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Abstract: A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the
presence of salinity in order to identify genes required for the expression of salinity tolerance.
A highly nontolerant selection proved to harbor a mutation in FLN2, a gene which encodes
fructokinase-like protein2. Exposure of wild-type rice to salinity up-regulated FLN2, while a
CRISPR/Cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose
1,5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated
by a number of genes encoding components of sucrose synthesis were lower in the knockout line than
in wild-type plants’ leaves, while the sucrose contents of the leaf and root were, respectively, markedly
increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout
plants was confirmed by the observation that several genes involved in carbon transport were
down-regulated in both the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase,
and neutral invertase activity were distinctly lower in the knockout plants’ roots than in those of
wild-type plants, particularly when the plants were exposed to salinity stress. The compromised
salinity tolerance exhibited by the FLN2 knockout plants was likely a consequence of an inadequate
supply of the assimilate required to support growth, a problem which was rectifiable by providing
an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over
sugar metabolism, is important in the context of seedling growth and the rice plant’s response to
salinity stress.
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1. Introduction

Soil salinity represents a leading constraint over the growth and yield of most crop species [1].
Drought and salinity stress both induce tissue dehydration, but a prolonged exposure to salinity
additionally imposes hyperionic and hyperosmotic stress [2]. Some plants are able to prevent the
entry of toxic ions and/or to restrict their accumulation in the cytoplasm [3]; others resort to osmotic
adjustment by accumulating a variety of metabolites, including sugar, in an attempt to maintain their
hydration status [4]. Sugar, synthesized by plants through their photosynthetic activity and used as an
energy source to support growth and development [5], can accumulate to a relatively high level in
the plant’s vacuoles. In bread wheat plants exposed to either drought or salinity stress, the vacuolar
content of glucose, fructose, sucrose, and fructan has been shown to be greater in salinity-tolerant
varieties than in sensitive ones [6]. In Populus euphratica plants challenged by salinity, the soluble sugar
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content of young leaves increases, while that in mature leaves decreases [7]. Maize plants able to form
mycorrhizal associations appear to be more tolerant of soil salinity than nonassociators, because they
are able to maintain a higher tissue level of soluble sugar [8].

Plant SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters) participate not
only in the loading of sucrose into the phloem, but also in the accumulation of soluble sugars in
sink organs [9]. The Arabidopsis thaliana genome harbors 17 genes encoding a SWEET, categorized
into four phylogenetic clades [10], while plant SUTs have been classified into five major clades [11].
Members of the SUT1 and SUT3 clades are responsible for phloem loading or for sucrose downloading
into sink organs [12], while SUT2 members function not only as sucrose transporters but also as
low-affinity sugar sensors [13]. Some members of the SUT4 clade, for example, A. thaliana AtSUT4,
barley HvSUT2, rice SUT2, bread wheat TaSUT2, Lotus japonicus LjSUT4, and poplar (Populus tremula)
PtaSUT4, localize to the vacuolar membrane and function as sucrose/H+ symporters [14–16]. According
to Schulze et al. [13] and Reinders et al. [9], it is possible that HvSUT2, LjSUC4, and AtSUC4 are also
responsible for the release of sucrose from the vacuole. In various plant species, SUT genes can be
induced by a range of abiotic stress factors [17], while transgenic plants constitutively expressing SUT
genes not only exhibit an enhanced accumulation of sucrose and soluble sugars, but are also more
tolerant of abiotic stress [16,18,19]. Among the monosaccharide transporters, AtTMT1, AtTMT2, and
AtTMT3 all contribute to vacuolar glucose import, with AtTMT1 playing a major role during the
plants’ stress response [20]. The monosaccharide/proton symporter gene AtSTP13 is notably induced
by salinity and drought stress [21] and the rice gene OsGMST1 is induced by salinity stress [22].

The present paper describes a successful attempt to identify and characterize genes in japonica
type rice (cv. Nipponbare) which are important for the expression of salinity tolerance. The approach
taken was to search a population of ethane-methyl-sulfonate-mutagenized plants for individuals which
had become sensitive to salinity stress. Following the selection of one such individual, the identity of
the mutated gene was determined and the biochemical and phenotypic consequences of the mutation
were investigated.

