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Abstract: Coronary artery disease (CAD) is the leading cause of sudden cardiac death in adults,
and new methods of predicting disease and risk-stratifying patients will help guide intervention
in order to reduce this burden. Current CAD detection involves multiple modalities, but the
consideration of other biomarkers will help improve reliability. The aim of this narrative review
is to help researchers and clinicians appreciate the growing relevance of miRNA in CAD and its
potential as a biomarker, and also to suggest useful miRNA that may be targets for future study.
We sourced information from several databases, namely PubMed, Scopus, and Google Scholar,
when collating evidentiary information. MicroRNAs (miRNA) are short, noncoding RNAs that are
relevant in cardiovascular physiology and pathophysiology, playing roles in cardiac hypertrophy,
maintenance of vascular tone, and responses to vascular injury. CAD is associated with changes
in miRNA expression profiles, and so are its risk factors, such as abnormal lipid metabolism and
inflammation. Thus, they may potentially be biomarkers of CAD. Nevertheless, there are limitations
in using miRNA. These include cost and the presence of several confounding factors that may affect
miRNA profiles. Furthermore, there is difficulty in the normalisation of miRNA values between
published studies, due to pre-analytical variations in samples.
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1. Introduction

Coronary artery disease (CAD) is a significant cause of morbidity and mortality in the elderly.
It is a complex, chronic pathological process in the intima of coronary arteries, yielding atherosclerotic
lesions that restrict blood flow to the myocardium and may be associated with a degree of inflammation.
Whilst the disease can remain stable, acute plaque rupture followed by coronary artery thrombosis
can be a fatal event. Early detection of this disease will allow for early management and intervention,
reducing morbidity and mortality.

Biomarkers are defined as characteristics that may be measured as indicators of normal biological
processes or pathogenic processes [1]. Biomarkers may involve several modalities, such as substances
measured in the blood and other bodily fluids, as well as imaging results and technologies like
electrocardiography; in particular, multi-biomarker approaches may be promising approaches for
the better detection of pathophysiology [2]. Currently, CAD detection involves several modalities.
Functional tests, such as stress electrocardiograms, and anatomical imaging, such as angiography,
provide clinicians with indications of CAD severity [3]. Numerous studies have assessed the validity
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of these modalities. Their reliability, whilst being generally suitable, varies depending on context [4].
A potential reason for this is variations between heterogenous study populations; however, simultaneous
consideration of different biomarkers may improve reliability [4].

Recently, microRNAs (miRNA) have been proposed as a potential biomarker for use in various
clinical contexts. They are major effectors of gene silencing through post-transcriptional repression
and mRNA degradation [5]. This review aims to discuss the potential utility of microRNA (miRNA),
as a diagnostic and prognostic tool for clinicians to detect CAD.

2. Localisation of miRNA

MiRNA are short RNAs (18–25 nts) that engage in the sequence specific inactivation of mRNA
(Figure 1). They are encoded by their own non-protein coding genes located across the genome,
though they also occur in the introns and exons of other genes [6,7]. MiRNAs are predominantly
located intracellularly, although a proportion of them can be detected in the extracellular environment
(ECmiRNA), including in plasma and various other body fluids [8–10]. They occur freely circulating
or associated with other molecules, including within extracellular vesicles, such as exosomes and
microvesicles, and can also be complexed with lipoproteins [11–15].
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Figure 1. MiRNA biogenesis and their means of transcriptional silencing. RNA Pol II: RNA 
polymerase II; miRNA: microRNA; RanGTP: Ran coupled to guanosine triphosphate; RISC: RNA-
induced silencing complex; Poly(A) tail: poly-adenosine tail; 80S ribosome: eukaryotic ribosome. (A) 
Within the nucleus (blue area), miRNA are initially transcribed (e.g., from an miRNA gene) from 
DNA by RNA polymerase II (yellow) in the form of primary miRNA, or pri-miRNA, which contain 
stem-loop structures. The enzyme Drosha (purple) proceeds to cleave these stem–loop structures 
from the rest of the transcript, and these structures are now defined as precursor miRNA, or pre-
miRNA. These are then exported from the nucleus via exportin 5 coupled to the Ran cycle. (B) Once 
in the cytosol (yellow area), the enzyme Dicer recognises pre-miRNA and cleaves them to produce 
mature miRNA molecules with two nucleotide overhangs on their 3′ ends. This molecule is then 
incorporated into an RNA-induced silencing complex (RISC, green) and the passenger strand (red 
backbone) is destroyed. This results in an active RISC complex. (C) The active RISC complex uses the 
guide strand of the miRNA (blue backbone) to target mRNA transcripts, specifically those that are 
complementary to the seed sequence of the guide strand. Through translational repression and RNA 

