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Abstract: Mortality attributed to lung cancer accounts for a large fraction of cancer deaths worldwide.
With increasing mortality figures, the accurate prediction of prognosis has become essential.
In recent years, multi-omics analysis has emerged as a useful survival prediction tool. However,
the methodology relevant to multi-omics analysis has not yet been fully established and further
improvements are required for clinical applications. In this study, we developed a novel method to
accurately predict the survival of patients with lung cancer using multi-omics data. With unsupervised
learning techniques, survival-associated subtypes in non-small cell lung cancer were first detected
using the multi-omics datasets from six categories in The Cancer Genome Atlas (TCGA). The new
subtypes, referred to as integration survival subtypes, clearly divided patients into longer and
shorter-surviving groups (log-rank test: p = 0.003) and we confirmed that this is independent of
histopathological classification (Chi-square test of independence: p = 0.94). Next, an attempt was
made to detect the integration survival subtypes using only one categorical dataset. Our machine
learning model that was only trained on the reverse phase protein array (RPPA) could accurately
predict the integration survival subtypes (AUC = 0.99). The predicted subtypes could also distinguish
between high and low risk patients (log-rank test: p = 0.012). Overall, this study explores novel
potentials of multi-omics analysis to accurately predict the prognosis of patients with lung cancer.

Keywords: lung cancer; multi-omics analysis; deep learning and machine learning

1. Introduction

Lung cancer is the most commonly diagnosed cancer worldwide and is the leading cause of cancer
death. There were an estimated 2.1 million cases with 1.8 million deaths due to lung cancer in 2018 [1].
The incidence and mortality rates vary among regions; for example, the incidence rate is higher in
Polynesia, Micronesia, North America, East Asia and Europe. According to estimates, the United
States is likely to see more than 228,820 people newly diagnosed cases with more than 135,720 lung
cancer deaths in 2020 [2]. Similarly, the incidence and the mortality rates are expected to rise in East
Asia, including Japan [3].
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There are two major types of lung cancers: small cell lung cancer (SCLC) and non-small cell
lung cancer (NSCLC). The percentage of patients diagnosed with NSCLC (around 80–85%) is greater
than SCLC (around 15–20%). NSCLC consists of three histological subtypes, adenocarcinoma (LUAD,
around 40% of all lung cancer cases), squamous cell carcinoma (LUSC, around 25–30%) and large
cell carcinoma (around 10–15%) [4]. It is evident with increasing reported studies that lung cancer
represents a group of histologically and molecularly heterogeneous diseases even within the same
histological subtype [5–7]. Hence, a new classification method, independent of histological subtypes
and specific gene mutations, is required to be developed. To provide a better decision-making tool,
this new classification method should be able to predict clinical outcomes using appropriate datasets
or labels. Once an appropriate new classification system is established, treatment based on the
classification could be possible and more appropriate cancer treatment could be provided to lung
cancer patients.

The key to creating this desired classification platform is to use multi-omics data. There are two
levels of omics data: single-level omics data and multi-omics data [8]. Single-level omics data consist
of one data type or category. A representative example is a microarray analysis of gene expression.
Medical images, when we treat them as data, are another example. Single-level omics data analysis is
useful and may be able to predict the prognosis or treatment response in cancer patients. However,
single-level omics data analysis has a limitation. In other words, one type of data may not be able
to appropriately describe all the characteristics of tumor even though some of the reported analyses
showed achievements [9,10]. Because the prognosis or the treatment response in disease is the result of
a complex biological system, it is difficult to identify data types that may significantly contribute.

One solution to the above problem is the use of multi-omics data. Computational power can
handle a wide variety of data in parallel, identify truly useful features, combine them and finally
create a model that can predict the outcome accurately [8]. Ramazzotti et al. identified a new cancer
subtype that was associated with a poor patient outcome, using gene expression, methylation, point
mutation and copy number changes [11]. Initially, Chaudhary et al. developed a pipeline to predict a
patient’s prognosis using autoencoder for input omics dimension reduction and applied a machine
learning model to the test dataset to predict it in liver cancer [12]. They used DNA methylation, miRNA
and mRNA as omics datasets with clinical information. Later, we developed a pipeline only using
miRNA and mRNA with clinical information to predict lung cancer patient prognosis and identified
five genes whose expression levels were associated with patient survival [13]. The effectiveness of
autoencoder for dimensionality reduction in multi-omics analysis has recently been reported by many
groups [12–14]. Supplementary Table S1 summarizes the advantages and disadvantages of single
omics and multi-omics analyses.

Although multi-omics data analysis has great potential in biomedical fields, there are some
limitations in previous research. For example, integration of many omics datasets into a multimodal
analysis is still technically challenging; technical improvements are always required. In addition, with
current technology, it is not easy to precisely identify which factors regulate clinical outcomes among
multi-omics data. Moreover, even if we successfully build a model that predicts clinical outcomes very
accurately using multi-omics data, it is difficult to apply it to clinical practice. This is because it is
not feasible to perform all omics analyses routinely in clinical practice in terms of cost performance.
Furthermore, there have been few reports on the comparison between single omics analysis and
multi-omics analysis, so scientific verification is needed. In particular, it is pretty important to verify
the importance of multi-omics analysis based on scientific evidence.

In the present study, we used unsupervised machine learning techniques to build a model for
predicting the prognosis of lung cancer patients using six different multi-omics datasets from TCGA.
Also, we investigated the possibility of using the model to accurately predict the prognosis of patients
with lung cancer using a single omics dataset to aim for clinical applications. As a result, we obtained
several important tips for the prognostic prediction of lung cancer patients using multi-omics datasets.
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2. Materials and Methods