2. Materials and Methods

2.1. Plant Materials and Growing Conditions

The mutants screened for their response to salinity stress were a subset of 500 lines out of a
collection of some 50,000 generated following ethane methyl sulfonate (EMS) mutagenesis of cv.
Nipponbare. The collection includes lines selected on the basis of the expression of a stably inherited
variant phenotype, as well as lines which express no abnormal phenotype when the plants are grown
under standard conditions, but do so when exposed to specific treatments [23]. Seedlings were grown
under a 12 h photoperiod (100 µmol m−2 s−1 light intensity) at 25 ◦C on solidified (1% agar) half-strength
Murashige and Skoog medium (1/2MS) supplemented with 3% w/v sucrose containing 100 mM NaCl
(Sinopharm Chemical Reagent Co., Ltd, Shanghai, China) for 14 days, at which point each line’s
germination rate, growth, and extent of chlorosis were assessed. To assess the effect on seedling
growth and salinity tolerance of supplying sucrose, wild-type (WT) and CRISPR/Cas9-mediated FLN2
knock-out mutants (KO) (see next section) were raised for 14 days under the same conditions as above
on either sucrose-free 1/2MS (-S-N), 1/2MS containing 3% w/v sucrose (+S-N), sucrose-free 1/2MS
containing 100 mM NaCl (-S+N), or 1/2MS containing 3% w/v sucrose and 100 mM NaCl (+S+N). At the
end of the period, shoot and root dry biomass were measured and the architecture of the root system
was recorded. The differential response of KO and WT adult plants to salinity stress was assessed by
raising the material in normal International Rice Research Institute (IRRI)nutrient solution [24] for six
weeks under a 14 h photoperiod (100 µmol m−2 s−1 light intensity), a constant temperature of 25 ◦C,
and relative humidity of ~70%. The nutrient solution was replaced every 2 days. At the end of the six
weeks, the plants were transferred into the same nutrient solution containing 150 mM NaCl where they
remained for 4 days. Leaf blades, leaf sheaths, and roots were harvested at the end of the treatment
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and used for various physiological and genetic assays. The experiment was carried out in triplicate,
with each replicate comprising five individuals per genotype per treatment.

2.2. Generation of KO Lines

A targeted deletion vector was constructed using the CRISPR/Cas9 system [23]. The target
sequence was 5′-TCAAGTGATGATGAGAGTGA, and the vector was introduced into Agrobacterium
tumefaciens strain EHA105 and thence into cv. Nipponbare plants, as described by Chen et al. [25].
The resulting regenerants were validated by sequencing PCR amplicons generated using
the primer pair 5′-GTTACTAGATCGGGCCCAGGAATCTTTAAACATACGAACAGATCACT and
5′-AGCTTGCATGCCTGCAGGGTAAAACGGAGGAAAATTCCATC.

2.3. Quantitative Real-Time PCR (qRT-PCR) Assay

The procedures used to conduct qRT-PCR assays followed those given by Chen et al. [26]. RNA
was extracted from leaf blades, leaf sheaths, and roots of WT and KO line plants grown either under
nonstressed conditions or in the presence of NaCl. The gene UBQ5 (LOC_01g22490) was chosen as the
reference sequence, and relative transcript abundances were calculated following the suggestion of
Chen et al. [27]. The sequences of the various primers used are listed in Table S1.

2.4. Analysis of Enzyme Activities and Sugar Content

WT and KO leaves and roots were snap-frozen and ground to a powder, which was stored at
−80 ◦C. Leaf ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was determined using
a commercial kit (Comin biotechnology Co. Ltd., Suzhou, China). The sucrose content and enzyme
(sucrose synthase (SS), soluble acid invertase (AI), and neutral invertase (NI)) activity in the leaf and
root were determined following methods described by Chen et al. [28].

2.5. Phloem Export of Sucrose

Phloem exudates were collected from leaf samples using the EDTA method, as described by
Chen et al. [28]. Cut ends of the leaves were dipped into 20 mL 30 mM EDTA solution (pH 7, Sinopharm
Chemical Reagent Co., Ltd, Shanghai, China) and held in the dark for 15 min. To avoid contamination
with xylem exudate, the initial solution was discarded, and the leaves were rinsed and transferred to a
10 mL volume of fresh solution. The leaves were kept in the dark in an air-tight chamber at ambient
temperature. After 4 h, the sucrose concentration in the solution was measured using the sucrose assay
kit described above.

