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Abstract: The situation of drug resistance has become more complicated due to the scarcity of plant
resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for
the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides
(AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs,
I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system.
We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of
bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal
(Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric
analysis revealed the possible mechanism of these peptides, which was to target and disrupt the
bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential
analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for
clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are
effective biocontrol agents and can be used as raw materials in the drug discovery field.

Keywords: antimicrobial peptide; plant resistance gene; membrane-interrupting peptides; gene
expression system; Bacillus subtilis; Isatis indigotica

1. Introduction

Drug resistance in pathogenic microbes is an emerging challenge in crop production and human
health care [1,2]. Multiresistant bacteria have many strategies that threaten the health of animals and
plants [3], such as beta-lactamases that are enzymes synthesized by bacteria to break host resistance [4].
This situation has been provoked by the recent attention paid to identifying new antimicrobial
genes against emerging bacterial resistance [5]. Therefore, scientists have been trying to discover
novel biocontrol agents to overcome this problem. Antimicrobial peptides (AMPs) have received
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a considerable amount of attention because of their significant activity against fungi, bacteria, parasites,
viruses, inflammation, and tumor cells [6,7]. It is generally believed that AMPs are short peptides
(20–50 amino acids) with low molecular weight and mostly linear cationic α-helices [8], with effective
activity against a broad spectrum of pathogens. AMPs can be isolated from a variety of organisms
such as bacteria, fungi, insects, plants, animals, and humans [9,10]. As a new class of antibiotic with
low tendency to induce resistance, high antimicrobial activity, and good selectivity, AMPs have the
potential to replace some traditional antibiotics in the future [11]. The Gram-positive bacterial cell
envelope is composed of an outer cell wall (a thick peptidoglycan layer and a polysaccharide coat)
and an inner cytoplasmic membrane. To achieve their bactericidal activities, AMPs interact with the
cell wall or cytomembrane, resulting in membrane interruption and cell lysis [12]. In most of these
cases, AMPs are reported to cause disruptions in cell wall or cell membrane integrity, perforation,
deformation, and increased water ion and molecular flow across the membrane, which ultimately
causes microbial death [13].

In biotechnology, Bacillus subtilis has been considered an effective tool to study high-level
expression of foreign proteins [14]. Additionally, it is a generally regarded as safe (GRAS) organism
that does not produce endotoxins [15]. Because of its relatively simple cell structure, high growth
rate, short fermentation time, and high capacity to secrete proteins directly into the extracellular
medium [16], it has long been successfully used for the expression of many protein products, including
some industrial enzymes (proteases, lipases, and amylases) [17,18].

Isatis indigotica belongs to the Brassicaceae family and is a biennial herb that has been used as
a traditional medicine to cure wounds in Europe and China for centuries [19]. Different compounds
isolated from I. indigotica leaves have exerted anti-inflammatory and anti-allergic activities [20]. Extracts
of I. indigotica hairy root cultures showed antioxidant activities [21]. Alkaloids isolated from I. indigotica
exhibited inhibitory activities against two different types of ureases (Jack bean and Bacillus pasteurii
ureases) and significant antifungal activity against Aspergillus niger, Candida albicans, Trichophyton
schoenleinii, T. simii, and Macrophomina phaseolina [22].

To date, most of the research related to AMPs has been focused on extraction, separation,
purification, and synthesis of AMPs, as well as some exploration of resistance mechanisms [23]. For the
isolation of candidate AMPs, there are two main methods. One method is based on stepwise separation
and detection of proteins or polypeptides after isolation from organisms directly [24]. Because the
number of AMPs in microbes is usually limited, extensive losses can occur during the isolation and
purification procedures. The second method is to synthesize AMPs artificially. This method can
improve AMP efficacy and range of performance.

Two factors contribute to a bottleneck in plant resistance breeding—the scarcity of plant resistance
genes and the fact that resistance genes are easily overcome by pathogens. To overcome the scarcity
of plant resistance genes, we established an antimicrobial gene isolation method using a B. subtilis
expression system [25]. To avoid the propensity for resistance genes to be overcome by pathogens,
we designed a model in which pathogen-independent, nonself-recognition triggered, and heterosis-based
fresh resistance can be generated in F1 hybrids [26]. To the best of our knowledge, I. indigotica has been
less well documented for its antimicrobial potential. In the current study, novel AMPs were identified
from I. indigotica using the B. subtilis expression system, and further studies were performed to explore
their antibacterial and antifungal activities. To determine the basis of the host–pathogen interaction,
the potential for these AMPs to control plant diseases and their mechanisms were also investigated in
this study.

2. Results

2.1. Candidate Genes from an Isatis indigotica cDNA Library Exhibited Antimicrobial Potential

In an attempt to identify AMPs from I. indigotica, a cDNA library was constructed from purified
mRNA using the pBE-S vector and B. subtilis expression system (Figure S1). We assumed that the
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expression and secretion of candidate genes from the cDNA library in B. subtilis cells would reveal the
killing or damaging effects of the expressed products in their virulence against host cells. Based on
this assumption, cells with abnormal growth were identified and their inserts were considered to be
potential antimicrobial genes (Figure 1).

Figure 1. Damaging effect of foreign proteins on host Bacillus subtilis cells. The engineered B. subtilis
strains harboring IiR515, IiR915, and empty vector were separately spotted onto Luria-Bertani (LB)
plates and incubated at 37 ◦C. (a) IiR515 after 12 h of incubation and (b) after 36 h of incubation;
(c) IiR915 after 12 h of incubation and (d) after 36 h of incubation. The empty vector-transformed
B. subtilis strain (WB800-e) was used as a control. Spots on the right represent the test clones with
damaging effects and spots on the left represent the control.

The lengths of the inserts were analyzed by polymerase chain reaction (PCR) (Figure S2), and the
quality of the cDNA library was determined based on the primary library titer and recombination rate,
which were 5.6 × 106 CFU/mL (Colony Forming Units per milliliter) and 90.27%, respectively. During
initial screening, a total of 2.20% of clones (45/2039) demonstrated killing effects on B. subtilis, and
among them, 15 clones showed strong antimicrobial activities. These results suggested that the inserted
fragments in those 15 clones coded for products with the potential to inhibit or kill microorganisms
(Table S2). Based on this screening, IiR515 and IiR915 were selected for further study.

2.2. Candidate Antimicrobial Peptides Destroyed the Cell Membrane of B. subtilis

To determine the damaging effects of the functional peptides on the cytomembrane, scanning
electron microscopy (SEM), confocal microscopy, and cytometric analysis were used to observe the
cellular surface morphology and integrity (Figure 2). From the SEM results, the control B. subtilis
WB800-e strain showed normal and intact cell morphology. By contrast, membrane damage, such
as membrane holes, deformation, and lysis, was observed in cells transformed with the IiR515 and
IiR915 genes (Figure 2a). Cell staining was observed by confocal imaging. Under an ordinary optical
microscope, rod-shaped bacterial cells were observed for both the control and transformed strains
(Figure 2b). However, images under a fluorescence microscope were different; red fluorescence
was not observed for B. subtilis WB800-e (control), whereas obvious red rod-shaped IiR515- and
IiR915-transformed bacteria were observed (Figure 2c). Propidium iodide (PI) uptake increases with
an increase in cell membrane permeability. Dot plots showed that the B. subtilis WB800-e strain had
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minimal PI staining (approximately 1.75%). Conversely, the PI fluorescent signal for the transgenic
strains was much stronger, approximately 88.4% for IiR515 and 96.9% for IiR915 (Figure 2d).