Figure 1. MiRNA biogenesis and their means of transcriptional silencing. RNA Pol II: RNA polymerase
II; miRNA: microRNA; RanGTP: Ran coupled to guanosine triphosphate; RISC: RNA-induced silencing
complex; Poly(A) tail: poly-adenosine tail; 80S ribosome: eukaryotic ribosome. (A) Within the
nucleus (blue area), miRNA are initially transcribed (e.g., from an miRNA gene) from DNA by RNA
polymerase II (yellow) in the form of primary miRNA, or pri-miRNA, which contain stem-loop
structures. The enzyme Drosha (purple) proceeds to cleave these stem–loop structures from the rest of
the transcript, and these structures are now defined as precursor miRNA, or pre-miRNA. These are then
exported from the nucleus via exportin 5 coupled to the Ran cycle. (B) Once in the cytosol (yellow area),
the enzyme Dicer recognises pre-miRNA and cleaves them to produce mature miRNA molecules with
two nucleotide overhangs on their 3′ ends. This molecule is then incorporated into an RNA-induced
silencing complex (RISC, green) and the passenger strand (red backbone) is destroyed. This results in an
active RISC complex. (C) The active RISC complex uses the guide strand of the miRNA (blue backbone)
to target mRNA transcripts, specifically those that are complementary to the seed sequence of the guide
strand. Through translational repression and RNA decay, miRNA reduce the expression of certain
genes through RISC. Also note that the poly(A) tail is shown in pink. Ago2: Argonaute 2; DGCR8:
DiGeorge syndrome critical region 8.
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Microvesicles and exosomes are both types of extracellular vesicles with multiple roles in normal
cell physiology. One of their major functions is intercellular communication through the carriage of
signalling molecules, including proteins, mRNAs, and miRNAs amongst others, to targets of variable
distance from the cell of origin [16,17]. Exosomes have a size range of 30–100 nm, and themselves
originate from organelles of the endocytic pathway, the multivesicular bodies [16,17]. A multivesicular
body is produced by the invagination of an endosome to produce intraluminal vesicles, into which
specific molecules are sorted. Multivesicular bodies are trafficked to and subsequently fuse with the
plasma membrane, at which point the intraluminal vesicles, now labelled as exosomes, are released into
the extracellular space [16,17]. Microvesicles have a size range of 0.1–1.0 µm and are produced from the
plasma membrane directly through outward blebbing [17,18]. Specific molecular cargo is transported
towards regions of the plasma membrane where local alterations in the lipid composition reduce the
rigidity of the membrane and facilitate further curvature [17,18]. The assembly of contractile machinery
in these regions produce cytoskeletal rearrangements that pinch off nascent microvesicles [17,18].
The membrane budding that produces microvesicles differs from the blebbing process that produces
apoptotic bodies, which is a less specific process [17,18]. These extracellular vesicles can then be
trafficked through autocrine, paracrine, and endocrine paths (Figure 2). The multiple forms of
endocytosis are the typical forms of vesicle uptake, though membrane fusion between microvesicles
and the target cell plasma membrane has also been observed [17]. The mechanism utilised is likely
dependent on the recipient cell type and the suitable expression of receptors compatible with the
vesicle [17].
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Figure 2. Export pathways for miRNA and means of interaction with other cells/cell of origin as a
potential means of signalling. (A) The autocrine pathway, whereby extracellular miRNAs re-enter
the cell from which they originated. (B) The paracrine pathway, whereby extracellular miRNAs are
transported towards and enter cells of the same or different type to the miRNA’s cell of origin. (C) The
endocrine pathway, whereby extracellular miRNAs enter the circulation and are thus transported to
cells in other tissues/organs. Ago2: Argonaute 2; miRNA: microRNA.

Research suggests that miRNA occur within exosomes, not on their surface membranes or
associated with surface structures [11,19]. Additionally, a significant number of transcripts in the
exosomes are not present in the donor cells from which they are derived; this profiling suggests that the
miRNA profile of exosomes does not directly reflect the transcriptional status of the donor cell [11,19].
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Exosomes have therefore been proposed to be a means of cell type-specific intercellular paracrine
communication through delivering RNAs, which would affect the recipient cell’s proteome, and this
has been demonstrated in several in vitro models involving both animal and human cells [11,19–23].

While the principles of miRNA transfer by microvesicles are similar to that by exosomes, there are
some notable differences [13]. For one, microvesicles (MVs) are synthesised from the plasma membranes
of donor cells, and so the profile of the membrane proteins on them reflects the donor cell type. It seems
probable that miRNA secretion via this mechanism is independent of the donor cell’s transcriptional
status [24]. Known cell types that produce miRNA-loaded MVs include endothelial cells, mesenchymal
stem cells, and cancer cells [12]. Finally, ECmiRNA are also found complexed with HDLs, and these
have been of interest as biomarkers of CAD [25,26]. However, recent studies cast doubt on the exact
role of exosomes and microvesicles as carriers of miRNA. One important criticism has been that
extracellular vesicles may co-purify miRNA found in culture and supplement media, such as foetal
bovine serum, potentially confounding results [27]. Newer techniques, such as high-resolution density
gradient fractionation and direct immunoaffinity capture, suggest that the secretion of DNA and RNA
products is independent of extracellular vesicles, perhaps through a proposed model of autophagy or
multivesicular-endosome-dependent but exosome-independent mechanism [28]. Furthermore, only a
small fraction of in vitro, human lymphocyte-derived extracellular vesicles have been found to carry
miRNA, and the binding of extracellular vesicles to cell membranes has not been observed. This may
be due to a short exposure time and variability in conditions from physiological conditions [29].
Thus, there is a requirement for further investigation in this domain, although microvesicle RNA
biology has been successfully translated to use in clinical settings in the diagnosis of haematological
and oncological disorders [30].