2.6. Characterization of Root System Architecture

The root system architecture was characterized as described by Chen et al. [29], based on the
use of WinRhizo V4.0b software (Regent Instruments Inc., Quebec, QC, Canada, http://regent.qc.ca/).
Five seedlings per line were analyzed.

2.7. Statistical Analysis

Analyses of variance were carried out using routines implemented in SPSS v10 software (SPSS
Inc., Chicago, IL, USA). Statistically significant differences either between the performance of KO line
and WT plants or between different treatments were determined based on Tukey’s test.

3. Results

3.1. Selection of a Salinity-Hypersensitive Mutant

The screening of mutagenized cv. Nipponbare succeeded in identifying a particularly
salinity-sensitive line, which has been designated ss1. There was no discernible difference between the

http://regent.qc.ca/
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growth of WT and ss1 plants in the absence of salinity stress, but when challenged with 100 mM NaCl,
ss1 plants—but not WT plants—wilted heavily and became chlorotic (Figure 1A,B). In the absence
of NaCl stress, the rate of germination of the mutant was indistinguishable from that of WT, but
in its presence, while germination was inhibited for both genotypes, WT grains germinated more
freely (Figure 1C). Shoot growth was suppressed by salinity for both WT and ss1 seedlings, but the
extent of the reduction induced in both shoot length and fresh weight was greater for the ss1 seedlings
(Figure 1D,E). This mutant has previously been characterized by Qiu et al. [23] as carrying a lesion in a
gene encoding fructokinase-like protein2 (FLN2), a protein not known to be involved in the response of
rice to salinity stress. Here, CRISPR/Cas9 gene editing was used to generate lines in which FLN2 was
knocked out in order to investigate in detail the mechanistic basis of FLN2’s contribution to salinity
stress tolerance.

Figure 1. The phenotypic response of the ss1 mutant and wild-type (WT) cv. Nipponbare to salinity
stress. (A,B) The appearance of 14-day-old seedlings of (A) WT and (B) ss1 mutant challenged with
100 mM NaCl. Bar: 2 cm. (C–E) Quantification of the response in terms of (C) the rate of germination,
(D) the elongation of the shoot, and (E) the fresh weight of the shoot. Control: nonstressed seedling,
Salt: seedlings exposed to 100 mM NaCl. Data are given in the form mean ± SE (n = 5). Means differing
significantly (p < 0.05) from one another are indicated by a different lowercase letter.
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3.2. FLN2 Is Inducible by Salinity Stress and Its Absence Leads to a Loss in Tolerance

After the 4 days exposure of six-week-old WT plants to 150 mM NaCl, the abundance of FLN2
transcript rose 0.6 fold in the root and 4.5 fold in the leaf (Figure 2).

Figure 2. The abundance of FLN2 transcript in the root and leaf of six-week-old cv. Nipponbare plants
exposed for 4 days to either 0 or 150 mM NaCl. Data, acquired using a qRT-PCR assay, are given in the
form mean ± SE (n = 3). Means differing significantly (p < 0.05) from one another are indicated by a
different lowercase letter.

The importance of FLN2 expression in the plant’s ability to tolerate the stress was explored by
generating CRISPR-Cas9-induced FLN2 knockout (KO) lines. In line KO-1, a thymine was inserted
within the target sequence, while in line KO-2, a guanine was inserted (Figure S1). Both events resulted
in a frameshift, leading to the premature termination of the FLN2 transcript. Exposure to salinity stress
inhibited the growth of both KO line plants more strongly than was the case for WT plants (Figure 3A).