Figure 2. Cell membrane disruptions of transformed B. subtilis cells. Bacillus pellets were fixed with
glutaraldehyde after washing with PBS buffer (phosphate buffer saline). Finally, the samples were
lyophilized and then gold coated. (a) Cellular disruption of IiR515, IiR915, and WB800-e (empty
vector-transformed B. subtilis WB800) under the scanning electron microscope. Test bacteria were
washed and resuspended in PBS buffer at 1 × 109 CFU/mL and stained with PI (40 mg/mL). Confocal
images under (b) ordinary light and (c) fluorescence. (d) Percentages of fluorescent events (relative
value of PI staining) in gate shown in the region on the right. The x-axis shows the relative fluorescence
intensity and the y-axis shows the side scatter light.

The y-axis shows the intensity of scattered light, which also increased with increased PI fluorescence
signal (x-axis). All of these results showed that the intact cell membrane of wild-type Bacillus rejected
the infiltration of PI. By contrast, PI infiltration into the IiR515- and IiR915-transformed cells occurred
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because of their incomplete cell membranes and PI bound to their exposed nucleic acids, resulting
in the observation of red fluorescence. Our results revealed that the cell membrane was significantly
destroyed, ultimately leading to cell death.

2.3. Candidate Antimicrobialpeptides Altered the Fluidity and Electrical Potential of the Bacillus subtilis
Cytoplasmic Membrane

For the further analysis of the integrity of the cytoplasmic membrane, the fluidity and electrical
potential (∆Ψ) of the cytoplasmic membrane were monitored. The DPH (1.6-diphenyl-1,3,5-hexatriene)
fluorescent probe was used for orientation, predominantly parallel to the fatty acid chains, and reflected
the fluidity of the core of the cytoplasmic membrane, while 3,3’-dipropylthiadicarbocyanine iodide
(DiSC3(5)) was used to detect perturbations of the electrical potential gradients across the cytoplasmic
membrane. Our results showed that for IiR515- and IiR915-transformed Bacillus cells, the fluidity
of the plasma membrane core was significantly reduced as time increased, but changes were not
significant for the control WB800-e strain (Figure 3a). The DiSC3(5) fluorescent probe was used to detect
perturbations in electrical potential gradients across the cytoplasmic membrane, and we observed that
changes in the electrical potentials of IiR515- and IiR915-transformed Bacillus cells were significantly
higher than the control cells (Figure 3b).

Figure 3. Fluorescence intensity and nucleic acid release of B. subtilis cells. The fluidity and electrical
potential of the cytoplasmic membrane of B. subtilis were measured. Excitation and emission
wavelengths for (a) The DPH were 365 nm and 425 nm and for (b) DiSC3(5) were 622 nm and
670 nm, respectively. The WB800-e strain was used as a control. The detection of released DNA and
RNA was also performed. The empty vector was used as a blank control. (c) The concentration of
DNA and (d) RNA in shaking media at different time intervals. Data are the mean values from three
individual experiments. Vertical bars represent the SD (Standard deviation). For significance analysis,
t-tests were performed; * p < 0.05, ** p < 0.01.

2.4. The Detection of DNA/RNA in Shaking Media Indicated Cell Membrane Breakage

We assumed that if the membranes of transformed strains were damaged, then some of their
components, such as nucleic acids (DNA and RNA), would leach out into the media. To prove this
assumption, the total amount of released DNA and RNA was measured using an Eppendorf Bio
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Photometer. The results supported our hypothesis that IiR515 and IiR915 made pores in the cell
membrane to release nucleic acids out into the media (Figure 3c). The highest amount of DNA was
observed for IiR515 at the 16 h time point, whereas the highest levels for IiR915 were observed at the
18 h time point. A significant amount of RNA was also observed in the media at other time intervals
(Figure 3d).

2.5. Extracellular Peptides of IiR515 and IiR915 Exhibited Antimicrobial Activities

Extracellular peptides of all candidate strains were extracted using the ammonium sulfate
precipitation method and tested for their antimicrobial activities. The results revealed that the
IiR515 and IiR915 peptides exhibited significant levels of inhibition against Gram-positive and
Gram-negative bacteria as well as fungi compared to controls (Figure 4a,b and Figure S3). Thermal
stability assays revealed that both peptides acted as stable antimicrobial agents against Gram-positive
and Gram-negative bacteria at temperatures ranging from 4 to 100 ◦C (Figure 4c, d). After purification,
the minimum inhibitory concentrations (MICs) of IiR515 and IiR915 were evaluated using the critical
dilution method against Gram-positive (Clavibacter fangii and C. michiganensis) and Gram-negative
(Xanthomonas oryzae and Ralstonia solanacearum) bacteria. Results indicated that the MICs of both
peptides were less than 100 µg/mL (Table S4).

Figure 4. Analysis of potential antimicrobial peptides (AMPs) against pathogens. For antimicrobial
activity assays, the B. subtilis WB800-e strain was used as a control. (a) Inhibition of Gram-positive and
Gram-negative bacteria in response to IiR515 and IiR915 compared to WB800-e. (b) Percent inhibition of
IiR515 and IiR915 against Botrytis cinerea compared to WB800-e. Temperature curves for (c) Clavibacter
fangii and (d) Xanthomonas oryzae. Data are the mean values from three individual experiments. Vertical
bars represent the SD. For significance analysis, t-tests were performed; * p < 0.05, ** p < 0.01.

2.6. Western Blots Revealed the Expression and Size of the IiR515 and IiR915 Peptides

His-tag fusion IiR515 and IiR915 peptides were expressed in B. subtilis WB800 cells. Extracellular
peptides were purified using a nickel column and tested for their expression by Western blot.
The molecular weights of IiR515 (14 kDa) and IiR915 (10 kDa) were observed from a PVDF
(Polyvinylidene fluoride) membrane using autoradiography (Figure 5), and we found that the
apparent sizes were larger than their predicted sizes. From previous reports, it has been observed
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that the relatively higher isoelectric point, the strong basic charge of the peptides, and the His-tag
fusion exert a significant impact on peptide movement in sodium dodecyl sulphate polyacrylamide
gel electrophoresis (SDS-PAGE) gels [27]. These results prove that our peptides of interest accumulate
in growth media as expected.

Figure 5. Western blot analysis of fusion peptides.

Autoradiography of IiR515 and IiR915 fusion peptides is shown in Figure 5. Lane M indicates
the color prestaining ultra-low molecular weight (1.7-40 kDa) marker. Lane 1 indicates the molecular
weight of the full-length IiR915 peptide (10 kDa). Lane 2 indicates the molecular weight of the
full-length IiR515 peptide (14 kDa).

2.7. IiR515 and IiR915 Prevented Phytophthora capsici and Botrytis cinerea Infection on Detached Leaves of
Nicotiana benthamiana

Sensitivity assays using purified IiR515 and IiR915 were performed on detached leaves of
N. benthamiana under controlled conditions. At 48 h post-inoculation (hpi), images were taken under
normal and ultraviolet (UV) light (Figure 6a,b). Results indicated a significant percent inhibition of
P. capsici compared to the control (Figure 6c). Leaves were infiltrated with TRV2-IiR515 and TRV2-IiR915,
and then disks with B. cinerea were used to inoculate on the other side of the infiltrated leaves at 48 hpi.
Images were taken at 48 h after fungal inoculation (Figure 6d). The data revealed that IiR515 and
IiR915 have the ability to restrict the growth of fungal pathogens (Figure 6e).

2.8. IiR515- and IiR915-Transformed Bacillus subtilis Inhibited the Growth of Soil-Borne Pathogens

Anti-soil-borne bacterial assays were applied in simulated soil environments. Plant pathogens
were applied to soil treated with transformed B. subtilis. The results showed restricted growth of
pathogens in soil treated with the IiR515 and IiR915 strains (Figure 6). We observed that inoculation
with the IiR515 strain had a maximum inhibitory effect on C. fangii and C. michiganensis growth on
the 2nd and 3rd day, respectively (Figure 6f,h), whereas in the case of the IiR915 strain, maximum
restriction of both C. fangii and C. michiganensis was observed on the 1st day (Figure 6g,i).