2.1. TCGA Dataset

The overall data workflow is shown in Figure 1. We obtained multi-omics LUAD and lung
LUSC datasets from TCGA portal (https://tcga-data.nci.nih.gov/tcga/) using TCGA-Assembler 2
in March 2020 [15]. Multi-omics data consisted of RNA sequencing data (mRNA; preprocessed
using DownloadRNASeqData and ProcessRNASeqData functions), miRNA sequencing data
(miRNA; defined using human reference genome 19 and miRBase version 20 [http://www.mirbase.
org/]; preprocessed using DownloadmiRNASeqData and ProcessmiRNASeqData functions), DNA
methylation data (Methylation; JHU-USC Human Methylation 450, Level 3; preprocessed using
DownloadMethylationData and ProcessMethylation450Data functions), copy number variation
(CNV; defined using human reference genome 19; preprocessed using DownloadCNAData and
ProcessCNAData functions), somatic mutation DNA sequencing data (somatic mutation; preprocessed
using DownloadSomaticMutationData and ProcessSomaticMutationData functions) and RPPA
data (RPPA; preprocessed using DownloadRPPAData and ProcessRPPADataWithGeneAnnotation
functions). For the DNA methylation, we selected CpG islands within 1500 base pairs (bp) ahead
of transcriptional start sites (TSS) and used the mean of their methylation values. Clinical data
were also downloaded from TCGA portal using TCGA-Assembler 2 and preprocessed using
DownloadClinicalData and DownloadBiospecimenClinicalData functions. Patients with a follow-up
period longer than 1 day and shorter than 10 years were used in the study. This is intended to use as
much patient data as possible. However, if the follow-up period is shorter than 1 day, it means that the
patient is not followed up, so those cases were excluded. We constructed a data matrix given a set
of sample IDs in rows and gene symbols in columns (Entrez gene id or miRNA name). Data were
preprocessed according to the previous publications with following changes [12,13]. First, columns
having zero values were removed. We then standardized each data matrix for each row (sample ID)
with the exception of the somatic mutation data. This is because the values of somatic mutation data are
either one or zero (mutation exists or does not). It is important to note that in previous reports [12,13],
the data were merged and then standardized with sample IDs but in this study, the single omics data
were standardized with sample IDs. When more than one column has an identical name (for example,
gene expression from single gene was observed in two different probes), the columns were merged
and the mean value was used. In the case of somatic mutation data, it was set to 1 if mutation
exists. The sample IDs common to all data types were defined as common IDs and the other IDs
as uncommon IDs. Hence, the data were classified into two datasets as common and uncommon
accordingly. The common IDs consisted of 278 cases of LUAD and 205 cases of LUSC (Table 1).
To provide an example for better understanding, miRNA_common and methylation_uncommon data
sizes are 483 × 217 and 266 × 19,899, respectively.

Table 1. The summary of common and uncommon data set.

The Number of Samples of Each Data Type

Data Name LUAD LUSC Total

Common 278 205 483
Clinical_uncommon 197 262 459
mRNA_uncommon 190 262 452
miRNA_uncommon 125 103 228
RPPA_uncommon 54 93 147
CNV_uncommon 190 259 449

Somatic mutation_uncommon 193 249 442
Methylation_uncommon 135 131 266

https://tcga-data.nci.nih.gov/tcga/
http://www.mirbase.org/
http://www.mirbase.org/
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Figure 1. Overall workflow of the study. (a) Detecting integration survival subtypes in non-small
cell lung cancer (NSCLC) from six categorical multi-omics data in The Cancer Genome Atlas (TCGA).
An autoencoder and unsupervised learning technique were used. (b) Prediction of integration survival
subtypes using only one categorical data and the validation of the model using uncommon data.

2.2. Autoencoder

Dimensional reductions of the data were implemented by an autoencoder [12,13]. The settings
of the autoencoder hyperparameters essentially followed our previous report [13]. The difference
of our previous study is that we performed the autoencoder by each omics data (one type of data).
The autoencoder codes were written in Python package Keras (https://keras.io) and consisted of three
densely connected neural net layers (500, 100 and 500 nodes) with two dropout layers (dropout rate was
0.5) placed between the neural net layers. The parameters of the densely-connected layers were defined
as follows: activation function was tanh, L2 regularization function applied to the kernel weights was
0.001 and L1 regularization function applied to the output of the layer was 0.0001. Stochastic gradient

https://keras.io
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descent was selected as the optimizer and the learning rate was set at 0.01 with a decay of 1.0 × 10−6.
The loss function of the autoencoder was mean square error and the autoencoders were trained for
150 epochs.

Six types of omics data were used in the autoencoder model. For all common data category,
the data were split for training and validated in the ratio of 80:20. Uncommon data were not used
for training and validation, used only for predicting Class ID (refer to Section 2.5). After training
for 150 epochs, all common and uncommon data were dimensionally reduced using the trained
autoencoders. In order to equalize the effect after compression, we compressed all data types into a
unified feature set of 100.

2.3. Feature Selection and k-Means Clustering

Applying the autoencoders to the six types of data matrixes independently, the number of the input
features in each matrix was reduced to 100. Of note, the selected features were combined for further
studies. This was achieved by following steps. First, the six reduced data matrixes were standardized by
scaling. Second, the statistically significant features associated with patient survival were identified by
Cox proportional-hazards (Cox-PH) models from the scaled matrixes. Next, the selected features were
merged according to the sample ID to get the final data matrix (hereinafter, the matrix is called ‘omics
matrix’). To select the clinically meaningful features from the compressed 100 × 6 features, a univariate
Cox-PH model was analyzed by using R survival package.

Clusters of common sample IDs were created using k-means clustering method from omics matrix.
To obtain the appropriate number of clusters, elbow-method was first used [16]. Then, the Calinski-
Harabasz criterion and the Silhouette index were used to obtain the number for best clustering [17,18].
Finally, the value of K, the appropriate number of clusters was clustered by k-means clustering and
visualized using the t-distributed stochastic neighbor embedding (t-SNE) [19]. The labels obtained by
the above process were referred as Cluster ID. Searching for the appropriate K and t-SNE clustering
were performed by using python scikit-learn library.

2.4. Machine Learning Models that Predict Cluster ID

Machine learning models that predict the Cluster ID were made from separated omics matrixes,
including each of the six data type. The algorithm used was logistic regression with the following
parameters; penalty is L2 and C as the inverse regularization strength is 1.0. The performance of the
models was evaluated by measuring the area under curve (AUC) using test portion of each omics
matrix (the train-test split with an 80:20 ratio). The above procedure was repeated five times and the
machine learning models were evaluated by the average AUCs.

2.5. Predict Cluster ID Using Compressed Uncommon Data

For further evaluation of the machine learning model described in Section 2.4, uncommon data
was used. Six types of uncommon data were dimensionally reduced using the trained autoencoders
(refer to Section 2.2). Using selected features (refer to Section 2.3) from the compressed uncommon data
as input, the machine learning models predicted the Cluster ID. The inferred Cluster ID was evaluated
using Kaplan-Meier analysis (refer to Section 2.7).

2.6. Identification of the Proteins Associated with Cluster ID

To find out which proteins were closely related to Cluster ID, we built two machine learning
models (XGBoost and LightGBM) using uncompressed common RPPA data. These two models are
gradient boosted decision trees frameworks and typically superior to other algorisms in terms of
performance, in particular speedup [20,21]. The parameters of XGBoost were as follows: the learning
rate was 0.2; the maximum depth of the trees was 3; and the subsample ratio of the training instance
was 0.5. The parameters of LightGBM were as follows: the maximum number of bins in which
feature values would be bucketed was 256; the learning rate was 0.05; and the number of leaves
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was 10. The models were evaluated by using AUC (refer to Section 2.7). Finally, the models were
explained using SHapley Additive exPlanations (SHAP) [22], which is a game theoretic approach that
can interpret the output of machine learning models.