3.3. The Effect of Knocking Out FLN2 on Sucrose Metabolism and Partitioning

RbcL, which encodes the large subunit of Rubisco, is known to be transcribed at a much lower
level in ss1 than in WT plants [23]; this proved to also be the case for KO line plants grown under
nonstressed conditions (Figure 3C). Exposure to salinity stress significantly reduced Rubisco activity in
both WT and KO line plants, but the magnitude of the decline was greater for the latter (Figure 3C).
In the absence of salinity stress, KO line plants accumulated on average 14% more sucrose in their
leaves than did WT plants, rising to 17% for plants challenged with NaCl (Figure 3D). The quantity of
sucrose exported through the phloem was substantially reduced by the absence of FLN2: the amount
exported per hour per gram of leaf fresh weight of KO line plants was 10–19% lower than the level
exported by WT plants in the absence of stress, rising to 30–48% in the stressed plants (Figure 3E).
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Figure 3. Knocking out FLN2 increases the sensitivity of rice to salinity stress. The appearance of
six-week-old plants of WT and two FLN2 knockout lines (KO-1 and -2) exposed for 4 days to (A) 0 mM
NaCl or (B) 150 mM NaCl. Bar: 10 cm. (C–E) Quantification of the response in terms of (C) leaf Rubisco
activity, (D) leaf sucrose content, and (E) the rate of sucrose export from the phloem. Data are given in
the form mean ± SE (n = 5). *, **: The performance of the KO line plants differed significantly (p < 0.05,
p <0.01) from that of WT. FW: fresh weight.

A comparison was then made of the transcriptional activity in the leaves with respect to a number
of genes encoding components of sucrose synthesis. In nonstressed plants, with the exception of
cyFBP1 (LOC_01g0866400) which was transcribed equally in WT and KO line plants, the genes were
all more strongly transcribed in WT than in KO line plants (Figure 4). In response to salinity stress,
UGP1 (LOC_01g0264100) and SPS2 (LOC_02g0184400) were both up-regulated more strongly in WT
than in KO line plants (Figure 4A,B). Meanwhile, the stress down-regulated SPS6 (LOC_06g0634800),
PFPα (LOC_02g0714200), cyFBP1, and PPase (LOC_01g0866500) in both WT and KO line plants, but the
extent of the suppression was greater in the latter (Figure 4C–F). The most strongly affected gene was
PFPα, which was barely transcribed in the KO line plants (Figure 4D).
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Figure 4. Transcriptional profiling, derived from qRT-PCR assays, of key genes involved in sucrose
synthesis in the leaves of two FLN2 knockout line (KO-1 and -2) and WT plants in response to salinity
stress. Six-week-old plants were exposed for 4 days to either 0 mM NaCl (Control) or 150 mM NaCl
(Salt). The genes assayed were (A) UGP1, (B) SPS2, (C) SPS6, (D) PFPα, (E) cyFBP1, and (F) PPase.
Data are given in the form mean ± SE (n = 3). *, **: The performance of the KO line plants differed
significantly (p < 0.05, p < 0.01) from that of WT; ns: means did not differ significantly.

A similar comparison for a set of five genes involved in carbon transport showed that all were
transcribed less abundantly in nonstressed KO line plants than in WT plants grown under nonstressed
conditions (Figure 5). The effect of the stress was to up-regulate both SUT3 (LOC_10g0404500) and
SUT4 (LOC_02g0827200) more strongly in the WT than in the KO line plants (Figure 5A,B). At the
same time, the stress down-regulated SWEET11 (LOC_08g0535200), SWEET14 (LOC_11g0508600), and
MT (LOC_04g0602400) in both the WT and KO line plants, but the magnitude of the suppression was
greater in the latter (Figure 5C–E).
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Figure 5. Transcriptional profiling, derived from qRT-PCR assays, of key genes involved in carbon
transport in the leaves of two FLN2 knockout line (KO-1 and -2) and WT plants in response to salinity
stress. Six-week-old plants were exposed for 4 days to either 0 mM NaCl (Control) or 150 mM NaCl
(Salt). The genes assayed were (A) SUT3, (B) SUT4, (C) SWEET11, (D) SWEET14, and (E) MT. Data are
given in the form mean ± SE (n = 3). *, **: The performance of the KO line plants differed significantly
(p < 0.05, p < 0.01) from that of WT.