Freely-circulating miRNA have been demonstrated by PCR miRNA assays conducted on
fractionated, filtered, and ultracentrifuged plasma obtained from peripheral blood samples [14,15].
The miRNA may be bound to Argonaute (Ago2), an extracellular miRNA binding protein, and together
they form a stable nucleoprotein complex. These stable complexes exist intracellularly, so it may be
plausible that a certain proportion of ECmiRNA are released following cell death processes, e.g., necrosis
and apoptosis, though it remains a possibility that miRNA/Ago2 complexes are/can be directly released
from cells in order to communicate with others [14,15].

3. Physiological Roles of miRNA and Their Clinical Relevance

The significance of miRNA is made evident by the defective organogenesis and embryonic lethality
that is found in murine models of tissue-specific or germline Dicer knockouts, respectively [31,32].
Dysregulation of miRNA is linked to the aetiology or pathogenesis of viral infections, cancer,
and metabolic diseases [33]. Notable cardiovascular examples are miR-208, miR-143/145, and miR-21.
MiR-208 is derived from an intron of the α-MHC (myosin heavy chain) gene, which is uniquely
expressed in the myocardium and encodes an isoform of myosin heavy chain [34]. It acts within a
network to upregulate the expression of β-MHC in response to stress, but its absence does not result in
the absence of myocardium, therefore yielding viable mice [35].

The miR-143/145 cluster regulates the expression of cytoskeletal genes in vascular smooth muscle
cells (VSMCs), and although murine knockouts are still viable, they show reduced vascular tone
and significantly reduced capacity for migration in the process of neointima formation following
vascular injury [36,37]. Stress-induced hypertrophy of cardiomyocytes is, at least in part, facilitated
by miR-21-mediated silencing of two target proteins [38]. Indeed, miRNA have a wide range of
cardiovascular functions, and their absence induces many abnormal phenotypes [7]. A recently
compiled database of extracellular vesicle miRNA describes their potential roles as biomarkers in
various diseases, including myocardial infarctions [39–42].

Thus, miRNA may either have a causative role or are a consequence of pathology. In the case
of the former, the relevant miRNA could be operating as an initiator or maintainer of the condition
(i.e., is a necessary component of a particular disease process), or could simply yield susceptibility
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(i.e., could potentially be sufficient to produce the disease phenotype, for example by yielding a
substrate that enables the disease to precipitate). In the case of the latter, the measured changes in
miRNA levels may be due to unregulated secretion from injured/stressed cells, or as a homeostatic
response to the insult, with the communication between the cells occurring at the paracrine or the
endocrine level [43].

Hence, for both of these, by measuring the changes in the miRNA signatures in an individual
before, during, and after recovery from a particular pathology, we may be able to identify how the
miRNA are behaving with respect to aetiology and pathogenesis (i.e., whether changes in miRNA
behaviour affect susceptibility, are an outright cause, or more simply are products of the disease
process). These signatures themselves may be detected in biopsies or peripheral blood samples, and are
defined by the identity of the specific miRNAs that are detected, as well as by their concentrations.
There already exists diagnostic miRNA tests based on either an miRNA panel or single miRNA
quantification for diseases like certain cancers, indicating a successful proof of concept for the use of
miRNA as biomarkers in disease [44,45].

4. Coronary Artery Disease (CAD) Pathophysiology

To better appreciate and evaluate the potential of miRNA as biomarkers in CAD, it is necessary to
first consider the pathology of CAD. The pathogenesis of coronary artery plaques in CAD involves
endothelial cell activation and the subsequent infiltration of the tunica intima by oxidised lipoproteins
and monocytes. These monocytes go on to differentiate into macrophages and transform into foam
cells as they consume these lipoproteins [46,47]. Consequently, a chronic inflammatory response is
produced, whereby the macrophages begin the secretion of cytokines and chemoattractant factors
that promotes the activation of the endothelium, which beckons further adhesion and infiltration
(diapedesis) of more monocytes/other leukocytes [48]. This leads to the development of a raised
lesion with a fibrous cap (from the myofibroblasts) and a lipid-rich interior (from lysed foam cells).
The “shoulder” of the cap is found to have both of these cell types in addition to T-lymphocytes
(although their role is not entirely understood) [49].

Angiogenesis may occur within the plaque and contribute to the expansion of the plaque through
haemorrhaging of the new vessels forming at the shoulder into the less dense, lipid-rich core. The plaque
may subsequently rupture, which can lead to thrombosis as coagulation factors and thrombocytes adhere
to the lesion, as well as embolisation of plaque fragments. Other complications include calcification,
or the formation of an aneurysm as the tunica media weakens from the arterial remodelling [50].
Endothelial cells are also induced to produce a pro-inflammatory response, which propagates the further
infiltration of monocytes and degeneration of the elastic laminae in the media [51]. This weakened area
of vessel wall can dilate in response to pressure applied to it. CAD pathophysiology therefore has the
potential to give rise to measurable circulating biomarkers, due to the close involvement of disease with
the circulating vasculature. Established surrogates that are commonly used, such as circulating LDL,
HDL, troponin, and creatinine kinase, are associated with different stages in their pathophysiology:
LDL and HDL being more relevant upstream as risk factors, and troponin and creatinine kinase more
relevant downstream as a consequence of sufficiently advanced disease. Thus, there may be other
biomarkers that may be of use in either a prognostic or diagnostic capacity. miRNA may be one
such class.