2.7. Statistical Analysis

To evaluate the validity of the Cluster ID, Kaplan-Meier analysis was performed. The survival
analysis was performed using the R survival package and the survival curves were drawn. With regard
to the correlation analysis, we used the corrcoef function NumPy library for Python to compute the
Pearson’s correlation coefficient (https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.
html) and the pointbiserialr function scipy stats library to compute point biserial correlation coefficient
(https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pointbiserialr.html). As for
evaluation of a statistical relationship between integration survival subtypes and tumor subtypes,
we conducted a Chi-square test of independence using the chi2_contingency function from scipy
stats library (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html).
To evaluate the machine learning models that predict the integration survival subtypes made from
uncompressed RPPA common dataset, the Sklearn package in Python was applied to calculate the AUC
of the receiver operating characteristic (ROC) curve (https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.roc_curve.html).

3. Results

3.1. Unsupervised Approach for Obtaining Clinically Meaningful Subtypes

Clinical data and multi-omics data including six different types of categorical data (miRNA,
mRNA, methylation, CNV, somatic mutation and RPPA) were obtained from the TCGA LUAD and
LUSC datasets (Figure 1). Data were separated on the basis of the sample IDs as follows: common
and uncommon IDs. Common IDs included all six types of multi-omics data and additional IDs
were categorized as uncommon IDs. A total of 483 common IDs were recovered and the number of
uncommon IDs varied depending on the data type (Table 1).

Autoencoders were applied to the six types of categorical omics data and their dimensions were
reduced to 100 each. To select features significantly associated with patient survival, univariate
Cox-PH regression was carried out with the reduced dataset. The feature selection criteria were set as
follows: (1) log-rank test p < 0.01 or (2) 0.01 < log-rank test p < 0.05 and top three p-values within each
category. Consequently, a total of 29 features were selected, which consisted of 12 mRNAs, 3 miRNAs,
3 methylations, 5 CNVs, 3 somatic mutations and 3 RPPA features (Table 2). The data were merged
into a single matrix, referred as the omics matrix.

Table 2. The summary of data used.

The Number of Features in Each Step

Data Type Before Compression After Compression by
Autoencoder

After Feature Selection
by Cox-PH

mRNA 13,049 100 12
miRNA 217 100 3
RPPA 150 100 3
CNV 14,786 100 5

Somatic mutation 18,977 100 3
Methylation 19,899 100 3

Next, we aimed to determine the appropriate number of clusters using the omics matrix.
The optimal clustering number was determined using the Calinski-Harabasz criterion and Silhouette
index (Figure 2a,b after a rough estimation using the elbow method. All previously mentioned methods

https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pointbiserialr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2_contingency.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
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indicated that the optimal number of clustering was two. Figure 2c shows the result of the k-means
clustering visualized by t-SNE. The inferred labels from the k-means clustering were referred to as
Cluster ID. The survival analysis showed a significant difference in survival rates using the Cluster IDs
(log-rank test: p = 0.003, Figure 2d) and the subtypes clustered were referred to as integration survival
subtypes. The number of patients belonging to integration survival subtype 1 (longer survival) and
integration survival subtype 0 (shorter survival) was 270 and 213, respectively. There was no significant
relationship between the tumor histopathological subtype (LUAD or LUSC) and the integration survival
subtypes (Chi-square test of independence: p = 0.94), indicating that our model could predict patient
survival, independent of tumor subtypes, including both LUAD and LUSC.Biomolecules 2020, 10, x 7 of 16 
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Figure 2. Prediction of the cluster number and k-means clustering. (a) Result of the elbow method.
The x-axis shows the number of clusters; the y-axis shows the distortion score. (b) Result of the
Calinski-Harabasz index and Silhouette Coefficient. The x-axis shows the number of clusters; the y-axis
shows the Silhouette score or Calinski-Harabasz score. (c) Visualization of the k-means clustering by
t-SNE. (d) Kaplan-Meier survival curves of integration survival subtypes.

3.2. Predicting Integration Survival Subtypes Using Compressed Categorical Datasets

We developed machine learning models that would predict integration survival subtypes using
compressed common ID data belonging to one category (e.g., miRNA common, Figure 3). First, the
omics matrix was divided by each category. For example, sizes of mRNA and miRNA of the omics
matrix were 483 × 12 and 483 × 3, respectively. Figure 3 shows the distributions of divided omics
matrices that have three features. On the basis of the distribution, the RPPA portion of the omics matrix
appears to predict integration survival subtypes. CNV and mRNA could not be visualized in the 3D plot
as more than three features were available after Cox-PH selection (Table 2). Next, six logistic regression
models were developed from each omics matrix. Finally, the model performance was evaluated using
AUC (Table 3). Only one machine learning model that was trained on the RPPA omics matrix could
accurately predict the integration survival subtypes (AUC = 0.99).
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Figure 3. 3D-scatter plots of compressed common ID data belonging to one category. Each axis
represents the data values and the color shows Cluster ID. (a) Methylation common data. (b) reverse
phase protein array (RPPA) common data. (c) Somatic mutation common data. (d) miRNA common
data. The Cluster ID are not separated in (a,c,d). In (b), the Cluster ID were separated clearly.

Table 3. Area under curve (AUC) of logistic regression models for predicting the survival subtypes
using compressed data.

Data Type AUC

mRNA 0.57 ± 0.05
miRNA 0.61 ± 0.07
RPPA 0.99 ± 0.00
CNV 0.43 ± 0.04

Somatic mutation 0.50 ± 0.07
Methylation 0.55 ± 0.05

3.3. Validation Using Uncommon RPPA Datasets

The validity and the predictability of the integration survival subtypes were assessed using
RPPA_uncommon data. RPPA_uncommon data were compressed using the trained autoencoder
(refer to Section 3.1). The same features identified in Section 3.1 were selected from the compressed
RPPA_uncommon features. Next, using these features as input, the subtypes were predicted by the
logistic regression model trained on the RPPA part of the omics matrix (refer to Section 3.2). Patients
were labelled as either integration survival subtype 1 (n = 83) or integration survival subtype 0 (n = 64)
and there were significant differences in survival between the two subtypes (log-rank test: p = 0.012,
Figure 4). There was no relationship between the inferred integration survival subtypes and the
histological subtypes (Chi-square test of independence p = 0.61), suggesting that our model predicted
patient survival independent of histological subtypes.
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Figure 4. Kaplan-Meier survival curve of the RPPA uncommon dataset using the integration survival subtypes.