The transcriptional response in the leaf sheath to knocking out FLN2 was also considered. In plants
grown under nonstressed conditions, SUT4, SWEET11, SWEET14, and TPT2 (LOC_05g0241200) were
all less abundantly transcribed (although to differing extents) in the KO line plants (Figure 6).
The imposition of salinity stress down-regulated SWEET11, SWEET14, and TPT2 in WT leaf sheaths
(Figure 6B–D) and up-regulated SUT4 (Figure 6A). Meanwhile, in salinity-stressed KO line plants,
all four of these genes were down-regulated (Figure 6): compared to WT sheaths, their relative
transcript abundances were, respectively, 19%, 45%, 55%, and 41% (Figure 6).
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Figure 6. Transcriptional profiling, derived from qRT-PCR assays, of key genes involved in carbon
transport in the leaf sheaths of two FLN2 knockout line (KO-1 and -2) and WT plants in response to
salinity stress. Six-week-old plants were exposed for 4 days to either 0 mM NaCl (Control) or 150 mM
NaCl (Salt). The abundances of transcript generated from (A) SUT4, (B) SWEET11, (C) SWEET14, and
(D) TPT2 were determined. Data are given in the form mean ± SE (n = 3). *, **: The performance of the
KO line plants differed significantly (p < 0.05, p < 0.01) from that of WT.

3.4. The Effect of Knocking Out FLN2 on the Biochemistry of the Root

In the absence of stress, the sucrose content of the roots of KO line plants was significantly lower
than that of WT roots. In its presence, the sucrose content of the roots of WT plants was reduced less
severely than was that of the roots of KO line plants; as a result, the sucrose content of the KO line
plants’ roots was only ~78% that of the WT plants’ roots (Figure 7A). When the activity of the three
enzymes central to sucrose degradation was monitored, it was apparent that, in the absence of stress,
WT and KO line roots shared a comparable level of SS activity (Figure 7B), but the levels of AI and NI
activity were lower in the KO line roots (Figure 7C,D). The imposition of salinity stress reduced the
activity of all three enzymes in WT, but did so even more strongly in the KO line roots (Figure 7B–D).
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Figure 7. The effect of knocking out FLN2 on root biochemistry. Six-week-old plants of WT and two
FLN2 knockout lines (KO-1 and -2) were exposed for 4 days to either 0 mM NaCl (Control) or 150 mM
NaCl (Salt). (A) Sucrose content, (B–D) enzyme activity: (B) sucrose synthase (SS), (C) soluble acid
invertase (AI), and (D) neutral invertase (NI). Data are given in the form mean ± SE (n = 5). *, **:
The performance of the KO line plants differed significantly (p < 0.05, p < 0.01) from that of WT; ns:
means did not differ significantly. FW: fresh weight.

3.5. The Exogenous Supply of Sucrose Mitigates the Adverse Effects Induced by the Absence of FLN2

The association between the action of FLN2, sugar metabolism, plant growth, and salinity tolerance
was explored by supplying plants with sucrose. The accumulation of dry weight by both the root
and the shoot of KO line plants and WT was comparable for seedlings raised on the -S-N medium.
The growth of both the root and the shoot was significantly greater than this on the medium which
provided a source of sucrose (+S-N), but there was no significant difference between the performance of
the KO line and the WT plants grown on this medium (Figure 8A–C). The appearance of the root system,
however, did differ between WT and KO line seedlings grown on the -S-N medium (Figure 8D,E).
Supplying sucrose clearly lifted the inhibition of root growth experienced by the KO line roots, since
for plants grown in the +S-N medium, there was no genotypic difference with respect to either the total
root length or the root surface area (Figure 8D,E). The imposition of salinity stress had a pronounced
negative effect on the growth of both WT and KO line seedlings, but the effect was less severe for the
former (Figure 8). When grown without sucrose supplementation but in the presence of NaCl, the KO
line seedlings’ shoot biomass, root biomass, total root length, and root surface area were, respectively,
48%, 51%, 75%, and 72% of those achieved by WT seedlings (Figure 8B–E); when sucrose was provided
exogenously, these differences were reduced to, respectively, 35%, 40%, 16%, and 20%.
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Figure 8. Exogenously supplying sucrose reduces the salinity sensitivity of FLN2 knockout line plants.
Seedlings were raised for 14 days on one of four contrasting media: -S-N: sucrose-free half-strength
Murashige and Skoog medium (1/2MS), 0 mM NaCl; +S-N: 1/2MS, 3% w/v sucrose, 0 mM NaCl; -S+N:
sucrose-free 1/2MS, 100 mM NaCl; +S+N: 1/2MS, 3% w/v sucrose, 100 mM NaCl. (A) Appearance of the
seedlings. Bar: 2 cm. (B–E) Quantification of (B) shoot biomass, (C) root biomass, (D) root length, and
(E) root surface area. Data are given in the form mean ± SE (n = 5). *, **: The performance of the KO line
plants differed significantly (p < 0.05, p < 0.01) from that of WT; ns: means did not differ significantly.