5. CAD Biomarkers and miRNA

Current standard molecular biomarkers include proteins, lipids, and other metabolites.
Cardiac troponins are well-established and are commonly used indicators of adverse cardiac events [52].
Creatinine kinase is also used in the same context, although it is less specific due to its presence in
skeletal muscle and cerebral tissue. However, troponins and creatinine kinase involve the terminal
series of events in CAD: ischaemic damage to the myocardium arising as a result of acute coronary
syndrome [9,53].
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Novel serum biomarkers, and more recently urinary biomarkers for CAD, are of increasing
interest. For example, high-sensitivity C-reactive protein and high-sensitivity troponin I assays have
been proposed as biomarkers of coronary artery disease and its progression [54–56]. They pose the
advantages of being non-invasive, compared to percutaneous coronary angiography, and without the
radiation exposure of CT coronary angiography [57]. In a study that tested over 100 different serum
biomarkers in over 1000 patients, four biomarkers in combination (adiponectin, apolipoprotein C-I,
midkine, and kidney injury molecule-1 (KIM-1)) were found to predict incidence of severe CAD [58].

Alongside these novel biomarkers, numerous studies have tried to identify miRNA, which may
distinguish between individuals with different cardiovascular health statuses (Table 1) [59–61].
These miRNAs may be considered at local sites, such as at plaques or sites of endothelial injury, or
freely circulating in serum. There is a vast constellation of research, and several candidate miRNAs
have been identified, although this is complicated by a lack of correlation between studies. This may be
due to experimental design variation, as studies involve different experimental models, time courses
(acute vs. chronic disease), and quantification methodologies.

5.1. Localised Changes in miRNA Profiles

At the tissue level, specific miRNAs are expressed at the sites of myocardial injury/ischaemia
or at the site of the atherosclerotic lesion. This expression may be in vascular tissue, myocardium,
or plaque cells. Vessel wall biology changes drastically as atherogenesis progresses, and the changes in
miRNA expression reflect this (Figure 3). In vascular smooth muscle cells. miRNA-1, -10a, -21, -100,
-133, -143, -145, and -204 have been characterised with their standard contractile phenotype [62,63].
This is contrasted with a myofibroblast phenotype that VSMCs differentiate into during plaque
development, which is instead associated with miRNA-24, -26a, -31, -146a, -208, and -221 [62,63].
The latter set of miRNA directs VSMCs to a secretory phenotype, with increased proliferative and
migratory activity [63–68].

In the case of miRNA-21, however, there is evidence of the inverse, whereby this miRNA, which is
elevated in CAD, may promote VSMC proliferation and indicate the progression of atherosclerosis [69].
Through the inhibition of FOXP1 and ZDHHC14 expression, respectively, miRNA-206 and -574-5p
also act to do the same, and are demonstrated to be elevated in CAD patients, although the former
seems to actually be anti-atherogenic [70].

Endothelial cells produce a baseline level of miRNA-155 and miRNA-126-5p under healthy
conditions, whereas miRNA-21, miRNA-34a, and miRNA-210 are featured more in the endothelium
of atherosclerotic lesions (Figure 3) [63]. These are due to increased shear stress from altered tissue
morphology, interrupted cell cycle control, and hypoxia, respectively, all of which occur in atherosclerotic
plaques. However, the downregulation of miRNA-126-5p removes a significant promoter of endothelial
cell repair and maintenance, which further enables atherogenesis [71].

Endothelial progenitor cells (EPCs) are mobilised to give rise to endothelial cells in angiogenic
atherosclerotic lesions, in a process marked by changes in the miRNA. In particular, miRNA-361-5p and
miRNA-206, which are upregulated in CAD patients, are potentially responsible for controlling
the expression of vascular endothelial growth factor in EPCs, as well as EPC activity [72,73].
Connections have been made with further miRNA, though only in the broad scope of these lesions as a
whole (Table 1).
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Figure 3. Associations between miRNA in different cells and constituent pathways in coronary artery
disease (CAD) pathogenesis. Pathological alterations in the phenotypes of particular cells of the
circulatory system, in addition to normal homeostatic processes, are core to the development of CAD
(shown in blue, phenotypes in red, pathophysiological processes in purple). Various miRNAs have been
identified as being associated with these pathological developments (shown in green), with previous
studies showing that they may be implicated in particular contributing mechanisms. VSMC: vascular
smooth muscle cell.

5.2. Changes in Circulating miRNA

Certain miRNA will be released from cells as either a homeostatic response to CAD or following
cell death (Figure 3). Therefore, miRNAs that are linked to such insults, such as miRNA-499,
miRNA-208, and miRNA-1 [74–77], could plausibly be released from ischaemic cardiomyocytes as
they necrose. Muscle-enriched miR-133a, together with miR-1, shows a steeper and earlier increase
than cardiac-enriched miRNA (miR-499 and miR-208b) upon myocardial injury [42]. Alternatively, cell
death within the atherosclerotic lesion itself can produce circulating miRNA. A fraction of endothelial
cells in atherosclerotic plaques undergo apoptosis, and thus release apoptotic bodies that have been
found to contain miRNA-126 (Figure 3) [14]. In actuality, this miRNA acts through CXCL12 to stabilise
plaques and protect the vessel wall structure from further damage under atherogenesis (Table 1).