3.4. Comparison of Integration Survival Subtypes and RPPA Survival Subtypes

We then built another machine learning model to predict the RPPA survival subtype by creating a
directory from the RPPA common data. The aim was to validate the usefulness of the integration survival
subtype by comparing the integration survival subtypes with the RPPA survival subtypes; we followed
the same procedure as in Sections 3.1–3.3. First, we performed univariate Cox-PH regression using
RPPA common data to select proteins significantly associated with patient survival. The top selected
proteins are shown in Supplementary Table S2. ERRFI1, CCND1 and BCL2 were selected using the
same criteria as the multi-omics features ((1) log-rank test p < 0.01 and (2) 0.01 < log-rank test p < 0.05,
the top three p values within each category). Subsequently, we then performed unsupervised clustering
and found survival-related subtypes. The optimal clustering number was two, determined using the
Calinski-Harabasz criterion and the Silhouette index (Supplementary Figure S1A,B). The result of
k-means clustering visualized by t-SNE is presented in Supplemental Figure S1C. Also we referred
to the labels inferred from k-means clustering as RPPA survival subtypes. Survival analysis showed
a significant difference in survival rates using the RPPA survival subtypes (log-rank test: p = 0.003,
Supplementary Figure S2A). A logistic regression model that was trained on selected three protein
values from RPPA common data, could predict RPPA survival subtype accurately (AUC = 0.99).
Although the logistic regression model predicted inferred RPPA survival subtypes using RPPA
uncommon data, there were no significant differences in survival between the two inferred RPPA
survival subtypes (log-rank test: p = 0.9, Supplementary Figure S2B)

3.5. Insight into the Proteins Associated with Integration Survival Subtypes

We suspected that RPPA was a good indicator of the integration survival subtype. Therefore, we
decided to use common_RPPA data and implemented XGBoost and LightGBM to predict integration
survival subtypes. Machine learning models that use gradient boosting, including XGBoost and
LightGBM, have high success in clinical settings. Here, the AUC of XGBoost and LightGBM was
0.95 ± 0.02 and 0.92 ± 0.01, respectively (Figure 5). We attempted to interpret the developed models
using SHAP. A summary is available in Figure 6. The important proteins identified by each model
were nearly identical. The top five proteins predicted by two models, NKX2-1, CAV1, CDH3, FN1 and
YBX1, were exactly the same. The relationship between the expression of these five proteins and the
prognosis of the cancer patients was almost consistent with that described in previous reports [23–28].
CAV-1 and YBX-1 are generally negative predictors of NSCLC outcomes [24,25]. FN1 seems to be
associated with cisplatin resistance and over-expression of CDH3 correlates to a poor prognosis in
carcinomas of the breast, prostate, ovary, colon and stomach [29,30].
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Figure 5. Receiver operating characteristic (ROC) analysis for evaluation of the machine learning
models that predict the integration survival subtypes using uncompressed RPPA common datasets.
ROC curves of XGBoost (a) and LightGBM (b).
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Figure 6. SHapley Additive exPlanations (SHAP) summary plot. (a) The plot shows the SHAP value of
XGBoost magnitudes across all samples. The color represents the feature values (red represents high
and blue represents low). (b) The plot shows the sum of SHAP value of LightGBM.

NKX2-1 has been shown to play a critical role in lung development, lung cancer differentiation and
morphogenesis, particularly in LUAD [23]. Meanwhile, our analysis showed no statistically significant
differences in expression between LUAD and LUSC in both RPPA and mRNA levels (Supplementary
Figure S3, Welch’s t-test: p = 0.143 [RPPA] and p = 0.073 [mRNA], respectively). Several studies
focusing on the role of NKX2-1 in lung cancer prognosis have already been examined. Most of the
studies have shown a positive correlation between NKX2-1 over-expression and survival, which is
consistent with our findings (Figure 6).

Our analysis could explain conflicting results not yet fully addressed. NKX2-1 expression is
generally thought to be associated with a good prognosis, although some studies have reported the
opposite [23,31–44]. Yoon et al. showed that NKX2-1-positive circulating tumor cells (CTCs) were
specific to NSCLC patients and the CTCs negatively correlated with the survival [44]. There were two
major differences between their study and other studies. First, Yoon et al. focused on CTCs, whereas
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other studies, including ours, used tumor resection specimens. Second, they used nested real-time
RT (reverse transcription)-PCR assay detecting mRNA. Other studies used immunostaining, which
detects protein expression. Then we investigated the relationship between RNA expression and protein
expression levels. As shown in Figure 7a, there was a weak positive correlation between NKX2-1 RPPA
expression levels and the integration survival subtypes because high levels of NKX2-1 RPPA expression
are more likely to be classified as integration survival subtype 1 (point biserial correlation coefficient:
rpb = 0.323). However, there was no correlation with NKX2-1 mRNA expression levels: high levels of
NKX2-1 mRNA expression tended to be labelled as integration survival subtype 1, whereas low levels
of NKX2-1 mRNA expression tended to be labelled as integration survival subtype 0 (Figure 7b, point
biserial correlation coefficient: rpb = 0.064). This tendency is concordant with that seen in Figure 6.
Meanwhile, there was a statistically significant difference in the expression of both NKX2-1 RPPA
and mRNA between integration survival subtype 0 and 1 (Welch’s t-test: p < 0.001 [RPPA], p = 0.025
[mRNA], respectively). Importantly, there was no correlation between NKX2-1 RPPA expression levels
and NKX2-1 mRNA expression levels (Supplementary Figure S4, Pearson’s correlation coefficient:
r = 0.102). Recently, it has become evident that mRNA levels are not sufficient to predict protein levels
and our results are consistent with the previous report [45]. Hence, it is possible to explain the different
results obtained by other groups and those observed in the present study in the context of NKX2-1 [44].

