviral signaling pathways in adjacent cells that aim to slow the spread
of infection. Ifnβ expression is thought to rely primarily on a signaling axis involving the endoplasmic
reticulum membrane protein stimulator of interferon genes (STING), although STING-independent
signaling has also been proposed [18]. Activation of STING leads to the phosphorylation of TANK
binding kinase 1 (TBK1), which in turn phosphorylates the interferon regulatory factor 3 (IRF3).
IRF3 then dimerizes, shuttles into the nucleus, and binds to the interferon-stimulated response element
upstream of ifnβ to transcriptionally activate the expression of antiviral cytokines [19–22].

IFI16 was discovered as a sensor ten years ago [9], becoming the first known nuclear DNA sensor.
Both IFI16 and IFIX belong to the PYHIN family of proteins [12]. These DNA sensors consist of
an N-terminal pyrin domain (PYD) [23] and either one (IFIX) or two (IFI16) C-terminal HIN-200
domains [24,25] (Figure 1A). The HIN-200 domains facilitate sequence-independent binding of the
sensor to the viral DNA [25], while the PYD mediates homotypic oligomerization [26,27]. IFI16 was
shown to bind incoming viral dsDNA at the nuclear periphery, immediately following the docking
of the virus capsid at the nuclear pore, and the PYD was found to be necessary for the IFI16
recruitment to the nuclear periphery [15]. The IFI16 oligomerization upon binding to viral DNA and
recruitment of other host factors is thought to build an antiviral scaffold capable of both activating
immune signaling [9,10,26,28,29] and suppressing viral transcription [29–32] (Figure 1B). A subset
of IFI16 was shown to be able to shuttle between the nucleus and the cytoplasm to function in
DNA sensing in a localization-dependent manner [9,10]. However, during the early stages of
infection with nuclear-replicating viruses, IFI16 does not appear to move to the cytoplasm, remaining
predominantly nuclear. Thus, a still unanswered question is how IFI16 communicates with STING or
whether a STING-independent mechanism also contributes to ifnβ induction.

IFIX was also shown to bind dsDNA in a sequence-independent manner and to help induce
antiviral cytokine expression upon herpesvirus infection [12]. Furthermore, similar to IFI16, this PYHIN
protein displayed pronounced ability to undergo nuclear oligomerization via its PYD [26] and was
shown to also function in suppressing viral gene expression [33]. However, very few studies have
so far focused on IFIX during infection, and the mechanisms involved in IFIX-mediated antiviral
responses remain poorly understood.

The mechanism by which cytoplasmic cGAS induces STING activation is well defined. cGAS
contains an NTase core domain (Figure 1A) that catalyzes the formation of 2′3′-cyclic GMP-AMP
(cGAMP) (Figure 1B). After binding to dsDNA, cGAS dimerizes and initiates cGAMP production.
This small molecule then binds to STING, causing a conformational change and dimerization that leads
to TBK1 phosphorylation. The additional presence of cGAS in the nucleus has been initially the subject
of debate, although it was shown to form a functional nuclear interaction with IFI16 [14]. However,
in recent years, it has become accepted that cGAS indeed has nuclear localization in different cell types,
and studies have characterized mechanisms that prevent its autoreactivity [34] or that underlie its
nuclear function in inhibiting DNA damage repair [16,35].
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Finally, the most recently discovered nuclear DNA sensor, the heterogeneous nuclear
ribonucleoproteins A2/B1 (hnRNPA2B1), has classically been understood to play a role in transporting
mRNA into the cytoplasm [36,37]. In 2019, it was found that, during HSV-1 infection, hnRNPA2B1 both
facilitates the export of IFI16, cGAS, and STING mRNA molecules to the cytoplasm and binds viral
DNA within the nucleus, shuttles to the cytoplasm, and activates STING–TBK1–IRF3 signaling [17].
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Figure 1. Nuclear DNA sensors bind to viral DNA and activate antiviral cytokine signaling. (A) Domain
maps for each nuclear DNA sensor. IFI16 and IFIX belong to the PYHIN family of proteins and each
contain an N-terminal pyrin domain that mediates protein interactions and one or two HIN-200 domains
that bind dsDNA in a sequence-independent manner. cGAS consists of overlapping Ntase core (cGAMP
production) and Mab21 (DNA binding) domains. hnRNPA2B1 possesses two RNA recognition motifs,
the first of which has been proposed to also contain the DNA binding site. Each protein contains a
nuclear localization signal (red bars). (B) Model for the intrinsic and innate immune activity of IFI16,
IFIX, cGAS, and hnRNPA2B1. During infection, IFI16 and IFIX bind viral DNA entering the nucleus
through a nuclear pore complex. After binding to viral DNA via their HIN domains (blue), these
proteins each form homo-oligomers mediated by the PYD in order to build antiviral signaling scaffolds
necessary for the repression of viral transcription and induction of IFNß. cGAS was shown to stabilize
nuclear IFI16 levels during HSV-1 infection to promote immune signaling. In the cytoplasm, cGAS
binds to foreign DNA and produces cGAMP, which in turn activates the STING–TBK1–IRF3 signaling
axis to induce IFNß. hnRNPA2B1 binds viral DNA and is then demethylated by JMJD6. This is required
for hnRNPA2B1 dimerization and subsequent translocation into the cytosol, where it activates the
STING–TBK1–IRF3 axis. In each case, IFNß protein is secreted from the cell in order to communicate
with and initiate antiviral programs in neighboring cells.
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The importance of these nuclear DNA sensors is highlighted by the various strategies acquired
by viruses during their co-evolution with their hosts and adaptation to human cells to inhibit these
DNA sensors and their antiviral functions. For example, HSV-1 promotes the degradation of IFI16 by
targeting this pyrin domain. Several studies have showed this degradation to be primarily driven by
the viral E3 ubiquitin ligase, ICP0 [12,15,28], while other studies suggested the contribution of other
factors [38]. IFIX was also found to be degraded during HSV-1 infection, and this, yet to be discovered,
inhibitory mechanism was shown not to be dependent on the ICP0 E3 ubiquitin ligase activity [33].
HSV-1 further utilizes the tegument protein pUL37 to suppress the cGAS-mediated catalysis of cGAMP
through deamidation of a single arginine residue in the cGAS activation loop [39]. HCMV also acquired
a mechanism to inhibit the function of nuclear sensors by preventing PYD oligomerization of IFI16
and IFIX [26]. This virus immune evasion strategy uses the major tegument protein of HCMV, pUL83,
to clamp the PYD, block oligomerization, and inhibit subsequent immune signaling [26].