In terms of homeostatic responses, leukocytes, such as peripheral blood mononuclear cells
(PBMCs), demonstrate altered miRNA profiles in CAD patients relative to healthy controls. One study
reported differences in the levels of miRNA-147, which was downregulated, and miRNA-135a,
which was upregulated, in these cells [78]. Another group observed that CAD patients’ PBMCs also
had an increased expression of miRNA-146a/b under inflammatory stimuli associated with CAD,
and lowered expression of let-7i [79,80].

In another study comparing the expression levels of multiple circulating miRNAs between
eight CAD patients and eight healthy volunteers, all of the miRNA primarily expressed in the
endothelium—miRNA-126, -17, -20a, -92a, -221, -199a-5p, -27a, -130a, and -21, as well as let-7d—had
significantly lower levels in the circulation in CAD patients [61] (note, however, that miRNA-126 is also
highly enriched in platelets [81]). This was in contrast to the miRNAs that were specifically expressed
in striated muscle, of which only one (miRNA-208b) was found to have a significant difference, and was
instead elevated in CAD patients [61].
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Determining the cell type of origin, as well as the precise roles of both of these types of miRNA,
would further define the underlying communications and transformations that lead to plaque formation.
However, it may be suggested that circulating miRNA are the most feasible candidates as biomarkers,
due to the comparative ease of extraction

6. miRNA in CAD Pathophysiology

The relevance of miRNAs as biochemical precursors to the more macroscopic cellular and
histological events that comprise atherogenesis is becoming increasingly evident [82,83]. As discussed
above, lipid metabolism and inflammatory changes are key aspects of this process. Therefore, here we
discuss miRNA in these contexts and highlight the changes that occur in pathological processes.

6.1. Lipid Metabolism

LDLs, mainly in their oxidised form, are the primary carriers of the cholesterol and triglycerides
that are found in atherosclerotic lesions. Implicated in the synthesis of these molecules are miRNA-24,
-33, -103a, and -122, all of which are found to have been significantly increased in the PBMCs of
CAD patients [84,85]. Further investigations of miRNA-33 have reported that it suppresses the
cholesterol efflux mechanism in cells, at least in part by inhibiting the expression of ATP-binding
cassette transporter A1 [86,87]. Likewise, the expression miRNA-370 is also significantly raised in CAD
patients [88]. This miRNA downregulates the expression of a carnitine palmitoyl transferase protein
that is required for the trafficking of fatty acids into the mitochondria for β-oxidation, and is also higher
in CAD patients [87]. In addition, these individuals can be identified from increased miRNA-486, -92a,
-208a, -122, -93, and -17-5p [86,87].

6.2. Inflammation

Endothelial vulnerability to pathological inflammatory activity may, in part, be regulated by
miRNA-10a, which is also reduced in CAD patients compared to healthy controls [71,82,89,90].
miRNA-155 shows the same trend, though there is contrasting evidence when the miRNA’s levels in
the plasma and plaques of individuals with atherosclerosis were investigated [89,90]. Li et al. [90] have
also shown that miRNA-155 reduces the expression of calcium-regulated heat stable protein 1 and
promotes TNF-α expression in macrophages, suppressing foam cell formation [71,89,90].

Furthermore, miRNA-22 is known to repress the chemokine CCL2 in PBMCs, which modulates
intercellular communication in inflamed tissues [82,91]. In CAD patients, the levels of these miRNAs
in PBMCs are reduced. In addition to this, miRNA-146a is also reduced in CAD patients [91].
This miRNA is induced by pro-inflammatory cytokines to inhibit the nuclear factor-κB pathway in a
negative feedback loop to resolve inflammation in its later stages [82,91]. MiRNA, therefore, plays a
role in inflammatory processes that may form one component of the complex pathophysiology of
atherosclerosis, and may represent potential biomarker candidates early in the disease process [82].

7. Pitfalls in Assessing miRNA as Biomarker Targets

7.1. Confounding Factors

When considering the utility of miRNA as biomarkers, one needs to consider any variances in
their expression not relating to pathological processes alone. One such source of variation may be
population-level changes. Thus, studies has shown geographical/ethnic differences in the expression
levels of miRNA [92,93].

Age and sex are other factors that correlate with the frequency of different miRNA in
circulation [94]. This has been demonstrated in an analysis of platelet-derived mRNA and miRNA [95].
However, in terms of cardiac-specific miRNA, there is limited data on CAD-associated miRNAs
and their variation with the sex and ethnicity of a patient. Discrepancies in miRNA levels with
respect to age have been reported in a few studies, which is a further confounder, as ageing is a
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critical risk factor of cardiovascular health. For example, with miRNA-149, -424, and -765, the former
two are downregulated and the latter upregulated in middle-aged (aged 49–57) CAD patients [96].
Another study showed that miRNA-126-3p expression is greater in senescent endothelial cells than in
younger cells, and their quantity in circulation is also increased [97].

Furthermore, cardiac fibroblasts increase their expression of miRNA-21 and miRNA-22 with
age, which can lead to increased fibrosis and progression towards senescence, respectively [98].
Cardiomyocytes show the same change in miRNA-22, whereby they have been demonstrated to have a
suppressive effect on autophagy in aged cardiomyocytes, producing an improved functional recovery
of myocardium post-infarct in elderly mice, though not in younger mice [99].