2.9. IiR515 and IiR915 Peptides Showed No Significant Hemolytic Activity

Hemolytic activity assays were performed against sheep blood cells. We found that the hemolysis
rates of the IiR515 and IiR915 purified peptides at the extremely high concentration of 1000 mg/L were
5.3% and 7.5%, respectively (Table S5). According to our results, no significant hemolytic activity was
observed against sheep blood cells. We can likely conclude that these peptides are relatively safe for
mammalian cells.
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Figure 6. Percent inhibition of Phytophthora capsici and Botrytis cinerea on Nicotiana benthamiana leaves.
Images of P. capsici disease inhibition (a) under normal light and (b) ultraviolet light (365 nm). (c) Percent
inhibition compared to the control. (d) Images of B. cinerea inhibition and (e) percent inhibition compared
with the control. The y-axis shows the logarithmic values of the bacterial population (log CFU/10
g of soil). The inhibitory potential of (f) the IiR515 strain and (g) the IiR915 strain against C. fangii.
Inhibitory potential of (h) the IiR515 strain and (i) the IiR915 strain against C. michiganensis compared
to the control WB800-e strain. Data are the mean values from three individual experiments. Vertical
bars represent the SD. For significance analysis, t-tests were performed; * p < 0.05, ** p < 0.01.

3. Materials and Methods

3.1. Plant Materials and Pathogen Cultures

Isatis indigotica and N. benthamiana were grown in nutrient rich soil after pre-germination under
controlled greenhouse conditions with 16/8 h light and dark intervals at 25 ± 3 ◦C. Bacillus subtilis
330-2 and Xanthomonas oryzae pv. oryzicola RH3 were maintained in the laboratory. B. subtilis WB800
was purchased from Takara Biomedical Technology (Dalian, China). Ralstonia solanacearum R21-5
was procured from the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural
University, Wuhan, Hubei, China. Xanthomonas oryzae pv. oryzae XG-25 was procured from the Hubei
Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural
University, Wuhan, China. Clavibacter michiganensis subsp. The YCKYBI was procured from the
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Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural
University, Wuhan, Hubei, China. All bacteria were maintained on Luria-Bertani (LB) media (tryptone,
10.0 g; yeast extract, 5.0 g; NaCl, 10.0 g per liter; pH 7.0). Clavibacter fangii 1.1999, purchased from the
China General Microbiological Culture Collection Center, Beijing, China, was maintained on 0210 R
agar media (tryptone, 10.0 g; yeast extract, 5.0 g; malt extract, 5.0 g; casamino acid, 5.0 g; beef extract,
2.0 g; glycerol, 2.0 g; Tween-80, 0.05 g; MgSO4·7H2O, 1.0 g; agar, 15.0 g, per liter; pH 7.2).

Phytophthora capsici (LT263), procured from the Key Laboratory of Crop Disease Monitoring and
Safety Control, Huazhong Agricultural University, Wuhan, Hubei, China, was maintained on V8 media
(V8 juice, 100 mL; CaCO3, 1 g; agar, 17 g per liter) at 24 ± 1 ◦C under dark conditions. Rhizoctonia
solani (AG1-IA) and B. cinerea (B05.10) were maintained on potato dextrose agar (PDA) plates (dextrose,
200 g; agar, 17 g per liter; pH 7.0) at 28 ± 1 ◦C and 20 ± 1 ◦C, respectively. Caenorhabditis elegans N2

was maintained on nematode growth medium (NGM; tryptone, 2.5 g; NaCl, 3 g; agar, 20 g per liter;
pH 7.5; after autoclaving, 1 mL of 1 M MgSO4, 1 mL of 1 M CaCl2, 25 mL of 1 M KPO4 buffer and 1 mL
of 5 mg/mL cholesterol were added and mixed well) at 24 ± 1 ◦C with E. coli OP50 as a food source.
Further details are displayed in Table S1.

3.2. Isatis indigotica cDNA Library Construction

Isatis indigotica leaves were inoculated with R. solani. Samples were collected at different time
intervals (6, 12, 24, 30, and 48 h), immediately frozen in liquid nitrogen, and saved at -80 ◦C. Total
RNA was extracted by the Trizol method [28]. Next, mRNA was purified from total RNA using the
PolyATtract® mRNA isolation system (Promega, Madison, WI, USA). The cDNA library was created
using the PrimeScript™ double-strand cDNA synthesis kit (Takara Biomedical Technology, Dalian,
China) with specific oligo dT primers (containing an Xba I cleavage site), followed by linkage to three
pairs of adaptors containing Nde I cleavage sites, as previously described [26]. Finally, cDNA products
were transformed into B. subtilis WB800 cells. Individual colonies were picked and incubated at 37 ◦C
overnight. Colony PCR was performed using pBE-S-F (5’-GTTATTTCGAGTCTCTACGG-3’) and
pBE-S-R (5’-TAACCAAGCCTATGCCTACA-3’) primers to confirm the cDNA library quality and then
saved at −80 ◦C.

3.3. Candidate Gene Screening and Confirmation

Initial screening and confirmation were performed as described in a previous study [25]. Briefly,
an overnight culture was plated onto fresh LB plates supplemented with kanamycin (10 mg/L) and
incubated at 37 ◦C to observe the phenotype. Strains showing cell lysis were selected for the next
experiments. Plasmids were extracted from selected strains and transformed into B. subtilis again to
reconfirm the gene function in cell lysis.

3.4. Scanning Electron Microscopy and Cytometric Analysis

Bacterial cell surface morphology was observed by SEM using previously described methods [29].
Briefly, B. subtilis as test indicator was grown in liquid LB supplemented with kanamycin (10 mg/L) and
incubated at 37 ◦C for 36 h. Afterwards, bacterial cells were collected by centrifugation at 2500× g for
3 min. Next, three consecutive washing steps were performed with 20 mmol/L phosphate buffer saline
(PBS; NaH2PO4·2H2O, 2.6 g; Na2HPO4·12H2O, 29 g; ddH2O 500 mL; pH 7.4). After washing, cells
were resuspended in 2.5% glutaraldehyde and fixed for 2 h, followed by dehydration via an ethanol
gradient, with 30% ethanol, 50% ethanol, 70% ethanol, 90% ethanol, and 100% ethanol. Dehydrated
samples were then dried for 20 min before freeze-drying. Finally, cell samples were lyophilized and
gold coated, and observed using a JEOL JSM-7001F scanning electron microscope (Toyama Prefecture,
JAPAN).

To observe cell death events, as measured by PI staining, different levels of cell membrane damage
of transgenic strains were analyzed on a FACSVerse machine (BD, Franklin Lake, NJ, USA) [30].
Confocal microscopy (Leica microsystems CMS GmbH TCS SP8; Leica, Germany) was also performed
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and cell samples were prepared as previously described [31]. Briefly, the B. subtilis strain was shaken
at 37 ◦C for 36 h. Bacterial cells were harvested by centrifugation at 1000× g for 10 min and three
consecutive washings were performed with 20 mM PBS buffer (pH 7.4), followed by resuspension
in the same buffer at 1 × 109 CFU/mL. Finally, the PI solution was diluted in the cell suspensions to
achieve a final concentration of 40 mg/L, and the cells were stained for 30 min at 4 ◦C in the dark. After
30 min, the cells were washed and resuspended in the same volume of PBS buffer, and data were
recorded and analyzed with Flowjo.7.6.1.Min (BD, Franklin Lake, NJ, USA).

3.5. Analysis of Plasma Membrane Fluidity

To monitor plasma membrane fluidity, the DPH fluorescent probe was prepared and dissolved
in tetrahydrofuran (THF) to a final concentration of 200 µM [32]. Then, Bacillus cells were collected
and washed three times with 20 mmol/L PBS buffer (Na2HPO4, 0.3%; NaH2PO4, 0.6%, NaCl, 0.2%;
(NH4)2SO4, 0.8%; pH 7.6). The final concentration of the cell pellets was set to OD600 0.6. An amount of
2 µM DPH was dispersed in PBS and kept for 30 min at room temperature in the dark and, thereafter,
the probe was removed by washing and resuspending in the same buffer. Fluorescence intensity was
measured at an excitation wavelength of 365 nm and an emission wavelength of 425 nm.