Biomolecules 2020, 10, x 11 of 16

other studies, including ours, used tumor resection specimens. Second, they used nested real-time

RT (reverse transcription)-PCR assay detecting mRNA. Other studies used immunostaining, which 

detects protein expression. Then we investigated the relationship between RNA expression and

protein expression levels. As shown in Figure 7a, there was a weak positive correlation between 

NKX2-1 RPPA expression levels and the integration survival subtypes because high levels of NKX2-

1 RPPA expression are more likely to be classified as integration survival subtype 1 (point biserial

correlation coefficient: rpb = 0.323). However, there was no correlation with NKX2-1 mRNA expression 

levels: high levels of NKX2-1 mRNA expression tended to be labelled as integration survival subtype 

1, whereas low levels of NKX2-1 mRNA expression tended to be labelled as integration survival 

subtype 0 (Figure 7b, point biserial correlation coefficient: rpb = 0.064). This tendency is concordant 

with that seen in Figure 6. Meanwhile, there was a statistically significant difference in the expression 

of both NKX2-1 RPPA and mRNA between integration survival subtype 0 and 1 (Welch’s t-test: p < 

0.001 [RPPA], p = 0.025 [mRNA], respectively). Importantly, there was no correlation between NKX2-

1 RPPA expression levels and NKX2-1 mRNA expression levels (Supplementary Figure S4, Pearson’s

correlation coefficient: r = 0.102). Recently, it has become evident that mRNA levels are not sufficient

to predict protein levels and our results are consistent with the previous report [45]. Hence, it is

possible to explain the different results obtained by other groups and those observed in the present 

study in the context of NKX2-1 [44].

(a) (b) 

Figure 7. Relationship between Cluster ID and NKX2-1 expression levels. (a) Relationship between 

NKX2-1 RPPA expression levels and integration survival subtypes. x-Axis shows the integration 

survival subtype and Y-axis shows the value of NKX2-1 RRPA expression levels that are standardized 

against row (sample ID). (b) Relationship between NKX2-1 mRNA expression levels and integration 

survival subtypes. x-Axis shows integration survival subtype and y-axis shows the value of NKX2-1 

mRNA expression levels that are standardized against row (sample ID).

4. Discussion 

Omics data analysis has potential for predicting patient outcomes such as prognosis and drug 

resistance. Multiple analyses using various categorical data have been conducted to understand the

nature of cancer. The analysis of each layer is valuable on its own but there are limitations to using

only one categorical dataset. A single omics data-derived model has a relatively small power of

correcting the results, noises and/or missing values within the omics data. No matter how accurately 

developed the model, we would not be able to overcome the disadvantage of using one categorical

data. Therefore, the use of multi-omics data is a possible and reasonable approach that could 

minimize the individual bias of each data type through integration of the various types of data; our 

results in the present study support this concept. RPPA data were useful for predicting integration 

RPPA violin plot mRNA violin plot

7.5

2.5

5.0

N
K

X
2

-1
 R

P
P

A
 e

x
p

re
s
s
io

n

-0.30

-0.20

-0.10

N
K

X
2

-1
 m

R
N

A
 e

x
p

re
s
s
io

n

0

-2.5

-5.0

-7.5

-10.0

-0.40

-0.35

-0.25

-0.15

-0.05

Integration survival subtype Integration survival subtype

0 1 0 1

RPPA violin plot mRNA violin plot

7.5

2.5

5.0

N
K

X
2

-1
 R

P
P

A
 e

x
p

re
s
s
io

n

-0.30

-0.20

-0.10

N
K

X
2

-1
 m

R
N

A
 e

x
p

re
s
s
io

n

0

-2.5

-5.0

-7.5

-10.0

-0.40

-0.35

-0.25

-0.15

-0.05

Integration survival subtype Integration survival subtype

0 1 0 1

Figure 7. Relationship between Cluster ID and NKX2-1 expression levels. (a) Relationship between
NKX2-1 RPPA expression levels and integration survival subtypes. x-Axis shows the integration
survival subtype and Y-axis shows the value of NKX2-1 RRPA expression levels that are standardized
against row (sample ID). (b) Relationship between NKX2-1 mRNA expression levels and integration
survival subtypes. x-Axis shows integration survival subtype and y-axis shows the value of NKX2-1
mRNA expression levels that are standardized against row (sample ID).

4. Discussion

Omics data analysis has potential for predicting patient outcomes such as prognosis and drug
resistance. Multiple analyses using various categorical data have been conducted to understand the
nature of cancer. The analysis of each layer is valuable on its own but there are limitations to using
only one categorical dataset. A single omics data-derived model has a relatively small power of
correcting the results, noises and/or missing values within the omics data. No matter how accurately
developed the model, we would not be able to overcome the disadvantage of using one categorical
data. Therefore, the use of multi-omics data is a possible and reasonable approach that could minimize
the individual bias of each data type through integration of the various types of data; our results in
the present study support this concept. RPPA data were useful for predicting integration survival
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subtypes and integrated survival subtypes could predict survival of patients with lung cancer robustly.
But RPPA survival subtypes, made from RPPA data directly, could not predict it. These two subtypes
were also different in the proteins that were critical for each subtype. This difference could be caused by
the noise and bias with in the RPPA data. In other words, our multi-omics data integration procedure
may relive the noise and bias.

Another drawback to using only one platform is a limitation of the analysis itself. For example,
it would be difficult to predict the size of a tumor using CNV. Instead, a medical imaging method
such as computed tomography (CT) would be more accurate for this purpose. However, in reality
it is more complex. In fact, we do not know what the best omics data would be to perfectly predict
patient outcomes, since the physiological responses of human bodies are so diverse. To illustrate,
one analysis may show a positive response and another may report a negative response. This makes
it quite challenging to predict the exact outcomes of interest. Therefore, in this study, we used as
many categories of multi-omics data as possible to predict patient survival and to identify genes
related to the subtype. Since the appropriate data type required for our aim is unknown, the use of
multiple categorical data should be advantageous. Although we discussed the benefit of using as
many categories of data as possible, finding meaningful features from tens of thousands of inputs
from multi-omics data is a technical barrier. For this reason, we implemented the autoencoder model
to predict patient survival from only one categorical RPPA dataset and the RPPA was further used
to examine the molecular insight by using gradient boosting machine learning models followed by
SHAP analysis. With our previous and current study, we demonstrated that the autoencoder combined
with machine learning models for deeper insight for molecular biology is one of the most powerful
pipelines available to investigate cancer biology from a different perspective [13]. We also showed the
possibility of predicting patient survival with one categorical dataset and potentially related genes in
integration survival subtypes. However, it should be noted that there is still heavy risk involved when
relying on the results obtained from a single omics dataset.