Moreover, the level of miRNA-155, in addition to actually being higher in human females, decreases
with age. Other miRNA have been implicated in cardiac ageing and associated dysfunction in addition
to CAD, including the miRNA-17-92 cluster, miRNA-18, miRNA-19, and miRNA-17-3p [98,100–102].
Therefore, since not all studies investigating these miRNA have adjusted their results to control for
these factors, any reported variation in miRNA may partially be explained by factors other than
CAD [103].

7.2. Measuring Serum and Plasma miRNA

Of the published studies that analyse circulating miRNA, the general trend seems to concentrate
on using plasma-based samples. This specification is critical, as the difference in the molecular profile
between serum and plasma results in a difference between the recorded miRNA levels as the sample
is being prepared, as serum holds a higher concentration of RNA than plasma [104]. Further to this
point is that coagulation increases variability in serum miRNA concentrations [104]. Hence, we must
recognise the difficulty of normalising miRNA values due to pre-analytical variations, including blood
cell counts and the miRNA load of the cells and platelets in circulation.

Furthermore, any haemolysis releasing the miRNA contained within blood cells will affect the
total miRNA concentration and profile that we identify from serum, though cellular contamination
would cause the same changes in plasma and serum samples. Thus, care should be taken when
preparing samples to prevent distorted results [104–106], and it may be best to produce a standard
operating procedure (SOP) for acquiring miRNA data, based on currently existing SOPs for collecting
such samples.

8. Validity of miRNA as Biomarkers

When addressing the feasibility/validity of miRNA as a biomarker, a few critical points must first
be considered. Firstly, ease of access is not a concern, as miRNAs occur in peripheral blood so whole
blood samples can be taken. However, it should be noted that the majority of miRNA in peripheral
blood will likely be derived primarily from well-vascularised tissues, e.g., lungs and kidneys, in
addition to blood cells themselves (platelets are a major contributor to the circulating RNA pool [107]),
so the relative quantities of particular miRNAs should be taken into account.

Secondly, cost is likely a significant concern, due to the processes required to prepare the
miRNA: RNA purification, reverse transcription–polymerase and quantitative polymerase chain
reaction/microarrays/sequencing, controlling RNase activity, etc. [108,109]

Thirdly is timing/storage. MiRNA/Ago2 complexes have remarkable biologic stability and occur
both in microvesicles and freely in plasma, though miRNA integrity is also maintained in tissues that
have been fixed in formalin and embedded in paraffin, as is done with biopsies [108,109]. This protects
the original samples, though preparation of purified miRNA must still be done carefully, and regular
monitoring and appropriate storage are necessary. Control of the temperature and RNase activity are
crucial to prevent degradation.

Lastly is content/criterion validity [110]. Major efforts have been and are currently being invested
into establishing the reliability of miRNA as a diagnostic for a diverse range of human diseases
(i.e., carrying indicative or predictive value), as well as into developing diagnostic tests for them
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and trying to understand their contribution to the disease’s manifestation, as mentioned [43,111–114].
Prognostic information and severity assessments also stand to be improved through the use of
miRNA [115].

While the quantification and normalisation methodologies are still being developed, stability,
accessibility, and disease specificity still lend miRNAs significant value as biomarkers, and evidence of
this continues to grow [116,117].

Given that there are several miRNAs, it is likely to be beneficial to assay these particular biomarkers
in a panel of tests. When considering the levels of all of those that are tested for, we gain a better
understanding of the pathology’s context. Some groups support this notion, with the suggestion that
using a panel of select miRNA “may have a greater target-organ specificity and better diagnostic value
than a single miRNA or well-established clinical biomarker” [116]. This is easily demonstrated by the
range of miRNAs that are found to be involved in a singular disease, and a singular miRNA may
be involved in multiple diseases, producing a web of interaction [116]. A gene can have sequences
complementary to different miRNA seed sequences, and an miRNA may target multiple genes, so this
is a feasible paradigm.
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Table 1. miRNAs as active factors/potential biomarkers in CAD and associated pathologies. Methodologies of miRNA identification, quantification, sample location,
experimental model, and time course of disease pathology are indicated. Where the quoted reference is a review article synthesizing several sources of evidence, this
has been indicated.

References miRNA Quantitative Effect Outcome Sample Type
miRNA

Identification/Quantification
Method

Cell Lines/Study Population Acute/Chronic Disease Status

Wang et al., 2016 [118] miRNA-146a Upregulated
This miRNA may be a potential biomarker for

poor coronary collateral circulation in CAD
patients.

Plasma qRT-PCR Human patients Chronic (1-month cut-off)

Li et al., 2017 [119]
miRNA-155-5p
miRNA-483-5p
miRNA-451a

MiRNA-155-5p and miRNA-483-5p
are upregulated;

miRNA-451a is down-regulated

Potential biomarkers for the early detection of
atherosclerotic plaque rupture. Plasma qRT-PCR Human patients Stable CAD

Zhao et al., 2015 [37] miRNA-143
miRNA-145 Contested Altered in CAD. Potentially released from

vascular walls. Plasma (Review article) (Review article) (Review article)

Li et al., 2017 [120]

miRNA-122
miRNA-140-3p

miRNA-720
miRNA-2861
miRNA-3149

Upregulated Elevated during the early stages of ACS. Plasma qRT-PCR Bama male minipigs and human
patients

Minipigs: normal and acute MI.
Human patients: Stable angina,
unstable angina and acute MI.