3.6. Measurement of Membrane Potential

To monitor the membrane electrical potential (∆Ψ) of engineered bacteria, a fluorescent probe
referred to as 3,3’-dipropylthiadicarbocyanine iodide (DiSC3(5); OR, USA) was used as previously
described, with some modifications [33]. For the measurement of electrical potential gradients across
the cytoplasmic membrane of integral cells, excitation wavelengths were set to 622 nm and emission
wavelengths were set to 670 nm. Cells were washed and resuspended in 20 mmol/L potassium HEPES
buffer (HEPES, 20 mM; NaCl, 153 mM; KCl, 5 mM; glucose, 5 mM; pH 7.4). DiSC3(5) was dispersed in
HEPES buffer at a final concentration of 5 µM, and after 3 min of incubation, cells were washed three
times with HEPES buffer, followed by fluorescence intensity measurement with a spectrofluorometer
(Shimadzu RF- 5301 PC, Kyoto, Japan).

3.7. Detection of Cell Membrane Integrity

To measure cell membrane integrity, we monitored nucleic acid outflow using an Eppendorf Bio
Photometer (Hamburg, Germany) [34]. Overnight grown bacteria were inoculated into 50 mL liquid
LB supplemented with kanamycin (10 mg/L) and shaken at 37 ◦C. Cell samples were filtrated with
0.22 µm filters to remove the bacteria completely. The absorbance of the supernatant was measured at
260 nm every 2 h.

3.8. Expression of Crude Proteins

Extracellular peptides were precipitated using the ammonium sulfate precipitation method with
slight modifications [35]. Bacillus subtilis was grown in 200 mL liquid LB supplemented with kanamycin
(10 mg/L) and incubated at 180 r/min, 37 ◦C for 72 h. Supernatants were collected by centrifugation at
10,000× g, 4 ◦C for 20 min. Extracellular peptides were precipitated by adding a saturated ammonium
sulfate solution to a final concentration of 50–70% and stirring continuously on ice for at least 20 min,
followed by storage at 4 ◦C for 12 h and then centrifugation to pellet the peptide. The precipitated
peptides were dissolved in PBS buffer (pH 7.0) at a concentration of 25 mM and dialyzed in the same
PBS buffer for 24 h at 4 ◦C. The insoluble debris were discarded by centrifugation using the same
conditions previously used.

3.9. Antimicrobial Activity and Thermal Stability Assays

Antibacterial activity assays were performed using the previously described disk diffusion
method [36]. Briefly, indicator bacteria (108 CFU/mL) were mixed with semisolid NA media and
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poured over previously prepared NA plates. Then, 5 mm diameter filter paper disks were placed on
the agar plates and 20 µL of secreted peptides (1000 mg/L) were added to each filter paper. Thereafter,
the Petri dishes were incubated at the different temperatures required for the different indicator bacteria
for 12 h. Antibacterial activities were confirmed by measuring the zones of inhibition. For thermal
stability tests, the peptides were heated at 50, 75, and 100 ◦C for 30 min before use.

Inhibition assays for B. cinerea was performed as described previously, with slight modifications [37].
Test peptides were prepared as above. Approximately 200 µL of peptides were mixed with 4 mL of
semisolid PDA media and poured onto previously prepared PDA plates to a final concentration of
128 mg/L. Then, the plates were seeded with 5 × 5 mm mycelial plugs taken from the periphery of
three-day-old colonies of B. cinerea (B05.10), followed by incubation at 20 ◦C. The B. subtilis WB800-e
strain was used as a control. Data were recorded at 48 hpi. Percent inhibition was calculated
according to the following equation: Percent inhibition (%) = [(diameter of control − diameter of
treatment)/(diameter of control − diameter of pathogen disk)] × 100%.

3.10. Generation of His-Tag Fusion Peptides

To purify the IiR515 and IiR915 peptides, His-tag fusion genes were constructed. To add restriction
sites at corresponding positions in the coding sequences of IiR515 and IiR915, specific primers were
designed (Table S3). Transformation steps were followed based on previously described methods [38].
After transformation, the phenotypes of the cells and their antimicrobial activities were assessed.

3.11. Purification of Extracellular Peptides

IiR515 and IiR915 were purified using nickel column affinity chromatography and their
antimicrobial activities were confirmed. The fermentation process was carried out as described
previously [35]. Briefly, supernatants were collected by centrifugation at 10,000× g and 4 ◦C for 20 min.
Thereafter, target peptides were captured using a nickel column at 4 ◦C, eluted with 600 nm imidazole,
and then concentrated with a 3.5 kDa ultrafiltration tube.

3.12. Tris-Tricine SDS-PAGE and Western Blotting

The purified peptide samples were mixed with 2X Tricine-SDS-PAGE Loading Buffer (CWBIO)
at a 1:1 proportion, heated at 100 ◦C for 3–5 min, and centrifuged at 13,000× g for 2 min to remove
precipitated impurities. Peptides were separated on a 16.5% gel and electrophoresed by sodium
dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) with a Tris-Tricine buffer system as
described previously [39]. Then, immunoblots were performed with mouse anti-His-tag monoclonal
antibody, goat anti-mouse IgG (H+L), HRP, and ECL detection reagents. The molecular weights were
predicted by comparing with color pre-dyed ultra-low peptide molecular weight marker (Well Biotech,
Chungju-si, Korea) [40].

3.13. Resistance Determination Test

Resistance tests were performed with detached N. benthamiana leaves using a previous method [41].
Uniformly sized leaves were collected and soaked in pure peptides (100 µg/mL), which were pretreated
with 0.05% Silwet L-77, for 3 sec. Bacillus subtilis WB800-e was used as a control. Then, the leaves were
inoculated with 5 × 5 mm disks of P. capsici mycelium and incubated at 25 ± 3 ◦C with high humidity
in the dark. Data were recorded at 48 hpi to calculate the percent inhibition according to the following
equation: [(control lesion diameter − treatment lesion diameter)/(control lesion diameter − pathogen
disk diameter)] × 100%.

The IiR515 and IiR915 genes were ligated into the pTRV2Ex vector and transformed into
Agrobacterium tumefaciens EHA105; they were named TRV2-IiR515 and TRV2-IiR915, respectively.
Leaves from uniformly sized N. benthamiana plants were selected for infiltration (one side of the leaf)
with TRV2-IiR515 and TRV2-IiR915, followed by incubation at 25 ± 3 ◦C with high humidity. The pTRV2

empty vector was used as a control. At 48 hpi, infiltrated N. benthamiana leaves were collected and
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inoculated with B. cinerea (other side of the leaf). Data and images were recorded at 48 hpi. Percent
inhibition was calculated according to the same equation described above.

3.14. Anti-Soil-Borne Bacteria Assay

Anti-soil-borne bacteria assays were performed in simulated environments. Sterilized pots were
filled with approximately 100 g of sterilized soil. Then, a 15 mL amount of fermentation broth was
evenly mixed with the prepared soil. Bacillus subtilis WB800-e was used as a control. After 48 h,
soil-borne pathogens were prepared at the same concentration (108 to 109 CFU/mL), and pretreated
soil was inoculated with a total of 15 mL of pathogen culture. Soil samples were collected at different
time intervals (0, 24, 48, and 72 h) and 10 g of soil was mixed with 90 mL sterilized double distilled
water. The mixture was shaken at 180 r/min, 28 ◦C for 90 min; this was the stock solution for gradient
dilutions to obtain an optimum concentration (10−5 dilution). A total of 100 µL of each dilution was
taken and spread onto LB plates, followed by incubation at 28 ◦C. The data were recorded at 24 hpi.