The mechanisms described above paint a picture of intricate signaling pathways that underlie the
cellular intrinsic and innate immune systems that nuclear DNA sensors feed into and the opposing
virus immune evasion strategies. On the host defense side, pathogenic DNA is bound by nuclear
DNA sensors which then fulfill two roles: (1) activate immune programming and (2) suppress viral
gene expression. These processes rely on interactions between biomolecules, are regulated by these
interactions and post-translational modifications (PTMs) and affect the expression of hundreds of
cellular and viral transcripts and proteins. Therefore, understanding nuclear DNA sensing requires a
holistic approach in which all these factors are considered.

Knowledge of DNA sensor mechanisms is also relevant for understanding human diseases and
the development of therapies. Dysregulation of DNA sensors contributes to several autoimmune
disorders. For example, patients with systemic lupus erythematosus, Sjögren Syndrome, and systemic
sclerosis exhibit significantly elevated levels of anti-IFI16 antibodies [40–42], which can result from
aberrant overexpression and mislocalization of IFI16 [43]. Further, autoreactivity of cGAS contributes
to Aicardi–Goutières syndrome (AGS) [44,45], and small molecule inhibition of cGAS activity alleviates
constitutive interferon expression in an AGS mouse model [46]. Therefore understanding mechanisms
regulating DNA sensors can provide important insights into driving factors of autoimmune disorders.
Targeting DNA sensors or their activated pathways is also relevant in the development of both antiviral
treatments and vaccines. For example, the STING–TBK1–IFNα/β signaling axis mediates the adjuvant
effects required for successful immunogenicity with plasmid DNA vaccines [21,47]. Thus, we must
consider how DNA sensors upstream of interferon induction react during the administration of DNA
vaccines. So far, only the cytosolic PYHIN protein absent in melanoma 2 (AIM2), which directs the
maturation of proinflammatory cytokines IL-18 and IL-1β, has been demonstrated to act as a sensor
for DNA vaccines [48]. Interestingly, immune responses elicited by DNA vaccines in vivo seem to be
cGAS- and IRF3-independent [49]. Further investigations can help elucidate the relative contributions
of these DNA sensors to aiding immune memory upon DNA vaccine administration.

Omic methods have significantly contributed to the emergence of the research field of nuclear
DNA sensing, helping to build the current level of understanding of the underlying molecular
mechanisms. Mass spectrometry (MS)-based proteomic approaches have allowed the discovery of
functional regulatory hubs for nuclear DNA sensors, including protein interactions and PTMs, as well
as the monitoring of DNA sensor activation (e.g., cGAMP production). Whole-cell proteome analyses
and secretome investigations have informed of global cellular changes that take place during the
host activation of immune signaling cascades. Transcriptome studies have started to uncover the
contribution of some of these DNA sensors to repression of viral gene expression. Here, we review
findings stemming from the application of proteomics and other omic methods to characterizing
the function and regulation of nuclear DNA sensors and explore the future promise of multiomic
approaches in understanding human immune responses to nuclear-replicating viral pathogens.
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2. DNA Sensor Identification and Characterization through the Lens of Proteomics

The use of proteomics directly led to the discovery of all known nuclear DNA sensors. As research
into DNA sensing has intensified over the past decade, proteomics studies have been crucial for
examining the functions and regulations of nuclear DNA sensors (Figure 2). These investigations have
focused on proteome changes, protein–protein interactions (PPIs), and PTMs connected to nuclear
DNA sensors in order to uncover the mechanisms of DNA sensing in response to viral infections.
Here, we discuss the main MS-based approaches used for discovering DNA sensor interactions and
PTMs that contribute to either promoting or inhibiting their host defense functions during viral
infections (Table 1).
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Figure 2. Yearly research articles investigating nuclear DNA sensors. Research papers focused on
each nuclear DNA sensor, obtained from PubMed search when considering published research
articles each year since 1990. The sum of each year’s articles for each protein is represented by line
graphs (left Y axis) while articles specifically utilizing proteomics approaches to investigate proteome
changes, protein–protein interactions, post-translational modifications, etc., are shown as stacked
bars (right Y axis). Of note, the black line represents the number of articles concerning all kinds of
DNA sensing, including non-nuclear sensors such as the cytoplasmic AIM2 and endosomal TLR9.
The red dashed line marks the discovery of IFI16 as the first nuclear DNA sensor.
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Table 1. Omics techniques used for the discovery and characterization of nuclear DNA sensors and related host antiviral processes.