4. Discussion

Collections of rice mutants have been widely used to search for genes influencing the abiotic
stress response [23,27,30]. Here, an EMS mutant collection library was successfully used to identify the
salinity-stress-hypersensitive line ss1. This mutant has been shown to carry a lesion in FLN2 and to
respond to high temperature (32 ◦C) conditions by forming albino seedlings [23]. While there was no
phenotypic differentiation between ss1 and WT plants raised at 25 ◦C in the absence of salinity stress
(1/2MS supplemented with 3% w/v sucrose) (Figure 1A,B), the response of the mutant to salinity was
quite distinct from that of the WT, showing that its sensitivity to salinity cannot be associated with the
albino trait.
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An important observation was that the level of Rubisco activity in the leaves of the FLN2 knockout
line plants was significantly lower than that in WT leaves (Figure 3C), consistent with the previous
finding that the ss1 mutant’s leaves generate both less RbcL transcript and less RbcL protein than
do WT leaves [23]. At the same time, the intensity of transcription of key genes involved in sucrose
synthesis was significantly reduced in the mutants’ leaves (Figure 4). A decline in Rubisco activity
and sucrose synthesis would be expected to restrict the accumulation of sucrose in the leaf, but the
experimental outcome was just the opposite, since the content of sucrose in the KO line plants’ leaves
was significantly higher than that in the WT plants’ leaves (Figure 3D). This unexpected result likely
reflects a lowered capacity of the KO genotypes to export sucrose through the phloem. The evidential
support for this idea rests on three observations: firstly, that the measured rate of sucrose exported from
the leaf (on a per unit fresh weight of leaf basis) was lower for the KO line plants’ leaves than for the WT
ones (Figure 3E); secondly, that a number of genes involved in carbon transport were down-regulated
in both the leaf and the leaf sheath of the KO line plants (Figures 5 and 6); and lastly, that the sucrose
content of the KO line plants’ root was lower than that of WT roots (Figure 7A). Restricted export of
sucrose is thought to disturb the carbohydrate metabolism occurring in assimilate sink organs [28,31],
as was clearly the case for sucrose hydrolysis, given that the activity of SS, AI, and NI was markedly
lower in the KO line plants’ roots than in WT roots (Figure 7B–D).