3.15. Hemolytic Activity of IiR515 and IiR915 Peptides

Hemolytic activity of the IiR515 and IiR915 peptides was assessed using sheep erythrocytes
according to previously described methods [42]. Briefly, fresh sheep blood was centrifuged at 600× g
for 10 min to collect the erythrocytes, then washed three times with PBS buffer (0.2 M, pH 7.2) and
resuspended in same solution (1% v/v). Different concentrations of pure peptides were diluted with
precooled PBS buffer, mixed with isopycnic erythrocyte suspensions in a 96-well cell culture plate and
incubated at 37 ◦C for 1 h. Thereafter, the cell culture plates were centrifuged at 600× g for 10 min
and 70 µL of the supernatants from each well were collected into a new 96-well cell culture plate.
Data were recorded at 540 nm using a microplate spectrophotometer (xMarK BIO RAD, California
USA). An erythrocyte suspension treated with 1% Triton X-100 was used as a positive control, whereas
a suspension incubated with only PBS buffer was used as a negative control. The hemolytic activity
percentage was calculated by the following equation: hemolysis (%) = [(OD540 peptides − OD540

buffer)/(OD540 Triton X-100 − OD540 buffer)] × 100%.

4. Discussion

There has been increasing interest in the isolation of AMPs in the drug-screening research field
recently. In previous studies, scientists have successfully used cDNA libraries for the investigation
of protein–protein interactions [43] and the identification of antimicrobial peptides from different
organisms [44]. Bacillus subtilis as a host cell facilitates soluble and secretory protein expression, and it
is particularly effective for studying the activities of peptides and proteins [45].

For the isolation of novel AMPs, we established a new, sensitive, and high-throughput strategy
based on the damaging or killing effects of peptides against B. subtilis host cells [25]. A drawback
of this strategy is that strong AMPs will kill B. subtilis cells too rapidly to detect the clones, and
therefore, only AMPs with weak killing effects are preferred. However, B. subtilis has a good secretory
system, which may reduce the toxicity of strong AMPs. Additionally, during the first few hours (12 h),
the concentration of strong AMPs is possibly not high enough to kill the cells, making the selection of
strong AMPs feasible. In our study, part of the B. subtilis system selected AMPs that did not actually
show a strong effect on B. subtilis cells; however, the selected AMPs did show strong antimicrobial
activity against other pathogens. Although the selection of AMPs with weak killing effects is preferred,
the B. subtilis screening system has the ability to select for cell membrane-interrupting antimicrobial
peptides that inhibit a broad range of pathogens. This strategy was used for the screening of AMPs
from the Chinese herbal plant, I. indigotica, which was previously reported for its high antimicrobial
activities [46] and other health-related benefits [47]. In this study, we identified 45 different candidates
from I. indigotica with the potential to induce autolysis of Bacillus cells. Out of the 45 candidates, two
different peptides, IiR515 and IiR915, that exhibited strong antimicrobial activities were selected for
further study. These two peptides were considered to be novel because they had no homology in
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NCBI BLAST (National Center for Biotechnology Information and Basic Local Alignment Search Tool)
searches or the antimicrobial peptide database (APD) (Figure S4).

Antimicrobial peptides interact with pathogens and enhance their membrane permeability as
a killing mechanism [48]; destroying the cell membrane is an efficient way to kill microorganisms [49].
In our study, SEM observations and confocal microscopy images showed cytomembrane damage,
including shrinkage, distortion, pore formation, and ruptures. Cytometric analysis of IiR515- and
IiR915-transformed Bacillus cells showed the same results and were supported by previous studies [50].
Propidium iodide can penetrate broken cell membranes and cause the majority of cells to emit red
fluorescence. Cytomembrane breakage always accompanies intracellular component outflow, such as
nucleic acids, which can be detected in the extracellular environment. Cell membrane damages also
correlate with membrane fluidity and changes in electrical potential, as our results show. We treated
the genomes of different pathogens with these peptides, but they did not cause DNA degradation.
Based on our findings, we assume the possible mechanism of the IiR515 and IiR915 peptides was to
interrupt or rupture the cell membrane.

Antimicrobial activity tests revealed that the products of our cDNA library contain many
antimicrobial peptides, which can directly interact with pathogens. Bacillus subtilis clones exhibiting
antimicrobial activities were identified on the basis of the proteins that accumulated inside the cells and
caused cell autolysis. Correct guidance by signal peptides can ensure successful secretion of different
proteins [51]. Bacillus subtilis 168 is the most popular host for the expression of heterogenous proteins,
and it is a biocontrol agent [52] that can secrete many extracellular proteases to degrade extracellular
proteins. In contrast, the strain used in this study was B. subtilis WB800, which has mutations in
eight key extracellular proteases to reduce the degradation of extracellular proteins [53]. There are
several methods that exist for cDNA library construction, which have a significant influence on the
experimental results. Many of the methods require PCR amplification to increase the abundance of
cDNAs. However, there is a major drawback with these methods, in that a large number of repeated
genes are selected in subsequent steps; however, in our present method, PCR amplification is not
required to increase the abundance of the cDNA library.

Antimicrobial peptides have been reported to have antimicrobial activities against a diverse
range of microorganisms. Both the IiR515 and IiR915 peptides were consistent with previously
reported AMPs because of their significant inhibitory effects against Gram-positive and Gram-negative
bacteria. Minimum inhibitory concentration for recombinant pBD142 were 100 µg/mL and 80 µg/mL
against Escherichia coli and Staphylococcus aureus, respectively. Similarly, the MIC for AMP CAP-1 from
Pseudomonas sp. ranged from 30 to 550 µg/mL against a wide range of pathogens [36,54]. Minimum
inhibitory concentration for our peptides revealed that they were similar to the previously reported
AMPs. However, on the other hand, the inhibition activity of our peptides was not observed as
strong as for vancomycin [55]. Phytophthora capsici is a pathogenic oomycete which is hemi-biotrophic
and has a broad range of hosts. It can infect most of the Cucurbitaceae and Solanaceae crops [56].
Disks containing P. capsici were used to inoculate N. benthamiana leaves for pathogenicity analysis
by observation of necrotic lesions [57]. Our results demonstrated that IiR515 and IiR915 enhanced
the resistance of N. benthamiana towards P. capsici. These two peptides were then ligated into the
pTRV2Ex (viral vector) vector, and we observed that they had the potential to improve the resistance
of N. benthamiana towards B. cinerea. Previous studies have shown that the use of viral vectors can
produce a huge quantity of AMPs in plant systems to efficiently reduce pathogen attack [58], as was
observed in our study.

Antimicrobial peptides exhibit damaging effects against some organisms, but their safety in
animals and humans is still an open question [59]. As previously reported, some AMPs have shown
low hemolytic activity against mammalian blood cells [1]. In our study, low hemolytic activities were
observed at extremely high peptide concentrations. Additionally, different bioassays using C. elegans
were performed to assess the toxicity of IiR515 and IiR915 against nematodes [60]. Although the IiR515
and IiR915 peptides have effects on the food tropism of C. elegans, these two peptides did not show
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any killing effect on C. elegans. Furthermore, there were no significant differences in the number of
offspring or the body length (Supplementary toxicity assay and Figure S5). Therefore, we speculated
that these two peptides obtained from I. indigotica are relatively safe for animal cells and may also
be safe for humans. These results indicate the possibility for the application of AMPs to animals and
humans in the future.