Strategy Advantages Disadvantages Purpose Application References

AP-MS isolating DNA
Unbiased detection of proteins

bound to DNA or to DNA sensor;
high sensitivity; enrichment of
proteins of interest; ability to

detect multiple PTM types

Could miss transient
interactions; does not
discriminate between

direct and indirect
interactions; nonspecific
interactions are possible

Identify DNA sensors IFI16, hnRNPA2B1 [9,17]

IP-MS isolating DNA sensors

Identify DNA sensors IFIX [12]

Interactome IFI16, IFIX, cGAS,
hnRNPA2B1 [12,15,17,29,33,50,51]

PTMs IFI16, cGAS [10,52,53]

Shotgun MS (whole proteome) High throughput, unbiased,
high sensitivity

Complex datasets;
computationally intensive;
possible missing values in

quantitative proteome
measurements

Identify DNA sensors cGAS [13]

Proteome cGAS [51]

Secretome Herpesvirus infection [54]

Metabolome Herpesvirus infection [55]

Targeted MS
High accuracy

and sensitivity; specific detection;
requires low sample amount

Needs prior detection or
defining signature

detection parameters;
needs specialized MS

instrumentation

Protein abundance Immune factor
quantification [51]

Confirmation of protein interactions cGAS, IFI16 [14,29]

PTMs cGAS [53]

Small molecule detection cGAMP [13]

DNA microarrays
High throughput; inexpensive;
customizable to detect specific

sequences and isoforms

High background noise;
requires high sample

amount; biased approach
Transcriptome Herpesvirus infection [56]

RNA sequencing
High throughput; unbiased;
requires low sample amount;

single base resolution

Requires library
preparation;

computationally intensive;
expensive

Transcriptome IFI16 (mouse homolog) [57]
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2.1. DNA Sensor Molecular Interactions Drive Host Antiviral and Virus Immune Evasion Mechanisms

Affinity purification-mass spectrometry (AP-MS) has been the cornerstone of identifying and
quantifying protein–protein and protein-nucleic acid interactions [58]. In this approach, either a protein
of interest or DNA is isolated and the accompanying interacting proteins are analyzed using mass
spectrometry. Immunoaffinity purification (IP) is carried out by using an antibody conjugated to
a resin, such as magnetic beads, which can be easily separated from the cell lysate and captured via
centrifugation or application of a magnet (reviewed in [59]). The antibodies used can be raised against
the endogenous protein of interest. However, as the efficiency and specificity of the isolation relies on
the quality of the available antibody, antibodies against tags such as FLAG, HA, and GFP are often
used to facilitate protein isolation [60]. DNA can be purified from cells through similar methods,
usually using biotinylated DNA and streptavidin-coupled beads to isolate DNA–protein complexes [9].
Following complex isolation, the identities and abundances of the accompanying proteins are then
characterized using MS.

It has long been understood that viral DNA activates innate immune responses, including ifn-β
expression [61], but the identities of the DNA sensors and subsequent signaling pathways remained
undetermined. AP-MS approaches have been at the core of discovering the identities of DNA sensors.
IFI16 was recognized as a DNA sensor in 2010, when Unterholzner et al. performed AP-MS after
transfecting THP-1 cells with a biotinylated 70 base-pair vaccinia virus DNA fragment (VACV 70mer) [9].
It is of note that IFI16 is expressed and localized to both the nucleus and cytoplasm in macrophages such
as the macrophage-like differentiated THP-1 cells. Further studies demonstrated that IFI16 has DNA
sensor activity in the nucleus after different types of infections with nuclear-replication DNA viruses,
including HSV-1 [9,10,28], KSHV [11], and HCMV [30], as well as after retrovirus infection, recognizing
DNA intermediates of human immunodeficiency virus 1 (HIV-1) [6,62]. The interaction between IFI16
and HSV-1 DNA was also demonstrated in an elegant study that utilized 5-ethynyl-2′deoxycytidine
(EdC) labeling of viral genomes coupled with AP-MS to investigate temporal viral genome-protein
interactions. Here, IFI16 was found to associate with the viral genome by 2 h post-infection [63].
Recently, IFI16 was identified in an AP-MS study isolating the RNA genome of Chikungunya virus [64].
This is an unexpected finding as IFI16 has no known RNA sensing capability, but it implicates IFI16 in
immune sensing pathways beyond dsDNA virus infection.

AP-MS was also integral in the discovery of the most recently identified nuclear DNA sensor,
hnRNPA2B1, which was shown to function during HSV-1 infection [17]. In this study, HSV-1 genome
biotinylation and AP-MS was integrated with a characterization of the nuclear and cytoplasmic
proteomes following cellular fractionation. This allowed the authors to identify hnRNPA2B1 as a
protein that both binds to viral DNA and shuttles to the nucleus to activate STING–TBK1–IRF3 signaling.

As nuclear DNA sensors do not directly stimulate interferon expression, interaction with other
cellular proteins is crucial for initiating immune signaling pathways. Furthermore, the importance of
PPIs in the regulation of immunity is highlighted by the virus–host protein interactions through which
viruses inhibit DNA sensors. Thus, IP-MS studies that define the interactomes of DNA sensors have
led to a better understanding of both their action and regulation.