There are several problems to overcome in multi-omics analysis. One such issue is generally
called as the “Large p Small n Problems”; there are far more parameters or features in input dimension
compared to the number of sample [46]. This would result in overfitting, leading to a poor performance.
To avoid this, unsupervised algorithms could be applied; however, this would ignore known factors
such as tumor type. Hence, effectively selecting features or reducing data dimensions is essential
for using big multi-omics data and thus, the autoencoder is one of the key techniques to reduce the
dimension. Autoencoders aim to reconstruct the original-input using a combination of nonlinear
functions and after training, the bottleneck features can be used as the latent expression of the
original input [12,13]. However, further study is needed to determine the appropriate setting of
autoencoder. For example, we uniformly set the number of features after autoencoder compression to
100. This operation will have an equal impact after compression but data with more features before
compression must lose more information than data with fewer features. In addition, the 3D scatter plot
of miRNAs showed a straight line, implying that the autoencoder setting is not appropriate for miRNA
data (Figure 3c). In any case, a more detailed study is needed to determine whether the settings of the
autoencoder should be changed depending on the type of data and if so, what settings should be used.

Another problem encountered while incorporating machine learning models trained by
multi-omics data is the expense. Costs of examinations using high-throughput technology in hospitals
or laboratories have been decreasing annually; however, it might not be practical to perform multiple
categories of sequencing or microarray analyses routinely for all new patients. Here, we predicted the
clinical subtypes from omics analysis using only one categorical RRPA dataset despite drawbacks of
using only one categorical data. Our developed model could successfully predict the patient prognosis
using the RPPA data on new lung cancer patients. This has implications for decision-making tools
and our pipeline may reduce the cost of examination through elimination of unnecessary surveys and
acceleration of routine omics analysis benefitting precision medicine [47].
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The fundamental problem encountered is the difficulty in resolving the relationship between
compressed features and biological meanings. There have been reports of biologically interpretable
deep learning frameworks but they achieved limited success [48]. In this study, our platforms aimed to
interpret the features though autoencoders and partially with machine learning models using SHAP
(Figure 6).

There are some limitations in our study. First, we used unsupervised machine learning algorithms
to create Cluster IDs but unsupervised learning techniques tend to identify only those with the
strongest signals. Therefore, our integration survival subtypes may not be truly multi-omics-derived.
Second, we set the number of features to 100 after uniformly compressing them with the autoencoder.
This operation has the same effect after compression but data with more features before compression
must lose more information than data with fewer features. Further studies are needed to determine
the appropriate number of features after compression. Third, we used uncommon datasets as testing
dataset. While the procedure for splitting common and non-common data is not arbitrarily, we think
that ideally a complete set of all types of data should be prepared and tested.

Nonetheless, we think our pipeline is effective as we have demonstrated its success through
identification of genes that are associated with subtypes. Improved methods are ideal moving forward.

5. Conclusions

Our study predicted the integration survival subtypes in NSCLC that were independent of the
tumors histological types by using six types of multi omics data. The integration survival subtypes
were also predicted by using only RPPA data. We validated the models using uncommon data as an
independent test dataset. Omics analysis has a huge potential as we shown previously and in this
study. We identified at least five proteins of interest (NKX2-1, CAV1, YBX1, FN1 and CDH3) with two
different machine learning models that may be associated with lung cancer patient survival. This study
offers the benefits of analyzing multi-omics data using the combined approach of deep learning and
machine learning methods for predicting prognosis. Our method may be more robust than traditional
single omics methods and can predict integration survival subtypes using gradient booster models
with genes potentially associated with the subtype, especially in NSCLC patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/10/1460/s1,
Figure S1: Prediction of the cluster number and k-means clustering using RPPA common data. Figure S2: Kaplan-Meier
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of lung cancer and NKX2-1 expression levels. Figure S4: Scatter plot analysis of NKX2-1 mRNA and RPPA expression
levels. Table S1: The summary of single and multi-omics analysis. Table S2: The summary of selected protein
strongly related with survival using Cox-PH regression model in common RPPA data.

Author Contributions: S.T. performed and analyzed the experiments and wrote the manuscript; K.A. and
J.S. wrote the manuscript; S.T., K.A., K.T., R.S., A.S., A.B., N.S., K.K., M.K., S.K., J.S. and R.H. discussed data;
R.H. supervised the experiments and edited the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by JST CREST (Grant Number JPMJCR1689), JST AIP-PRISM (Grant Number
JPMJCR18Y4), JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Grant Number JP18H04908) and
JSPS KAKENHI [20K17982].

Acknowledgments: We would like to thank all members of Hamamoto Laboratory. All members provided
valuable advice and comfortable research environment to us.

Conflicts of Interest: No potential conflict of interest was disclosed in this study.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
[CrossRef]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [CrossRef] [PubMed]

http://www.mdpi.com/2218-273X/10/10/1460/s1
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.3322/caac.21590
http://www.ncbi.nlm.nih.gov/pubmed/31912902


Biomolecules 2020, 10, 1460 14 of 16

3. Yamaguchi, T.; Nishiura, H. Predicting the Epidemiological Dynamics of Lung Cancer in Japan. J. Clin. Med.
2019, 8, 326. [CrossRef] [PubMed]

4. Inamura, K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification.
Front. Oncol. 2017, 7, 193. [CrossRef]

5. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma.
Nature 2014, 511, 543–550. [CrossRef] [PubMed]

6. George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretic, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandez-Cuesta, L.;
Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [CrossRef]

7. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung
cancers. Nature 2012, 489, 519–525. [CrossRef]

8. Wu, C.; Zhou, F.; Ren, J.; Li, X.; Jiang, Y.; Ma, S. A Selective Review of Multi-Level Omics Data Integration
Using Variable Selection. High Throughput. 2019, 8, 4. [CrossRef]

9. Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.;
Corrado, G.; et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose
chest computed tomography. Nat. Med. 2019, 25, 954–961. [CrossRef]

10. Xu, Y.; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H. Deep Learning Predicts
Lung Cancer Treatment Response from Serial Medical Imaging. Clin. Cancer Res. 2019, 25, 3266–3275. [CrossRef]

11. Ramazzotti, D.; Lal, A.; Wang, B.; Batzoglou, S.; Sidow, A. Multi-omic tumor data reveal diversity of
molecular mechanisms that correlate with survival. Nat. Commun. 2018, 9, 4453. [CrossRef]

12. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly
Predicts Survival in Liver Cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [CrossRef]

13. Asada, K.; Kobayashi, K.; Joutard, S.; Tubaki, M.; Takahashi, S.; Takasawa, K.; Komatsu, M.; Kaneko, S.;
Sese, J.; Hamamoto, R. Uncovering Prognosis-Related Genes and Pathways by Multi-Omics Analysis in
Lung Cancer. Biomolecules 2020, 10, 524. [CrossRef] [PubMed]

14. Zhang, L.; Lv, C.; Jin, Y.; Cheng, G.; Fu, Y.; Yuan, D.; Tao, Y.; Guo, Y.; Ni, X.; Shi, T. Deep Learning-Based
Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Front. Genet.
2018, 9, 477. [CrossRef] [PubMed]

15. Wei, L.; Jin, Z.; Yang, S.; Xu, Y.; Zhu, Y.; Ji, Y. TCGA-assembler 2: Software pipeline for retrieval and processing
of TCGA/CPTAC data. Bioinformatics 2018, 34, 1615–1617. [CrossRef] [PubMed]

16. Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. J. Multidiscip.
Sci. J. 2019, 2, 226–253. [CrossRef]

17. Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Theory Methods 1974, 3, 1–27.
[CrossRef]

18. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput.
Appl. Math. 1987, 20, 13. [CrossRef]

19. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 7.
20. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754.
21. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient

gradient boosting decision tree. In Proceedings of the NIPS’17: 31st International Conference on Neural
Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157.

22. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874.
23. Yang, L.; Lin, M.; Ruan, W.J.; Dong, L.L.; Chen, E.G.; Wu, X.H.; Ying, K.J. Nkx2-1: A novel tumor biomarker

of lung cancer. J. Zhejiang Univ. Sci. B 2012, 13, 855–866. [CrossRef]
24. Shi, Y.B.; Li, J.; Lai, X.N.; Jiang, R.; Zhao, R.C.; Xiong, L.X. Multifaceted Roles of Caveolin-1 in Lung Cancer:

A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers 2020, 12, 291.
[CrossRef] [PubMed]

25. Guo, T.; Kong, J.; Liu, Y.; Li, Z.; Xia, J.; Zhang, Y.; Zhao, S.; Li, F.; Li, J.; Gu, C. Transcriptional activation of
NANOG by YBX1 promotes lung cancer stem-like properties and metastasis. Biochem. Biophys. Res. Commun.
2017, 487, 153–159. [CrossRef]

26. Wang, J.; Deng, L.; Huang, J.; Cai, R.; Zhu, X.; Liu, F.; Wang, Q.; Zhang, J.; Zheng, Y. High expression of
Fibronectin 1 suppresses apoptosis through the NF-kappaB pathway and is associated with migration in
nasopharyngeal carcinoma. Am. J. Transl. Res. 2017, 9, 4502–4511.

http://dx.doi.org/10.3390/jcm8030326
http://www.ncbi.nlm.nih.gov/pubmed/30857126
http://dx.doi.org/10.3389/fonc.2017.00193
http://dx.doi.org/10.1038/nature13385
http://www.ncbi.nlm.nih.gov/pubmed/25079552
http://dx.doi.org/10.1038/nature14664
http://dx.doi.org/10.1038/nature11404
http://dx.doi.org/10.3390/ht8010004
http://dx.doi.org/10.1038/s41591-019-0447-x
http://dx.doi.org/10.1158/1078-0432.CCR-18-2495
http://dx.doi.org/10.1038/s41467-018-06921-8
http://dx.doi.org/10.1158/1078-0432.CCR-17-0853
http://dx.doi.org/10.3390/biom10040524
http://www.ncbi.nlm.nih.gov/pubmed/32235589
http://dx.doi.org/10.3389/fgene.2018.00477
http://www.ncbi.nlm.nih.gov/pubmed/30405689
http://dx.doi.org/10.1093/bioinformatics/btx812
http://www.ncbi.nlm.nih.gov/pubmed/29272348
http://dx.doi.org/10.3390/j2020016
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1631/jzus.B1100382
http://dx.doi.org/10.3390/cancers12020291
http://www.ncbi.nlm.nih.gov/pubmed/31991790
http://dx.doi.org/10.1016/j.bbrc.2017.04.033


Biomolecules 2020, 10, 1460 15 of 16

27. Kumara, H.; Bellini, G.A.; Caballero, O.L.; Herath, S.A.C.; Su, T.; Ahmed, A.; Njoh, L.; Cekic, V.; Whelan, R.L.
P-Cadherin (CDH3) is overexpressed in colorectal tumors and has potential as a serum marker for colorectal
cancer monitoring. Oncoscience 2017, 4, 139–147. [CrossRef]

28. Taniuchi, K.; Nakagawa, H.; Hosokawa, M.; Nakamura, T.; Eguchi, H.; Ohigashi, H.; Ishikawa, O.; Katagiri, T.;
Nakamura, Y. Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting
with p120ctn and activating rho-family GTPases. Cancer Res. 2005, 65, 3092–3099. [CrossRef] [PubMed]

29. Gao, W.; Liu, Y.; Qin, R.; Liu, D.; Feng, Q. Silence of fibronectin 1 increases cisplatin sensitivity of non-small
cell lung cancer cell line. Biochem. Biophys. Res. Commun. 2016, 476, 35–41. [CrossRef] [PubMed]

30. Vieira, A.F.; Paredes, J. P-cadherin and the journey to cancer metastasis. Mol. Cancer 2015, 14, 178. [CrossRef]
31. Wang, C.L.; Yue, D.S.; Zhang, Z.F.; Zhan, Z.L.; Sun, L.N. Value of thyroid transcription factor-1 in identification

of the prognosis of bronchioloalveolar carcinoma. Zhonghua Yi Xue Za Zhi 2007, 87, 2350–2354. [CrossRef]
32. Barletta, J.A.; Perner, S.; Iafrate, A.J.; Yeap, B.Y.; Weir, B.A.; Johnson, L.A.; Johnson, B.E.; Meyerson, M.;

Rubin, M.A.; Travis, W.D.; et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification
in lung adenocarcinoma. J. Cell Mol. Med. 2009, 13, 1977–1986. [CrossRef] [PubMed]

33. Han, X.; Tan, Q.; Yang, S.; Li, J.; Xu, J.; Hao, X.; Hu, X.; Xing, P.; Liu, Y.; Lin, L.; et al. Comprehensive Profiling
of Gene Copy Number Alterations Predicts Patient Prognosis in Resected Stages I-III Lung Adenocarcinoma.
Front. Oncol. 2019, 9, 556. [CrossRef] [PubMed]

34. Au, N.H.; Cheang, M.; Huntsman, D.G.; Yorida, E.; Coldman, A.; Elliott, W.M.; Bebb, G.; Flint, J.; English, J.;
Gilks, C.B.; et al. Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised
hierarchical clustering analysis: A tissue microarray study of 284 cases and 18 markers. J. Pathol. 2004, 204,
101–109. [CrossRef] [PubMed]