From the present research, we conclude that the peptides derived from I. indigotica are novel
in their functions against different pathogens. These peptides have low molecular weight, a broad
antibacterial spectrum, and a good stability against a wide range of temperatures. Furthermore, these
peptides also have the ability to destroy the bacterial cell membrane and cell wall structures. On the
basis of these distinctive features, future research can be designed for the further characterization of
these peptides, followed by the generation of resistance in different crops, as they have already been
revealed as potential candidates against pathogens. We hope that, in the future, these peptides can be
used as potential raw materials for drug discovery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/1/30/s1,
Figure S1: Quality assessment of total RNA, mRNA, and cDNA, Figure S2: Agarose gel to show cDNA inserts,
Figure S3: Antibacterial activity of precipitated peptides against different bacteria performed using an agar
diffusion assay, Figure S4: Sequence alignment analysis of IiR515 and IiR915, Figure S5: Peptide secretion assay
of IiR515- and IiR915-transformed B. subtilis strains against C. elegans; Table S1: List of strains and vectors used
in this study, Table S2: Inhibition of candidate peptides against different microorganisms, Table S3: Primers
used to construct His6-IiR915 peptide, Table S4: MICs of IiR515 and IiR915 against different microorganisms,
Table S5: Hemolytic activity of IiR515 and IiR915 against sheep blood cells. Supplementary minimum inhibitory
concentration (MIC) assay and toxicity assay.

Author Contributions: Conceptualization, J.W., G.W. and W.D.; methodology, J.W., H.M.K.A., J.L. and Y.Y.;
validation, J.W., H.M.K.A., J.L., Y.Y. and Y.L.; formal analysis, J.W., G.W. and W.D.; investigation, J.W., H.M.K.A.,
J.L., Y.Y. and Y.L.; writing—original draft preparation, J.W., H.M.K.A. and W.D.; writing—review and editing,
J.W., H.M.K.A., J.L., Y.Y., Y.L., G.W. and W.D.; supervision, G.W. and W.D.; project administration, G.W. and W.D.;
funding acquisition, Y.Y. and W.D. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: This work was supported by the National Major Project for Transgenic Organism Breeding
(2016ZX08003-001) and the Fundamental Research Funds for the Central Public Welfare Research Institutes
(ZZ10-008).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, L.; Wang, Y.; Wang, M.; Tian, Y.; Kang, W.; Liu, H.; Wang, H.; Dou, J.; Zhou, C. Effective antimicrobial
activity of cbf-14, derived from a cathelin-like domain, against penicillin-resistant bacteria. Biomaterials 2016,
87, 32–45. [CrossRef]

2. Gill, E.E.; Franco, O.L.; Hancock, R.E.W. Antibiotic adjuvants: Diverse strategies for controlling drug-resistant
pathogens. Chem. Biol. Drug Des. 2015, 85, 56–78. [CrossRef] [PubMed]

3. Dawson, R.M.; Liu, C.-Q. Properties and applications of antimicrobial peptides in biodefense against
biological warfare threat agents. Crit. Rev. Microbiol. 2008, 34, 89–107. [CrossRef] [PubMed]

4. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. MMBR 2010,
74, 417–433. [CrossRef] [PubMed]

5. Ganewatta, M.S.; Tang, C. Controlling macromolecular structures towards effective antimicrobial. Polymer
2015, 63, A1–A29. [CrossRef]

6. Akaddar, A.; Doderer-Lang, C.; Marzahn, M.R.; Delalande, F.; Mousli, M.; Helle, K.; Van Dorsselaer, A.;
Aunis, D.; Dunn, B.M.; Metz-Boutigue, M.H.; et al. Catestatin, an endogenous chromogranin a-derived
peptide, inhibits in vitro growth of Plasmodium falciparum. Cell. Mol. Life Sci. CMLS 2010, 67, 1005–1015.
[CrossRef]

7. Liang, Q.; Chalamaiah, M.; Ren, X.; Ma, H.; Wu, J. Identification of new anti-inflammatory peptides from
zein hydrolysate after simulated gastrointestinal digestion and transport in caco-2 cells. J. Agric. Food Chem.
2018, 66, 1114–1120. [CrossRef]

http://www.mdpi.com/2218-273X/10/1/30/s1
http://dx.doi.org/10.1016/j.biomaterials.2016.02.011
http://dx.doi.org/10.1111/cbdd.12478
http://www.ncbi.nlm.nih.gov/pubmed/25393203
http://dx.doi.org/10.1080/10408410802143808
http://www.ncbi.nlm.nih.gov/pubmed/18568863
http://dx.doi.org/10.1128/MMBR.00016-10
http://www.ncbi.nlm.nih.gov/pubmed/20805405
http://dx.doi.org/10.1016/j.polymer.2015.03.007
http://dx.doi.org/10.1007/s00018-009-0235-8
http://dx.doi.org/10.1021/acs.jafc.7b04562


Biomolecules 2020, 10, 30 15 of 17

8. Seel, W.; Flegler, A.; Zunabovic-Pichler, M.; Lipski, A. Increased isoprenoid quinone concentration modulates
membrane fluidity in Listeria monocytogenes at low growth temperatures. J. Bacteriol. 2018, 200, 1–14.
[CrossRef]

9. Schroeder, B.O.; Wu, Z.; Nuding, S.; Groscurth, S.; Marcinowski, M.; Beisner, J.; Buchner, J.; Schaller, M.;
Stange, E.F.; Wehkamp, J. Reduction of disulphide bonds unmasks potent antimicrobial activity of human
beta-defensin 1. Nature 2011, 469, 419–423. [CrossRef]

10. Ramos, R.; Moreira, S.; Rodrigues, A.; Gama, M.; Domingues, L. Recombinant expression and purification of
the antimicrobial peptide magainin-2. Biotechnol. Prog. 2013, 29, 17–22. [CrossRef]

11. Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaberle, T.F.;
Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015,
517, 455–459. [CrossRef]

12. Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.; Franco, O.L. Understanding bacterial resistance to
antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta 2015, 1848, 3078–3088.
[CrossRef]

13. Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6, 1543–1575. [CrossRef]
14. Oumer, O.J.; Abate, D. Characterization of pectinase from Bacillus subtilis strain btk 27 and its potential

application in removal of mucilage from coffee beans. Enzym. Res. 2017, 2017, 1–6. [CrossRef]
15. Kakeshita, H.; Kageyama, Y.; Endo, K.; Tohata, M.; Ara, K.; Ozaki, K.; Nakamura, K. Secretion of

biologically-active human interferon-beta by Bacillus subtilis. Biotechnol. Lett. 2011, 33, 1847–1852. [CrossRef]
16. Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production.

Can. J. Microbiol. 2004, 50, 1–17. [CrossRef]
17. Shah, K.; Bhatt, S. Purification and characterization of lipase from Bacillus subtilis pa2. J. Biochem. Tech. 2011,

3, 292–295.
18. Oyeleke, S.B.; Oyewole, O.A.; Egwim, E.C. Production of protease and amylase from Bacillus subtilis and

Aspergillus niger using Parkia biglobossa (africa locust beans) as substrate in solid state fermentation. Adv. Life
Sci. 2012, 1, 49–53.

19. Li, J.; Zhou, B.; Li, C.; Chen, Q.; Wang, Y.; Li, Z.; Chen, T.; Yang, C.; Jiang, Z.; Zhong, N.; et al.
Lariciresinol-4-o-beta-d-glucopyranoside from the root of Isatis indigotica inhibits influenza a virus-induced
pro-inflammatory response. J. Ethnopharmacol. 2015, 174, 379–386. [CrossRef]

20. Nguyen, T.K.; Jamali, A.; Grand, E.; Morreel, K.; Marcelo, P.; Gontier, E.; Dauwe, R. Phenylpropanoid
profiling reveals a class of hydroxycinnamoyl glucaric acid conjugates in Isatis tinctoria leaves. Phytochemistry
2017, 144, 127–140. [CrossRef]

21. Lin, C.-W.; Tsai, F.-J.; Tsai, C.-H.; Lai, C.-C.; Wan, L.; Ho, T.-Y.; Hsieh, C.-C.; Chao, P.-D.L. Anti-sars coronavirus
3c-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir. Res. 2005, 68,
36–42. [CrossRef]

22. Ahmad, I.; Fatima, I. Butyrylcholinesterase, lipoxygenase inhibiting and antifungal alkaloids from Isatis
tinctoria. J. Enzym. Inhib. Med. Chem. 2008, 23, 313–316. [CrossRef]