The first interactome study of IFI16 during HSV-1 infection used AP-MS to characterize interactions
with both endogenous and tagged IFI16 [50]. This study revealed IFI16 interactions with many cellular
transcription and chromatin regulators, such as the upstream binding transcription factor (UBTF)
and ND10 body components, as well as with the nuclear architecture proteins SUN1 and SUN2.
Several viral proteins were also found to associate with IFI16 [50], including the E3 ubiquitin ligase
ICP0 that was previously implicated in targeting IFI16 for degradation (Figure 3) [28]. Both UBTF
and ND10 bodies (also known as PML nuclear bodies) were shown to function in host defense by
repressing HSV-1 transcription [65,66], and ND10 bodies were also found to be targeted for degradation
by ICP0 [67].
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Figure 3. Protein–protein interactions contribute to the activation or inhibition of DNA sensor.
Over the course of viral infection and immune signaling, DNA sensors interact with other cellular and
viral proteins. Several of these cellular proteins are important for the function of the DNA sensors for
both suppressing virus replication by repressing viral transcription and inducing antiviral cytokines.
Protein interactions are also used to regulate DNA sensor function. Viruses have evolved distinct
mechanisms to facilitate immune evasion and cells must also possess mechanisms to prevent excessive
immune signaling. Although localized to both the nucleus and cytoplasm, protein interactions with
cGAS are best characterized in the cytoplasm. Nuclear proteins are shown here as rectangles and
cytoplasmic interactions as hexagons.

To further clarify how these interactions are facilitated and regulated during HSV-1 infection,
the domain-specific interactomes of IFI16 were investigated by performing separate IP-MS experiments
for the PYD and HIN domains [15]. This study revealed that the PYD interacts with members of
ND10 bodies, cGAS, and the RNA polymerase II-associated factor 1 (PAF1). More recently, IP-MS with
oligomerization-deficient IFI16 mutants demonstrated that IFI16 oligomerization is needed for the
formation of these interactions with PAF1 and other members of the PAF1 complex during HSV-1
infection [29]. Additional experiments uncovered an antiviral role for PAF1, showing its ability to
repress virus gene transcription.

Similar IP-MS interactome studies of PYHIN proteins related to IFI16 led to the discovery
and characterization of IFIX as an antiviral nuclear DNA sensor [12]. At the time, very little was
known about the cellular role of IFIX, but through IP-MS it was found to interact with many of
the same proteins as IFI16, including ND10 body components and other chromatin remodeling and
immune signaling proteins. These interactions, in conjunction with its structural similarities to IFI16,
suggested that IFIX may also have antiviral properties and function in DNA sensing. Follow-up
experiments demonstrated that IFIX binds viral DNA, suppresses HSV-1 replication, and induces
interferon expression [12]. Probing the IFIX interactome even further during HSV-1 infection revealed
associations with several components of the five friends of methylated chromatin target of Prmt1
(5FMC) complex [33], which functions in epigenetic regulation [68] and was later found to also interact
specifically with oligomerized IFI16 [29].

Several important discoveries of cGAS function have been made using AP-MS, and we must also
emphasize that the discovery of cGAS as a DNA sensor was initially enabled by the MS characterization
of the cellular proteome. Stimulation of STING by cGAMP was discovered in 2013 [69], but the
source of the cyclic GMP-AMP synthase activity remained unclear. Thus, cGAS was identified by
integrating shotgun proteomics and cellular fractionation in order to pinpoint the protein whose
expression pattern matched that of cGAS activity [13]. Since then, targeted IP-MS studies focused
on specific interactions of interest uncovered cGAS associations with several cellular proteins that
support immune function, including TRIM56 [70], PARP1 [16], and IFI16 [14], among many others
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(Figure 3). The interaction between cGAS and IFI16 is particularly interesting because it touches on the
question of redundancy for these proteins in the nuclear DNA sensing pathway. It was determined that,
during HSV-1 infection, nuclear cGAS interacts with IFI16 for the purpose of stabilizing IFI16 in order
to promote immune signaling [14,71]. The knowledge of cGAS interactions was later expanded with
an IP-MS study of its interactome, which was further integrated with quantitative profiling of cellular
proteome alterations during HSV-1 infection [51]. This interactome revealed the cGAS interaction with
the RNA sensor OASL, which was demonstrated to repress cGAS activity as a host negative feedback
loop for regulating cytokine induction [51].

Currently, the only study to have utilized AP-MS to study hnRNPA2B1 in the context of DNA
sensing is the one in which it was discovered [17]. As indicated above, here, biotinylated HSV-1 genomes
were isolated early during infection and the interacting proteins were identified via MS. These data were
then cross-referenced with shotgun MS of nuclear/cytoplasmic fractionated cells in order to identify
proteins that undergo nucleocytoplasmic translocation during infection. This approach enabled the
authors to identify proteins that both bind viral DNA and shuttle to the cytoplasm, potentially for the
purpose of activating STING–TBK1–IRF3. IP-MS was then utilized to gain a mechanistic understanding
of interferon induction by hnRNPA2B1, showing that it does indeed interact with STING and TBK1
following HSV-1 infection.

The discovery of interactions with nuclear DNA sensors has also led to the characterization of
mechanisms by which viruses evade cellular innate immunity. For example, recognizing the ability of
the HCMV tegument protein pUL83 to inhibit the nuclear oligomerization of the pyrin domains of
IFI16 and IFIX (Figure 3) derived from the identification of their interactions from an IP-MS study [26].
In agreement with its reported ability to target IFI16 for degradation during HSV-1 infection [28],
the ICP0 interaction with IFI16 was demonstrated by IP-MS [50]. IP studies followed by targeted
assays were valuable for identifying other mechanisms of virus immune evasion, such as the inhibition
of cGAMP production by the KSHV virion protein ORF52 [72] and the HSV-1 tegument protein pUL37
(detailed in the PTM section below) [39] (Figure 3).