Jansen et al., 2017 [121]
miRNA-21

miRNA-126-3p
miRNA-222

Upregulated
These miRNAs increased in concentration

following periods of cardiac stress in patients
with stenosed coronary arteries.

Plasma qRT-PCR Human patients Stable CAD

Soeki et al., 2015 [122] miRNA-100 - Associated with coronary plaque instability.
Potentially released from plaques. Plasma qRT-PCR Human patients Unknown

Liu et al., 2017 [123] miRNA-29a Upregulated

Moderates expression of mRNAs of
extracellular matrix proteins. Associated with
atherosclerosis and intima-media thickness of

carotid arteries.

Plasma qRT-PCR Human patients Unknown

Wang et al., 2017 [124] miRNA-126 Downregulated A potential biomarker for CAD. Inversely
correlated to placenta growth factor. Plasma qRT-PCR Human patients CAD for 15–24 months

Al-Kafaji et al., 2017 [125] miRNA-126 Downregulated A potential biomarker for CAD. Inversely
correlated with LDL concentration. Plasma qRT-PCR Human patients Type 2 diabetics, some with

CAD diagnoses

Al-Muhtaresh et al., 2019 [126] miRNA-1
miRNA-133 Upregulated

Potential biomarkers. Both correlate with
LDL-C levels;

miR-1 is known to negatively regulate Bcl2
[127].

Plasma qRT-PCR Human patients Type 2 diabetics, some with
CAD diagnoses

Zernecke et al., 2009 [14] miRNA-126 -

Released from apoptotic bodies derived from
endothelial cells from atherosclerotic plaques.

Reduces inflammatory activity/plaque
development.

Plasma/Plaque qRT-PCR

Human aortic smooth muscle cell
culture. Human atherosclerotic

plaques. ApoE−/− murine
endothelial cell cultures. HUVEC

cell line

Unknown

Wang et al., 2014 [128] miRNA-31
miRNA-720 Downregulated Potential biomarkers for early CAD. Plasma/endothelial

progenitor cells qRT-PCR Human patients Unknown CAD

Zhang et al., 2017 [129] miRNA-208a -
Significant association with Gensini score, and

by extension the severity of atherosclerosis.
Potential biomarker for CAD severity.

Plasma qRT-PCR Human patients Unknown CAD

Jansen et al., 2014 [111] miRNA-126
miRNA-199a -

The levels of these miRNA, which occur in
circulating microvesicles, are potentially

prognostic for major adverse cardiovascular
events in patients with stable CAD.

Plasma qRT-PCR Human patients Stable CAD
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Table 1. Cont.

References miRNA Quantitative Effect Outcome Sample Type
miRNA

Identification/Quantification
Method

Cell Lines/Study Population Acute/Chronic Disease Status

Han et al., 2015 [130]

miRNA-21
miRNA-23a
miRNA-30a
miRNA-34a

miRNA-106b

Upregulated

These miRNAs occur at higher levels in
ApoE−/− mice, which models

hypercholesterolaemia.
MiRNA-21, -23a, and -34a are potential

biomarkers for CAD.
MiRNA-21 has been linked to CAD-derived

ACS.

Plasma qRT-PCR and miRNA
microarrays

ApoE−/− mice and human CAD
patients

Unknown

Zhou et al., 2016 [70] miRNA-206
miRNA-564-5p Upregulated Potential biomarkers for CAD Plasma qRT-PCR and miRNA

microarrays Human patients Unknown

Sayed et al., 2015 [96]
miRNA-149
miRNA-424
miRNA-765

MiRNA-149 and miRNA-424 were
upregulated, miRNA-765 was

downregulated

Potential biomarkers for CAD in middle-aged
patients Plasma qRT-PCR Human patients Stable and unstable CAD

Gao et al., 2015 [131] miRNA-145 Downregulated

This miRNA regulates VSMC fate, inhibiting
proliferation. It is the modal miRNA in

healthy vessel walls, though in atherosclerotic
plaques it may not even be detected. Plasma
concentration levels are significantly reduced
in CAD patients, and those with three-vessel
disease have a significantly lower quantity as

well. Potential biomarker for CAD.

Plasma/plaque qRT-PCR Human patients Unknown (patients diagnosed
with CAD for more than a year)

Ren et al., 2013 [132]

miRNA-106b/25
cluster

miRNA-17/92a
cluster

miRNA-21/590-5p
cluster

miRNA-126
miRNA-451

Upregulated in patients with
unstable angina, though there is

evidence that miRNA-17/92a was
actually downregulated in CAD

patients [83]

These miRNAs are elevated in CAD patients
relative to those with stable AP. MiRNA-17/92a

is involved in angiogenesis, which further
complicates plaques. Increased miRNA-21 can

yield increased MMP activity, which can
hinder plaque progression. Potential

biomarkers for CAD.

Plasma qRT-PCR Human patients CAD and unstable angina

Chen et al., 2015 [133] miRNA-17-5p Upregulated Potential biomarker for early CAD. Plasma qRT-PCR Human patients Unknown

Faccini et al., 2017 [89]
miRNA-155
miRNA-145

let-7c
Downregulated Potential biomarkers for CAD Plasma qRT-PCR and miRNA

microarrays Human patients Unknown

Koroleva et al., 2017 [51]

miRNA-21
miRNA-100
miRNA-127
miRNA-133

miRNA-143/145
miRNA-221/222

miRNA-494

All upregulated apart from
miRNA-221/222, which was

downregulated

The expression of these miRNA may influence
plaque stability:

miRNA-21, -143, and -221 are pro-stability;
miRNA-100, -127, -133, and -494 are

pro-instability.