23. Camo, C.; Torne, M.; Besalu, E.; Roses, C.; Cirac, A.D.; Moiset, G.; Badosa, E.; Bardaji, E.; Montesinos, E.;
Planas, M.; et al. Tryptophan-containing cyclic decapeptides with activity against plant pathogenic bacteria.
Molecules 2017, 22, 1817. [CrossRef]

24. Wang, Z.; Wang, Y.; Zheng, L.; Yang, X.; Liu, H.; Guo, J. Isolation and characterization of an antifungal
protein from Bacillus licheniformis hs10. Biochem. Biophys. Res. Commun. 2014, 454, 48–52. [CrossRef]

25. Kong, X.; Yang, M.; Abbas, H.M.K.; Wu, J.; Li, M.; Dong, W. Antimicrobial genes from Allium sativum and
Pinellia ternata revealed by a Bacillus subtilis expression system. Sci. Rep. 2018, 8, 14514. [CrossRef]

26. Abbas, H.M.K.; Xiang, J.; Ahmad, Z.; Wang, L.; Dong, W. Enhanced Nicotiana benthamiana immune responses
caused by heterologous plant genes from Pinellia ternata. BMC Plant Biol. 2018, 18, 357. [CrossRef]

27. Niu, X.; J.Guiltinan, M. DNA binding specificity of the wheat bzip protein embp-1. Nucleic Acids Res. 1994,
22, 4969–4978. [CrossRef]

28. Davis, E.G.; Sang, Y.; Rush, B.; Zhang, G.; Blecha, F. Molecular cloning and characterization of equine nk-lysin.
Vet. Immunol. Immunopathol. 2005, 105, 163–169. [CrossRef]

29. Zheng, X.; Wang, X.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Zong, L.; Wang, J. Mode of action of plectasin-derived
peptides against gas gangrene-associated Clostridium perfringens type A. PLoS ONE 2017, 12, e0185215.
[CrossRef]

http://dx.doi.org/10.1128/JB.00148-18
http://dx.doi.org/10.1038/nature09674
http://dx.doi.org/10.1002/btpr.1650
http://dx.doi.org/10.1038/nature14098
http://dx.doi.org/10.1016/j.bbamem.2015.02.017
http://dx.doi.org/10.3390/ph6121543
http://dx.doi.org/10.1155/2017/7686904
http://dx.doi.org/10.1007/s10529-011-0636-2
http://dx.doi.org/10.1139/w03-076
http://dx.doi.org/10.1016/j.jep.2015.08.037
http://dx.doi.org/10.1016/j.phytochem.2017.09.007
http://dx.doi.org/10.1016/j.antiviral.2005.07.002
http://dx.doi.org/10.1080/14756360701536455
http://dx.doi.org/10.3390/molecules22111817
http://dx.doi.org/10.1016/j.bbrc.2014.10.031
http://dx.doi.org/10.1038/s41598-018-32852-x
http://dx.doi.org/10.1186/s12870-018-1598-5
http://dx.doi.org/10.1093/nar/22.23.4969
http://dx.doi.org/10.1016/j.vetimm.2004.12.007
http://dx.doi.org/10.1371/journal.pone.0185215


Biomolecules 2020, 10, 30 16 of 17

30. Lee, H.; Hwang, J.S.; Lee, J.; Kim, J.I.; Lee, D.G. Scolopendin 2, a cationic antimicrobial peptide from centipede,
and its membrane-active mechanism. Biochim. Biophys. Acta 2015, 1848, 634–642. [CrossRef]

31. Teng, D.; Wang, X.; Xi, D.; Mao, R.; Zhang, Y.; Guan, Q.; Zhang, J.; Wang, J. A dual mechanism involved in
membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against
Salmonella enteritidis CVCC3377. Appl. Microbiol. Biotechnol. 2014, 98, 8313–8325. [CrossRef]

32. Jacquet, T.; Cailliez-Grimal, C.; Francius, G.; Borges, F.; Imran, M.; Duval, J.F.; Revol-Junelles, A.M.
Antibacterial activity of class IIa bacteriocin Cbn BM1 depends on the physiological state of the target
bacteria. Res. Microbiol. 2012, 163, 323–331. [CrossRef]

33. Castellano, P.; Raya, R.; Vignolo, G. Mode of action of lactocin 705, a two-component bacteriocin from
Lactobacillus casei CRL705. Int. J. Food Microbiol. 2003, 85, 35–43. [CrossRef]

34. Patra, P.; Mitra, S.; Goswami, A.; Roy, S.; Pradhan, S.; Sarkar, S.; Debnath, N. Damage of lipopolysaccharides
in outer cell membrane and production of ros-mediated stress within bacteria makes nano zinc oxide
a bactericidal agent. Appl. Nanosci. 2015, 5, 857–866. [CrossRef]

35. Wang, H.; Yang, X.; Guo, L.; Zeng, H.; Qiu, D. Pebl1, a novel protein elicitor from Brevibacillus laterosporus
strain a60, activates defense responses and systemic resistance in Nicotiana benthamiana. Appl. Environ.
Microbiol. 2015, 81, 2706–2716. [CrossRef]

36. Yin, M.; Liu, D.; Xu, F.; Xiao, L.; Wang, Q.; Wang, B.; Chang, Y.; Zheng, J.; Tao, X.; Liu, G.; et al. A specific
antimicrobial protein CAP-1 from Pseudomonas sp. isolated from the jellyfish Cyanea capillata. Int. J.
Biol. Macromol. 2016, 82, 488–496. [CrossRef]

37. Zhou, F.; Zhang, X.-L.; Li, J.-L.; Zhu, F.-X. Dimethachlon resistance in Sclerotinia sclerotiorum in china. Plant Dis.
2014, 98, 1221–1226. [CrossRef]

38. Anagnostopoulos, C.; Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 1961, 81,
741–746.

39. Wen, L.S.; Philip, K.; Ajam, N. Purification, characterization and mode of action of plantaricin K25 produced
by Lactobacillus plantarum. Food Control 2016, 60, 430–439. [CrossRef]

40. Wang, S.; Wang, Q.; Zeng, X.; Ye, Q.; Huang, S.; Yu, H.; Yang, T.; Qiao, S. Use of the antimicrobial peptide
sublancin with combined antibacterial and immunomodulatory activities to protect against methicillin-resistant
Staphylococcus aureus infection in mice. J. Agric. Food Chem. 2017, 65, 8595–8605. [CrossRef]

41. Xu, L.; Xiang, M.; White, D.; Chen, W. Ph dependency of sclerotial development and pathogenicity revealed
by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environ. Microbiol. 2015, 17,
2896–2909. [CrossRef]

42. Mohanram, H.; Bhattacharjya, S. ’Lollipop’-shaped helical structure of a hybrid antimicrobial peptide
of temporin b-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity.
Biochim. Biophys. Acta 2016, 1860, 1362–1372. [CrossRef]

43. Tang, X.; Shi, J.; Dong, W. A yeast library-hybrid assay to screen maize-Rhizoctonia transcription factors and
protein-protein interactions in one experimental pipeline. Agri Gene 2016, 1, 15–22. [CrossRef]

44. Kumaresan, V.; Bhatt, P.; Ganesh, M.R.; Harikrishnan, R.; Arasu, M.; Al-Dhabi, N.A.; Pasupuleti, M.;
Marimuthu, K.; Arockiaraj, J. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts
the membrane of Salmonella enterica. Mol. Immunol. 2015, 68, 421–433. [CrossRef]

45. Westers, L.; Westers, H.; Quax, W.J. Bacillus subtilis as cell factory for pharmaceutical proteins:
A biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 2004, 1694, 299–310.
[CrossRef]

46. Seifert, K.; Unger, W. Insecticidal and fungicidal compounds from Isatis Tinctoria. Z. Nat. 1994, 49c, 44–48.
[CrossRef]