2.2. Post-Translational Modifications for Finely Tuning DNA Sensor Function

Beyond interactions with other biomolecules, the ability of DNA sensors to detect and respond
to pathogenic invasion is closely tied to their regulation by PTMs. Changes to protein structure
via phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, enable the rapid
regulation of protein function, and the addition or removal of PTMs is a tightly regulated cellular
process in response to stress. MS has been well-established as the main method for accurate and
unbiased detection of site-specific PTMs in different cellular contexts and has also contributed to the
discovery of a multitude of DNA sensor PTMs (Table 2).

Broadly speaking, PTMs are inherent to the ability of a cell to induce immune signaling cascades
in response to pathogen infection. The necessity of PTMs for immune signaling is exemplified
by the activation of IFNβ expression that hinges upon phosphorylation of both TBK1 and IRF3 in
STING-dependent signaling [1]. Further, PTMs of DNA sensors have been shown to directly contribute
to immune activation. The hnRNPA2B1 interactome also revealed an interaction with the nuclear
protein JMJD6, which facilitates demethylation of hnRNPA2B1 at Arg226. This alteration in hnRNPA2B1
structure is necessary for its dimerization, nucleocytoplasmic translocation, and subsequent interferon
induction [17]. Thus, the necessity of Arg226 demethylation for hnRNPA2B1 DNA sensing highlights
the importance of protein modification in this immune response.
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Table 2. Known post-translational modifications of nuclear DNA sensors.

DNA Sensor Modification Residues Reference in Which First Identified

IFI16

Acetylation K45, K99, K128, K214, K444, K451, K505, K542, K558 [10]

Phosphorylation
S95, S106, S153, S168, S174, S724 [10]

S575 [73]

SUMOylation

K116, K561 [74]

K128 [75]

K683 [76]

cGAS

Acetylation
K7, K50, K384, K392, K394, K414 [52]

K198, K285, K292, K355, K432, K479 [53]

Deamidation N196, N377, Q436, Q439 in mice (N210, N389, Q451,
Q454 in human) [39]

Glutamylation E272 (poly), E302 (mono) [77]

Phosphorylation

S37, S116, S201, S221, S263 [53]

S143 [73]

Y215 [16]

S305 [78]

SUMOylation K217 and K464 in mice (K231 and K479 in human) [79]

Ubiquitination
K271 and K464 (poly) in mice [79]

K335 (mono) [70]

hnRNPA2B1

Acetylation
M1 [80]

K168, K173 [81]

Demethylation R226 [17]

Methylation R203, R213, R228, R238, R266, R325, R350 [82]

Phosphorylation

T4, S29, T140, T159, T176, S189, S201, S212, S225,
S259, S324, Y331, S341, S344 [83]

S85, S212, S259, S344 [84]

S149, S231 [73]

S236 [85]

S347 [86]

SUMOylation
K22, K104, K112, K120, K137, K152, K168, K173 [75]

K120, K186 [74]
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The initial discovery of IFI16 as a viral DNA sensor pointed to its ability to recognize
pathogenic DNA in the cytoplasm, and further characterization of this sensor also solidified its
nuclear DNA sensing function. However, the mechanisms regulating IFI16 subcellular localization
remained unknown. Furthermore, its relative nuclear or cytoplasmic distribution was shown to be cell
type dependent, with its localization being predominantly nuclear in lymphoid, epithelial, endothelial,
and fibroblast cells, tissues that tend to be among the first infected by an invading virus. In 2012,
our group reported that IFI16 contains a bipartite nuclear localization signal (NLS) and, using MS,
identified several acetylation sites within the NLS [10]. IFI16 mutation experiments indicated that
NLS acetylation at Lys99 and Lys128 inhibits nuclear import and abrogates IFI16 DNA sensing during
HSV-1 infection. This discovery was critical for supporting that IFI16 predominantly senses viral
DNA within the nucleus during herpesvirus infection. A number of studies have since demonstrated
that IFI16 is regulated by different types of PTMs during viral infections, which additionally include
phosphorylation and SUMOylation (Table 2) [10,73–76]. PTM-driven mechanisms also underly the
ability of the cell to activate DNA sensors by modifying viral immune evasion proteins, thereby
crippling their functions. For example, eight phosphorylation sites were discovered on the HCMV
tegument protein pUL83 and mutational analyses demonstrated that its binding to the IFI16 PYD can
be compromised by Ser364 phosphorylation within the pUL83 pyrin association domain [26].

PTMs of cGAS during DNA sensing have also started to be recognized for their importance
in cGAS regulation and function, and MS-based PTM analysis has been crucial for identifying key
regulatory hubs. For example, Zhang et al. found that the HSV-1 tegument protein pUL37 antagonizes
cGAS during infection [39]. This protein is a known deamidase that acts on the dsRNA sensing
protein RIG-I [87] to prevent immune signaling during HSV-1 infection; thus, the authors proposed a
similar deamidation event would prevent cGAS signaling. Using tandem MS, they discovered several
deamidation sites within the Mab21 enzyme domain and further identified that deamidation of Asn210
indeed impairs the ability of cGAS to produce cGAMP upon binding to dsDNA [39].