The hypothesis arising from the present experiments is that the heightened sensitivity to salinity
stress induced by a lack of FLN2 activity results from a disruption in the plant’s sugar metabolism.
The differences between KO line and WT plants with respect to their ability to fix carbon (Figure 3C)
and synthesize, export, partition, and utilize sucrose (Figures 3E and 4, Figures 5–7) were more
pronounced in plants subjected to salinity stress than in nonstressed plants, while the KO line plants
appeared to be particularly sensitive to the stress (Figures 3A and 8A). Sucrose (and other sugars)
are used by stressed plants as an osmoticum [16,19]: for example, plants of the halophytic species
Thellungiella halophila respond to high levels of salinity by accumulating a significant concentration of
sucrose [32]. The build-up of sugar prompted by salinity (as well as by some other abiotic stressors)
is driven by the up-regulation of genes encoding components of sugar synthesis and transport [33].
The abiotic stress response of A. thaliana and of certain other plant species includes alterations in
sucrose transport [17]. Both AtSUC1 and AtSUC2 are up-regulated when the plants are exposed to
low temperature [34]. In A. thaliana, the loss-of-function of SUC4 results in an abnormal distribution
of sucrose in both the shoot and the root, leading to a phenotype which is highly sensitive to abiotic
stress [35]. Meanwhile Jia et al. [36] have shown that AtSUC9 mediates sucrose distribution in a way
which supports the plant’s tolerance of abiotic stress resistance. Suppression of the aspen (P. tremula)
gene PtaSUT4 alters the plant’s responsiveness to moisture stress [15], while the over-expression in
apple (Malus × domestica) of MdSUT2.2 promotes tolerance to both salinity and drought [16,19]. In rice,
both SUT1 and SUT2 contribute to the salinity and drought response [37,38]. Here, the transcription
of SUT3 in the leaf and SUT4 in both the leaf and the leaf sheath was markedly reduced in plants
lacking a functional copy of FLN2, especially in plants subjected to salinity stress (Figures 5A,B and
6A); the proposition is that FLN2 protects the plant from salinity-induced damage, in part, at least,
by regulating SUT-mediated sugar partitioning. Other sugar transporters, notably the SWEETs, are
known to be important regulators of sugar accumulation in stressed plants [19]. The over-expression
of AtSWEET16 enhances freezing tolerance, likely through its positive effect on the accumulation
of sugars in the vacuole [39]. Meanwhile, the heterologous expression in A. thaliana of either of the
Dianthus spiculifolius genes DsSWEET12 or DsSWEET17 affects not just the plant’s sugar metabolism
but also its tolerance of multiple stressors [40,41]. Here, similarly, the abundance of SWEET11 and
SWEET14 transcript in the leaf and leaf sheath of the stressed KO line plants proved to be considerably
lower than that in the tissues of stressed WT plants (Figures 5C,D and 6B,C). Overall, the incapacitation
of FLN2 inhibited the movement of sugar from the source (leaf) to the sink (root) of plants exposed to
salinity stress by down-regulating a number of genes encoding SUTs and SWEETs; this may well be
the primary basis for the greater sensitivity to salinity shown by the KO line plants.
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While sugar can be used as an osmoticum, its main role is to provide the plant with the energy it
needs for growth and development [42]. One of the major determinants of salinity tolerance in rice
is thought to be the plant’s inherent growth rate, since this has a large impact on how much toxic
Na+ reaches the shoot meristem [43]. Thus, the ability to maintain rapid growth when challenged
with salinity has been suggested to be a robust indicator of tolerance [44–46]. With respect to shoot
growth in the face of salinity stress, KO line plants clearly under-performed compared with WT ones,
both at the seedling (Figure 8A,B) and at the tillering (Figure 3B) stage. The root system developed
by salinity-challenged KO line plants was less vigorous than that by WT plants, with respect to its
dry matter accumulated, its length, and its surface area (Figures 3B and 8A,C–E). This loss in vigor
likely resulted from the roots receiving an inadequate supply of assimilate, given that there was a clear
difference between the sucrose contents of the KO line and WT plants’ roots (Figure 7A), yet there was
no such genotypic difference in root growth between seedlings raised on a salinity-free medium when
sucrose was supplied exogenously (Figure 8C–E). The data are consistent with the idea that the loss of
FLN2 function inhibited the growth of both the shoot and root as a result of a reduction in the supply
of assimilate, a problem which was exacerbated when the plants were stressed with salinity.

5. Conclusions

FLN2 represents an important component of rice’s response to salinity stress. The loss-of-function
of FLN2 could depress sugar metabolism in at least three ways: firstly, by inhibiting the activity of
Rubisco and down-regulating genes encoding the components of sucrose synthesis in the leaf; secondly,
by down-regulating genes encoding the components of carbon transport in the leaf and leaf sheath;
and thirdly, by inhibiting the activity of SS, AI, and NI in the root (Figure 9). Given that the sink and
source organs of ss1 (and also FLN2 knockout line) plants, especially in the presence of salinity stress,
are imbalanced in terms of their sucrose content, the indication is that functional FLN2 protein protects
the plant from salinity-induced damage by supporting the plant’s sugar metabolism.

Figure 9. A proposed model of the interaction between FLN2, sugar metabolism, and salinity tolerance.
The inactivation of FLN2 results in a reduced level of Rubisco activity and sucrose export rate and
down-regulates genes encoding enzymes involved in sucrose synthesis and transporters involved
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in carbon transport in the leaf, as well as several encoding sucrose transporters and carbon
metabolism-related plastidic translocators in the transport phloem network. Due to the impairment
of SS, AI, and NI activity in the root, sugar utilization is likely compromised, so the carbohydrate
requirement for growth is not met, resulting in both growth retardation and a heightened sensitivity to
salinity stress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/1/17/s1,
Figure S1: Sequence confirmation of the FLN2 mutations induced by Cas9/sgRNA, Table S1: The sequences of
primers used for qRT-PCR assays.
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