Plaque (Review article) (Review article) (Review article)

Lin et al., 2016 [134] miRNA-365 Downregulated

Regulation of the inflammatory response,
specifically IL-6 activity, such that IL-6

expression increases as miRNA-365 expression
decreases.

Plaque, serum,
and circulating

monocytes
qRT-PCR Human patients Unknown (patients with

atherosclerosis)

Cipollone et al., 2011 [135]

miRNA-100
miRNA-127
miRNA-145

miRNA-133a/b

Upregulated

The expression of these miRNA varies with
plaque stability.

MiRNA-133 is relevant to stroke-related
proteins and is thought to be vascular smooth

muscle-specific.

Plaque qRT-PCR Human patients Unknown
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Table 1. Cont.

References miRNA Quantitative Effect Outcome Sample Type
miRNA

Identification/Quantification
Method

Cell Lines/Study Population Acute/Chronic Disease Status

Kumar et al., 2014 [136] miRNA-712
miRNA-205 Upregulated in atherosclerosis

These miRNA target and reduce expression of
metalloproteinase inhibitor 3 (TIMP3),

increasing the activity of matrix
metalloproteinases (MMPs), which affects

inflammatory processes and VSMC/leukocyte
migration in atherosclerosis.

Endothelial cells
(Plaque)

Review (qRT-PCR,
microarrays, and
fluorescent in situ

hybridisation)

Review (mice (C57BL/6 and
ApoE−/−)) Review (unknown)

Tian et al., 2014 [137] miRNA-155 Upregulated Raised inflammatory response and foam cell
differentiation.

Monocytes
(plaque) qRT-PCR ApoE−/− mice Unknown

Horie et al., 2012 [138] miRNA-33 - Deficiency in ApoE knockout mice suppressed
atherogenesis/plaque progression.

Monocytes/macrophages
(plaque) qRT-PCR ApoE−/− mice Unknown

Fang et al., 2010 [139] miRNA-10a Downregulated
Expression levels were reduced in endothelial
cells that are thought to be pre-atherosclerotic,

affecting inflammation signalling.

Endothelial cells
(plaque)

qRT-PCR, miRNA
microarrays, and
fluorescent in situ

hybridisation

Adult pigs Unknown

Zernecke et al., 2009 [14] miRNA-126 -

Released from apoptotic bodies derived from
endothelial cells from atherosclerotic plaques.
MiRNAs reduce inflammatory activity/plaque

development.

Plasma/plaque qRT-PCR

Human aortic smooth muscle cell
culture. Human atherosclerotic

plaques.
ApoE−/− murine endothelial cell

cultures. HUVEC cell line.

Unknown

Raitoharju et al., 2011 [62]

miRNA-21
miRNA-34a

miRNA-146a
miRNA-146b-5p

miRNA-210

Upregulated

These miRNAs were upregulated in plaques
compared to left internal thoracic arteries that
were not atherosclerotic. This has been linked

to VSMC changes seen in atherogenesis.

Plaque miRNA microarrays and
qRT-PCR Human patients Unknown

Shan et al., 2015 [140] miRNA-223 Upregulated

This miRNAs seems to be secreted from cells
in the circulation. Their levels are elevated in

the serum and atherosclerotic lesions in
apolipoprotein-E knockout mice.

Plaque
serum/blood cells qRT-PCR

Sprague–Dawley rat VSMC
cultures and C67BL/6 murine

platelets
Unknown

Bidzhekov et al., 2012 [141]

miRNA-26b
miRNA30e-5p

miRNA-105
miRNA125a-5p

miRNA-520b

MiRNA-26b, -30e-5p, and -125a-5p
were upregulated.

MiRNA-105 and miRNA-520b were
downregulated.

These miRNAs had altered expression in CAD
patients relative to healthy controls. Plaque, monocytes qRT-PCR and miRNA

microarrays Human patients Unknown

Jansen et al., 2013 [142] miRNA-126 Downregulated Circulating levels of miRNA-126 decreased in
CAD patients.

Circulating
microparticles qRT-PCR Mice and human patients Stable CAD since 2003

Schulte et al., 2015 [143] miRNA-197
miRNA-223 - Strong prognostic value in CAD patients for

cardiac death. Serum qRT-PCR Human patients Unknown CAD

Hulsmans et al., 2012 [144] miRNA-181a Downregulated Potential biomarker for CAD, as well as
metabolic syndrome Monocytes qRT-PCR and miRNA

microarrays Human patients Unknown

ACS: acute coronary syndrome, ApoE: Apolipoprotein E, CAD: coronary artery disease, HUVEC: human umbilical vein endothelial cells, MI: myocardial infarction, qRT-PCR: quantitative
real time polymerase chain reaction.
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9. Conclusions

The field of miRNA biomarkers is still relatively young, although it shows significant promise for
diagnostics, including for CAD. Many candidate biomarkers have been investigated which characterise
different aspects of this vascular disease. There are still challenges, both in the scientific understanding
of their roles in CAD and in normalising their measured values across samples and accounting for
natural variation in the healthy population.
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