Several other important cGAS PTMs have been identified in recent years that function to either
suppress or activate cGAS activity during DNA sensing. These PTMs include phosphorylation,
glutamylation, ubiquitination, and SUMOylation (Table 2). An IP-MS study of cGAS followed
by mutational analysis of the identified modified sites led to the finding that the kinase Akt
phosphorylates cGAS Ser305, suppressing cGAMP production and interferon expression [78].
Additionally, glutamylation of cGAS at two distinct sites have been shown to impede cGAS activity [77].
After identifying that the cytosolic carboxypeptidases 5 and 6 (CCP5 and CCP6) contribute to activation
of IRF3 during infection with DNA viruses HSV-1 and VACV, Xia et al. used MS to identify cGAS as a
substrate of these protein. As CCP5 and CCP6 reverse glutamylation, this then led to the discovery
that cGAS activity is suppressed through Glu302 monoglutamylation by tubulin tyrosine ligase-like
protein 4 (TTLL4), which prevents cGAMP production, and through Glu272 polyglutamylation by
TTLL6, which weakens the cGAS DNA binding ability [77]. More recently, MS analyses led to the
discovery that cGAS is also acetylated at several lysine residues, with acetylation at Lys384, Lys394,
and Lys414 suppressing cGAS-mediated cGAMP production [52] and apoptosis [53], and Lys198
acetylation promoting cGAS-induced antiviral cytokine expression [53]. Targeted MS/MS quantification
of site-specific acetylation during infection demonstrated that the level of Lys198 acetylation decreased
during HSV-1 and HCMV infections [53], pointing to the possible presence of a viral immune evasion
strategy targeting this residue to control host immune response.

Targeted studies that do not utilize MS have also identified important cGAS PTMs (Table 2).
Mutational analysis of cGAS revealed that phosphorylation at Tyr215 inhibits cGAS nuclear translocation
upon DNA damage, and a tyrosine kinase knockdown screen showed that B-lymphoid tyrosine kinase
controls phosphorylation at this residue [16]. As another example, SUMOylation of murine cGAS by
TRIM38 enhanced cGAS DNA sensing by preventing polyubiquitination and subsequent degradation
of cGAS [79]. Further investigations of the aforementioned interaction between cGAS and TRIM56
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revealed that TRIM56 acts to monoubiquitinate cGAS in order to promote its dimerization and facilitate
cytosolic DNA sensing [70].

3. Defining the Cellular Landscape Representative of Immune Activation

In addition to providing specific information regarding the regulation of nuclear DNA sensors,
omic studies have also informed of the global alterations occurring in host cells during
immune activation. Infections with DNA viruses result in major changes in mRNA expression,
protein abundances, interaction networks and PTMs, cellular metabolism, and secretion.
During infection, the virus seeks to inhibit host defenses, co-opt cellular machinery, and rewire
the cellular metabolome to facilitate production of progeny virions. Meanwhile, the host attempts to
reduce energy expenditure while producing and secreting antiviral cytokines that will slow the spread
of infection. Transcriptome, proteome, metabolome, and secretome studies have been critical for
gaining an understanding of these broad cellular alterations occurring during the progression of virus
infections. Temporal transcriptomic and proteomic investigations have been carried out to determine
whether a regulation occurs through changes at the transcript or protein level during infection and to
correlate expression trends with phenotypes.

Given that viruses appropriate the host cell transcription machinery and RNA processing, a range
of transcriptome studies have been performed to monitor temporal cellular and viral transcript levels
during different types of infections. For example, DNA microarrays have been used extensively to
study the effect infection on transcription by HSV-1 [88,89], HCMV [56,90–93], KSHV [94,95], and the
porcine alphaherpesvirus pseudorabies virus [96,97], among others. Similar to proteomic technologies,
improvements in sequencing methods have greatly impacted our understanding of host cell response to
viral infection. The emergence of RNA sequencing (RNA-seq) as an unbiased method that is both more
sensitive and precise than microarrays [98] has benefitted the fields of virology and immunology by
more broadly capturing the cellular and viral transcriptional landscape during infection, including the
expression of interferon-stimulated genes (ISGs). This technique was used to demonstrate that HSV-1
infection of skin fibroblasts led to the upregulation of 596 genes, downregulation of only 61 genes,
and 1032 alternative splicing events [99]. RNA-seq analysis of HCMV infection in human fibroblasts
showed that genes involved in the epithelial-to-mesenchymal transition (EMT) are downregulated,
while genes that support mesenchymal-to-epithelial transition (MET) are induced, suggesting HCMV
prefers an epithelial cellular state for replication [100]. Furthermore, RNA-seq has recently been
used to explore transcriptomic differences between endemic Kaposi’s sarcoma (EnKS) and epidemic
Kaposi’s sarcoma (EpKS), which results from KSHV and HIV-1 co-infection in sub-Saharan Africa [101].
This study found that a subset of genes involved in tumorigenesis and immune responses displayed
increased dysregulation in EnKS lesions, but the overall gene expression profiles between EnKS and
EpKS correlated strongly.

Investigation of cellular transcriptomes through RNA-seq have also revealed important aspects of
nuclear DNA sensor regulation outside of the context of virus infection. To provide a few examples,
expression of IFI16, among several other innate immunity proteins, was upregulated in macrophages
infected with the bacterium Campylobacter concisus [102]; tumor-bearing mice with deletion of the
IFI16 homolog p204, when compared to WT mice, lacked the ability to induce the upregulation of
382 genes, indicating the extensive involvement of IFI16 in antitumor immunity [57]; and RNA-seq
studies of an alcohol-related liver disease model in mice revealed that liver damage from excessive
alcohol consumption is mediated by cGAS activation of the STING–TBK1–IRF3 pathway [103].