35. Shah, L.; Walter, K.L.; Borczuk, A.C.; Kawut, S.M.; Sonett, J.R.; Gorenstein, L.A.; Ginsburg, M.E.; Steinglass, K.M.;
Powell, C.A. Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with
survival in patients with nonsmall cell lung carcinoma. Cancer 2004, 101, 1632–1638. [CrossRef]

36. Haque, A.K.; Syed, S.; Lele, S.M.; Freeman, D.H.; Adegboyega, P.A. Immunohistochemical study of thyroid
transcription factor-1 and HER2/neu in non-small cell lung cancer: Strong thyroid transcription factor-1
expression predicts better survival. Appl. Immunohistochem. Mol. Morphol. 2002, 10, 103–109. [CrossRef]

37. Pelosi, G.; Fraggetta, F.; Pasini, F.; Maisonneuve, P.; Sonzogni, A.; Iannucci, A.; Terzi, A.; Bresaola, E.;
Valduga, F.; Lupo, C.; et al. Immunoreactivity for thyroid transcription factor-1 in stage I non-small cell
carcinomas of the lung. Am. J. Surg. Pathol. 2001, 25, 363–372. [CrossRef]

38. Barlesi, F.; Pinot, D.; Legoffic, A.; Doddoli, C.; Chetaille, B.; Torre, J.P.; Astoul, P. Positive thyroid transcription
factor 1 staining strongly correlates with survival of patients with adenocarcinoma of the lung. Br. J. Cancer
2005, 93, 450–452. [CrossRef]

39. Puglisi, F.; Barbone, F.; Damante, G.; Bruckbauer, M.; Di Lauro, V.; Beltrami, C.A.; Di Loreto, C. Prognostic
value of thyroid transcription factor-1 in primary, resected, non-small cell lung carcinoma. Mod. Pathol. 1999,
12, 318–324.

40. Stenhouse, G.; Fyfe, N.; King, G.; Chapman, A.; Kerr, K.M. Thyroid transcription factor 1 in pulmonary
adenocarcinoma. J. Clin. Pathol. 2004, 57, 383–387. [CrossRef]

41. Berghmans, T.; Paesmans, M.; Mascaux, C.; Martin, B.; Meert, A.P.; Haller, A.; Lafitte, J.J.; Sculier, J.P. Thyroid
transcription factor 1—A new prognostic factor in lung cancer: A meta-analysis. Ann. Oncol. 2006, 17,
1673–1676. [CrossRef]

42. Myong, N.H. Thyroid transcription factor-1 (TTF-1) expression in human lung carcinomas: Its prognostic
implication and relationship with wxpressions of p53 and Ki-67 proteins. J. Korean Med. Sci. 2003, 18,
494–500. [CrossRef]

43. Tan, D.; Li, Q.; Deeb, G.; Ramnath, N.; Slocum, H.K.; Brooks, J.; Cheney, R.; Wiseman, S.; Anderson, T.;
Loewen, G. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small
cell lung cancer: A high-throughput tissue microarray and immunohistochemistry study. Hum. Pathol. 2003,
34, 597–604. [CrossRef]

44. Yoon, S.O.; Kim, Y.T.; Jung, K.C.; Jeon, Y.K.; Kim, B.H.; Kim, C.W. TTF-1 mRNA-positive circulating tumor
cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients.
Lung Cancer 2011, 71, 209–216. [CrossRef] [PubMed]

45. Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell
2016, 165, 535–550. [CrossRef]

http://dx.doi.org/10.18632/oncoscience.370
http://dx.doi.org/10.1158/0008.5472.CAN-04-3646
http://www.ncbi.nlm.nih.gov/pubmed/15833838
http://dx.doi.org/10.1016/j.bbrc.2016.05.081
http://www.ncbi.nlm.nih.gov/pubmed/27207836
http://dx.doi.org/10.1186/s12943-015-0448-4
http://dx.doi.org/10.1097/01.JTO.0000283571.87957.a7
http://dx.doi.org/10.1111/j.1582-4934.2008.00594.x
http://www.ncbi.nlm.nih.gov/pubmed/19040416
http://dx.doi.org/10.3389/fonc.2019.00556
http://www.ncbi.nlm.nih.gov/pubmed/31448219
http://dx.doi.org/10.1002/path.1612
http://www.ncbi.nlm.nih.gov/pubmed/15307143
http://dx.doi.org/10.1002/cncr.20542
http://dx.doi.org/10.1097/00129039-200206000-00002
http://dx.doi.org/10.1097/00000478-200103000-00011
http://dx.doi.org/10.1038/sj.bjc.6602717
http://dx.doi.org/10.1136/jcp.2003.007138
http://dx.doi.org/10.1093/annonc/mdl287
http://dx.doi.org/10.3346/jkms.2003.18.4.494
http://dx.doi.org/10.1016/S0046-8177(03)00180-1
http://dx.doi.org/10.1016/j.lungcan.2010.04.017
http://www.ncbi.nlm.nih.gov/pubmed/20471712
http://dx.doi.org/10.1016/j.cell.2016.03.014


Biomolecules 2020, 10, 1460 16 of 16

46. Diao, G.; Vidyashankar, A.N. Assessing genome-wide statistical significance for large p small n problems.
Genetics 2013, 194, 781–783. [CrossRef] [PubMed]

47. Hamamoto, R.; Komatsu, M.; Takasawa, K.; Asada, K.; Kaneko, S. Epigenetics Analysis and Integrated
Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision
Medicine. Biomolecules 2019, 10, 62. [CrossRef]

48. Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Srivastava, M.B.;
Preece, A.D.; Julier, S.J.; Rao, R.M.; et al. Interpretability of deep learning models: A survey of results.
In 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing
Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation, Proceedings of the 2017
IEEE SmartWorld, San Francisco, CA, USA, 4–8 August 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1534/genetics.113.150896
http://www.ncbi.nlm.nih.gov/pubmed/23666935
http://dx.doi.org/10.3390/biom10010062
http://dx.doi.org/10.1109/UIC-ATC.2017.8397411
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	TCGA Dataset 
	Autoencoder 
	Feature Selection and k-Means Clustering 
	Machine Learning Models that Predict Cluster ID 
	Predict Cluster ID Using Compressed Uncommon Data 
	Identification of the Proteins Associated with Cluster ID 
	Statistical Analysis 

	Results 
	Unsupervised Approach for Obtaining Clinically Meaningful Subtypes 
	Predicting Integration Survival Subtypes Using Compressed Categorical Datasets 
	Validation Using Uncommon RPPA Datasets 
	Comparison of Integration Survival Subtypes and RPPA Survival Subtypes 
	Insight into the Proteins Associated with Integration Survival Subtypes 

	Discussion 
	Conclusions 
	References