47. Xiao, P.; Huang, H.; Chen, J.; Li, X. In vitro antioxidant and anti-inflammatory activities of Radix isatidis extract
and bioaccessibility of six bioactive compounds after simulated gastro-intestinal digestion. J. Ethnopharmacol.
2014, 157, 55–61. [CrossRef]

48. Hao, G.; Shi, Y.-H.; Tang, Y.-L.; Le, G.-W. The intracellular mechanism of action on Escherichia coli of bf2-a/c,
two analogues of the antimicrobial peptide buforin 2. J. Microbiol. 2013, 51, 200–206. [CrossRef]

49. Haversen, L.; Kondori, N.; Baltzer, L.; Hanson, L.A.; Dolphin, G.T.; Duner, K.; Mattsby-Baltzer, I.
Structure-microbicidal activity relationship of synthetic fragments derived from the antibacterial alpha-helix
of human lactoferrin. Antimicrob. Agents Chemother. 2010, 54, 418–425. [CrossRef]

http://dx.doi.org/10.1016/j.bbamem.2014.11.016
http://dx.doi.org/10.1007/s00253-014-5898-x
http://dx.doi.org/10.1016/j.resmic.2012.04.001
http://dx.doi.org/10.1016/S0168-1605(02)00479-8
http://dx.doi.org/10.1007/s13204-014-0389-z
http://dx.doi.org/10.1128/AEM.03586-14
http://dx.doi.org/10.1016/j.ijbiomac.2015.10.056
http://dx.doi.org/10.1094/PDIS-10-13-1072-RE
http://dx.doi.org/10.1016/j.foodcont.2015.08.010
http://dx.doi.org/10.1021/acs.jafc.7b02592
http://dx.doi.org/10.1111/1462-2920.12818
http://dx.doi.org/10.1016/j.bbagen.2016.03.025
http://dx.doi.org/10.1016/j.aggene.2016.05.002
http://dx.doi.org/10.1016/j.molimm.2015.10.001
http://dx.doi.org/10.1016/j.bbamcr.2004.02.011
http://dx.doi.org/10.1515/znc-1994-1-208
http://dx.doi.org/10.1016/j.jep.2014.09.005
http://dx.doi.org/10.1007/s12275-013-2441-1
http://dx.doi.org/10.1128/AAC.00908-09


Biomolecules 2020, 10, 30 17 of 17

50. Park, Y.; Kim, H.J.; Hahm, K.S. Antibacterial synergism of novel antibiotic peptides with chloramphenicol.
Biochem. Biophys. Res. Commun. 2004, 321, 109–115. [CrossRef]

51. Ling Lin, F.; Zi Rong, X.; Wei Fen, L.; Jiang Bing, S.; Ping, L.; Chun Xia, H. Protein secretion pathways in
Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 2007, 25,
1–12. [CrossRef]

52. Barbe, V.; Cruveiller, S.; Kunst, F.; Lenoble, P.; Meurice, G.; Sekowska, A.; Vallenet, D.; Wang, T.; Moszer, I.;
Medigue, C.; et al. From a consortium sequence to a unified sequence: The Bacillus subtilis 168 reference
genome a decade later. Microbiology 2009, 155, 1758–1775. [CrossRef]

53. Wu, S.C.; Yeung, J.C.; Duan, Y.; Ye, R.; Szarka, S.J.; Habibi, H.R.; Wong, S.L. Functional production and
characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: Effects of molecular
chaperones and a wall-bound protease on antibody fragment production. Appl. Environ. Microbiol. 2002, 68,
3261–3269. [CrossRef]

54. Li, C.L.; Xu, T.T.; Chen, R.B.; Huang, X.X.; Zhao, Y.C.; Bao, Y.Y.; Zhao, W.D.; Zheng, Z.Y. Cloning, expression
and characterization of antimicrobial porcine beta defensin 1 in Escherichia coli. Protein Exp. Purif. 2013, 88,
47–53. [CrossRef]

55. Musta, A.C.; Riederer, K.; Shemes, S.; Chase, P.; Jose, J.; Johnson, L.B.; Khatib, R. Vancomycin MIC plus
heteroresistance and outcome of methicillin-resistant Staphylococcus aureus bacteremia: Trends over 11 Years.
J. Clin. Microbiol. 2009, 47, 1640–1644. [CrossRef]

56. Lamour, K.H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici.
Mol. Plant Pathol. 2012, 13, 329–337. [CrossRef]

57. Lai, G.; Fu, P.; Liu, Y.; Xiang, J.; Lu, J. Molecular characterization and overexpression of VpRPW8s from Vitis
pseudoreticulata enhances resistance to Phytophthora capsici in Nicotiana benthamiana. Int. J. Mol. Sci. 2018, 19,
839. [CrossRef]

58. Zeitler, B.; Meyer, H.; Bernhard, A.; Sattler, M.; Lindermayr, C. Production of a de-novo designed antimicrobial
peptide in Nicotiana benthamiana. Plant Mol. Biol. 2013, 81, 259–272. [CrossRef]

59. Rammelkamp, C.H.; Weinstein, L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J. Infect. Dis. 1942,
71, 166–173. [CrossRef]

60. Ali, M.; Sun, Y.; Xie, L.; Yu, H.; Bashir, A.; Li, L. The pathogenicity of Pseudomonas syringae mb03 against
Caenorhabditis elegans and the transcriptional response of nematicidal genes upon different nutritional
conditions. Front. Microbiol. 2016, 7, 1–12. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bbrc.2004.06.113
http://dx.doi.org/10.1016/j.biotechadv.2006.08.002
http://dx.doi.org/10.1099/mic.0.027839-0
http://dx.doi.org/10.1128/AEM.68.7.3261-3269.2002
http://dx.doi.org/10.1016/j.pep.2012.11.015
http://dx.doi.org/10.1128/JCM.02135-08
http://dx.doi.org/10.1111/j.1364-3703.2011.00754.x
http://dx.doi.org/10.3390/ijms19030839
http://dx.doi.org/10.1007/s11103-012-9996-9
http://dx.doi.org/10.1093/infdis/71.2.166
http://dx.doi.org/10.3389/fmicb.2016.00805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Candidate Genes from an Isatis indigotica cDNA Library Exhibited Antimicrobial Potential 
	Candidate Antimicrobial Peptides Destroyed the Cell Membrane of B. subtilis 
	Candidate Antimicrobialpeptides Altered the Fluidity and Electrical Potential of the Bacillus subtilis Cytoplasmic Membrane 
	The Detection of DNA/RNA in Shaking Media Indicated Cell Membrane Breakage 
	Extracellular Peptides of IiR515 and IiR915 Exhibited Antimicrobial Activities 
	Western Blots Revealed the Expression and Size of the IiR515 and IiR915 Peptides 
	IiR515 and IiR915 Prevented Phytophthora capsici and Botrytis cinerea Infection on Detached Leaves of Nicotiana benthamiana 
	IiR515- and IiR915-Transformed Bacillus subtilis Inhibited the Growth of Soil-Borne Pathogens 
	IiR515 and IiR915 Peptides Showed No Significant Hemolytic Activity 

	Materials and Methods 
	Plant Materials and Pathogen Cultures 
	Isatis indigotica cDNA Library Construction 
	Candidate Gene Screening and Confirmation 
	Scanning Electron Microscopy and Cytometric Analysis 
	Analysis of Plasma Membrane Fluidity 
	Measurement of Membrane Potential 
	Detection of Cell Membrane Integrity 
	Expression of Crude Proteins 
	Antimicrobial Activity and Thermal Stability Assays 
	Generation of His-Tag Fusion Peptides 
	Purification of Extracellular Peptides 
	Tris-Tricine SDS-PAGE and Western Blotting 
	Resistance Determination Test 
	Anti-Soil-Borne Bacteria Assay 
	Hemolytic Activity of IiR515 and IiR915 Peptides 

	Discussion 
	References