Similar to transcriptome studies, whole-cell proteome investigations with mass spectrometry have
led to a wealth of information about both viral and cellular protein abundances during virus infection,
uncovering changes linked to innate immune responses and virus immune evasion strategies. Given the
finely tuned temporal regulation of virus replication steps, assessments of the cellular proteomes have
been carried out at multiple time points as the infection progresses, as reported for infection with
HSV-1 [51,104], HCMV [105,106], and KSHV [107,108]. In conjunction with temporal studies, infection
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with virus strains that lack the ability to inhibit DNA sensors offered a view of proteome changes
during an active host immune response. For example, the d106 HSV-1 strain contains mutations
in four of five immediate-early proteins (ICP4, ICP22, ICP27, and ICP47) but expresses functional
ICP0 [109]. Infection with this virus results in increased induction of cytokines and apoptosis when
compared to infection with WT HSV-1 [50,110]. By comparing temporal proteome changes during
WT and d106 HSV-1 infections, we discovered the upregulation of several proteins involved in innate
immunity and apoptosis, and integration with cGAS IP-MS led to the discovery of OASL-mediated
cGAS inhibition [51]. Additional MS studies have been carried out to characterize proteome changes
during HSV-1 infection in a range of cell types and to compare alterations induced by different virus
strains [51,54,104,111–121]. Spatial proteomics [122] has further provided the ability to characterize
changes in proteome organization during infection [123], as well as discover viral proteins that localize
to distinct organelles to regulate their functions, as shown for HCMV infection [124]. Recent years
have also seen the increased integration of proteome studies with global PTM studies, where the
infection-induced host phosphorylation, acetylation, SUMOylation, ubiquitination landscapes, to name
just a few, have been started to be characterized [125–128]. Knowledge of global PTM changes
have furthered the understanding of signaling cascades during infection and have helped to identify
regulatory hubs at the interface between host defense and virus production. Another proteomic
perspective of regulatory hubs is provided by the identification of functional protein complexes that
are activated or inhibited during an infection process. The use of thermal co-aggregation profiling MS
was recently demonstrated to offer a global view of temporal assembly and disassembly of host–host,
host–viral, and viral–viral protein interaction events during HCMV infection, including the regulation
of complexes involved in host immunity [106]. Altogether, these MS-based proteomic investigations of
whole-cell and subcellular proteomes, interactomes, and PTMs provide rich information regarding host
cell changes in response to viral infections. The integration of these different datasets promises to reveal
a systems-view of the host environment during infection, which can aid in the formulation of specific
biological hypotheses, the identification of changes linked to viral pathologies, and the discovery
of therapeutic targets. Therefore, efforts have been and continue to be placed in the development
of computational platforms that facilitate data integration in a user-friendly manner [129–135].
One platform specifically applied to studying viral infections is the Interaction Visualization in Space
and Time Analysis (Inter-ViSTA), a web-accessible platform that enables integration of interactome,
proteome, and functional traits to build animated temporal interaction networks [136]. For example,
this analysis platform readily illustrated dynamic localization-dependent interactions of the HCMV
protein pUL37 that function to either inhibit immune responses early in infection or promote peroxisome
metabolic functions that benefit virus assembly late in infection.

Metabolome profiling brings another powerful omic tool to understanding the biology of virus
infection and host defense mechanisms. Replication and assembly of virions is an energy-intensive
process that requires the virus to trigger the cellular machinery to increase protein and lipid production
for building progeny virions, as shown for numerous viruses [137]. Great effort has been put into
understanding the mechanisms underlying metabolic reprogramming during a number of viral
infections, including with HCMV and HSV-1 [55,138]. Integrating MS-based metabolomics with
molecular virology techniques has proved valuable towards this goal; for example, a recent study of
HCMV infection found that the viral protein pUL37 is critical for remodeling cellular metabolism by
increasing production of very-long-chain fatty acids [139]. Given that pUL37 is an important immune
evasion protein, such as by inhibiting cGAS function [39], it is likely that pUL37 bridges proviral
metabolism with innate immune regulation during HCMV infection. Future studies geared towards
elucidating the relationships between these fundamental infection processes promise to reveal key
players in virus replication and spread.

Finally, the secretion of proteins into the extracellular space is crucial for communication with
adjacent cells and is the foundation of innate immunity. Interferons secreted by infected cells
bind to receptors on neighboring cells to induce immunomodulatory and antiproliferative effects,
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a phenomenon that has been known for several decades [140]. Upon binding to the interferon
receptor and activating the JAK–STAT signaling pathway, dozens of transcripts are upregulated,
including additional cytokines [141], altogether leading to inflammatory response and impacting
disease pathology. Therefore, examining the secretome of infected cells is a necessary component for
understanding these complex intercellular communications [142]. MS-based studies have leveraged
proteomics and lipidomics methods to define the composition of secreted biomolecular complexes
during infection, including extracellular vesicles known as exosomes [143]. For example, quantitative
proteomic analysis of exosomes from HSV-1-infected macrophages demonstrated that specific subsets
of cytokines, inflammatory proteins, and transcription factors are secreted rapidly upon infection,
thus priming immune response in neighboring cells [144]. Virus-driven secretomes can also impact
cellular and tissue physiology, as demonstrated by two recent studies that examined how molecules
secreted by herpesvirus infected cells determine local immune and growth responses in neutrophils [145]
and cortical brain cells [54], respectively.

4. The Missing Link: Genomics for Understanding the Viral DNA–DNA Sensor Interface

AP-MS isolations of viral DNA during infection have been fundamental for the discovery of
nuclear DNA sensors. However, the regulation and complete outcome of the interactions between DNA
sensors and viral DNA remain to be fully characterized. In this section, we discuss the conundrum
of how DNA sensors bind to pathogenic DNA in a sequence-independent manner, while also being
shown to specifically function in repression of viral gene expression.

Though nuclear DNA sensors avoid autoreactivity with host DNA, they do not appear to recognize
any specific virus nucleotide sequence motifs or DNA modifications. In fact, for a protein to be classified
as a DNA sensor, one requirement is that it should bind to DNA in a sequence-independent manner,
thereby having the capacity to recognize multiple DNA pathogens. For example, for the HIN-200
domains of IFI16 and IFIX, their sequence-independent binding to dsDNA is accomplished via
weak electrostatic interactions between positively charged amino acids and the negatively charged
DNA phosphate backbone [25,146,147]. It was also demonstrated that IFI16 preferentially binds to
specific DNA forms, namely cruciform structures, superhelical, and quadruplex DNA, which could
maximize contact between the phosphate backbone and the basic amino acids in the HIN-200
oligonucleotide/oligosaccharide binding folds [148,149]. However, there remains no evidence of
DNA sequence preference, and it is hypothesized that the activation of immune responses by IFI16
relies on cooperative assembly of IFI16 oligomers, which is limited on host DNA by tight chromatin
packing [29,150]. Examinations of crystal structures of cGAS with a dsDNA ligand have similarly
shown that the cGAS Mab21 domain binds to the phosphate backbone of B-form DNA without any
sequence specificity [151–154]. In contrast with IFI16, it is proposed that cGAS-mediated autoreactivity
is inhibited by tight tethering of cGAS to host chromatin through a salt-resistant interaction that is
independent of the domains required for cGAS activation [34,35].

Such in vitro experiments indicate that DNA binding is sequence independent, but the propensity
of DNA sensors to interact with transcriptional regulatory proteins that are sequence specific
(e.g., the HSV-1 transcriptional activator ICP4 [155]) could induce preferential accumulation at certain
DNA loci. Furthermore, given that IFI16 and IFIX have also been shown to function in host antiviral
response by repressing virus transcription [29–33], how does DNA sensor binding affect the chromatin
structure at specific binding sites? Are other protein–DNA interactions increased or decreased at
these loci, and how does this affect viral transcription and replication?

After entering the nucleus, herpesvirus genomes are subjected to chromatinization by host cell
histones [156], and it has been demonstrated that IFI16 promotes the addition of the repressive
heterochromatin mark H3K9me3 on viral DNA [31,32,157]. Thus far, these studies investigating where
IFI16 and H3K9me3 interact with viral genomes have been conducted using chromatin immunoaffinity
purification (ChIP) coupled with PCR or RT-qPCR [31,32,157]. Herpesviruses have large genomes
(e.g., HSV-1 is ~152 kilobase pairs and contains ~80 genes), yet this approach is limited by only
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examining protein–DNA interactions at a few viral genes. Higher throughput techniques can help to
more broadly represent interactions between viral DNA and DNA sensors and the subsequent effects
on the viral genome chromatin landscape.

To assess where DNA sensors bind to the viral genome, ChIP sequencing (ChIP-seq) is an
appropriate technique that has previously been used to study how the HSV-1 genome interacts with
ICP4 [155], RNA polymerase II [158], and the transcription factor CCCTC-binding factor (CTCF) [159].
Applying this technique with nuclear DNA sensors would help determine whether DNA sensing
is fully a sequence-independent process or whether additional factors within the cell can also cause
accumulation of the DNA sensor at specific DNA loci.

Histone PTMs such as H3K9me3 are often used as proxies for determining whether a DNA locus
resides in a euchromatin or heterochromatin region of DNA [160]. To investigate how DNA sensors
affect the chromatinization of viral genomes, knockout studies can be followed by H3, H3K4me3,
and H3K9me3 ChIP-seq. However, these modifications only act as a proxy for the chromatin structure
and are not a direct readout of chromatin structure. Additionally, the cost of such experiments must
also be considered, as the requirement for multiple conditions per sample considerably increases the
amount of sequencing required. Measuring chromatin accessibility is often a better way to examine
chromatin structure and can be probed through techniques such as MNase-seq [161], DNase-seq [162],
FAIRE-seq [163], and ATAC-seq [164]. Furthermore, integration of protein–DNA interaction mapping
data with chromatin accessibility data following DNA sensor knockout can help to identify how
DNA sensor binding both globally and locally affects viral DNA structure. Thus, high-throughput
sequencing techniques that explore epigenomic changes will be pivotal to continuing to expand our
understanding of nuclear DNA sensor mechanisms.

5. Concluding Remarks

The development of omics techniques has helped to greatly expedite biological research. The topic
discussed in this paper, the elegantly complex process of nuclear DNA sensing during virus infection
has benefited immensely from the ability to examine the identities and PTM states of all proteins
within the host cell. The general idea behind DNA sensors is rather simple: bind pathogenic DNA and
initiate antiviral signaling pathways. However, the mechanisms by which the nuclear DNA sensors
IFI16, IFIX, cGAS, and hnRNPA2B1 activate large-scale transcriptome, proteome, and secretome
changes rely on the precise coordination of a multitude protein interactions and PTMs. Here, we have
discussed how omics techniques, particularly those implementing mass spectrometry, have led to
the discovery and characterization of these nuclear DNA sensors. The future expansion of these
investigations to integrative multiomics studies that include epigenomic assays promise to substantially
contribute to a more in-depth understanding of the intricacies of DNA sensing, its dysregulation,
and connected pathologies.
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