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Abstract: We report on an extensive semi-empirical analysis of scattering cross-sections for electron
elastic collision with noble gases via the Markov Chain Monte Carlo-Modified Effective Range Theory
(MCMC−MERT). In this approach, the contribution of the long-range polarization potential (∼r−4)
to the scattering phase shifts is precisely expressed, while the effect of the complex short-range
interaction is modeled by simple quadratic expression (the so-called effective range expansion with
several adjustable parameters). Additionally, we test a simple potential model of a rigid sphere
combined with r−4 interaction. Both models, the MERT and the rigid sphere are based on the
analytical properties of Mathieu functions, i.e., the solutions of radial Schrödinger equation with
pure polarization potential. However, in contrast to MERT, the rigid sphere model depends entirely
upon one adjustable parameter—the radius of a hard-core. The model’s validity is assessed by
a comparative study against numerous experimental cross-sections and theoretical phase shifts.
We show that this simple approach can successfully describe the electron elastic collisions with
helium and neon for energies below 1 eV. The purpose of the present analysis is to give insight into
the relations between the parameters of both models (that translate into the cross-sections in the
very low energy range) and some “macroscopic” features of atoms such as the polarizability and
atomic “radii”.

Keywords: electron elastic scattering; noble gases; scattering cross-sections

1. Introduction

Although great attention was devoted to electron collisions with atoms of noble
gases over the years [1], scattering in a very low-energy range is still challenging both
experimentally and theoretically. On the one hand, experiments at very low energies
are scarce and burdened with high uncertainties since hard-to-reach energy and angular
resolutions are required to carry out trustworthy measurements [2]. On the other hand,
the theoretical description of complex (many-body) short-range effects in the electron–atom
collision reached a high level of fidelity (see for example [3,4]), but numerical calculations
become more and more computationally expensive and time-consuming with lowering
electron energy. The most advanced contemporary theories involve such large basis sets
and complicated equations that they are not easily applied to each specific target for
which data are needed urgently. Therefore, a great value in understanding angular and
energy variations of low-energy collisions can be brought by semi-empirical models, which
give some insight into the relations between cross-sections and some “macroscopic” (i.e.,
measurable in other phenomena) features of the targets, like their polarizability and/or
atomic “radii”. Surprisingly, the very low-energy range is important for plasma modeling:
say, in argon, which is the main component of “gas-discharge lamps”, the mean temperature
of electrons is 0.3 eV, i.e., the energy of the Ramsauer–Townsend minimum [5]. Noble
gases are used also as additives in swarm experiments, to derive the very-low energy cross
sections for molecules with other possible processes, like the vibrational excitations (CH4,
C2H2 [6,7]).
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The effective range theory (ERT) is one of the most popular semi-empirical ways
to describe slow-electron collisions with atoms. Originally, ERT has been introduced as
a tool in the analysis and interpretation of low-energy neutron–proton scattering [8,9].
The theory expresses the s-wave scattering phase shift as a series of the projectile (neutron)
momentum k. The series contains two adjustable parameters: A0—the scattering length
and R0—the effective range of the interaction. O’Malley et al. [10] modified the ERT to
show that a similar expression could be used to describe the scattering of a charged particle
(such as electron and positron) by neutral atoms and simple non-polar molecules, i.e., in
the presence of the long-range polarization potential (∼r−4). Later similar energy series
expansions to that for s-wave phase-shift were introduced for higher partial waves (p and d
waves) [11]. Due to its simplicity, the Modified Effective Range Theory (MERT) has gained
considerable popularity. It has been frequently used to extrapolate measured cross-sections
to the zero-energy [12–17]. Moreover, it is also used a support for complex multi-body
calculations to determine the scattering length, see, for example [18,19].

Buckman and Mitroy [20] showed that the applicability of the original MERT is limited
to very low energies (<1 eV) for noble gases. At such low energies, the experimental data
to be extrapolated are scarce and characterized by relatively large uncertainties. The variety
of experimental technique reflects in different possible systematic uncertainties. In case
of integral (total) cross sections (ICS) these may be errors in pressure determination (due
to the gas outflow from the scattering cell), angular resolution errors (due to the finite
dimensions of detectors) and shift in energy determination (due to extremely fast timing of
the signal in time-of-flight experiments). In the case of differential cross sections (DCS)—
additionally, the impossibility of measuring small (below 10◦) and large (above some
130◦) scattering angles plays an important role. The contribution of all these errors to
experimental data makes the MERT analysis less reliable. Idziaszek and Karwasz [21]
proposed an alternative approach to the MERT series: phase shifts were obtained solving
the Schrödinger equation with long-range polarization potential analytically using Mathieu
functions, and the effective-range expansion was introduced only for the short-range part
of the interaction potential. We showed [22–25] that such an approach allows expanding
MERT applicability to much higher energies, where more accurate data are available. It is
true for both positrons and electrons. The most significant advantage of the method is its
simplicity—just a few parameters are used to describe the effect of complex, many-body
interaction during the electron/positron collisions with atoms and molecules. Moreover,
a new approach to MERT can be used to correct ex posteriori the experimental errors,
as shown in [16]. Furthermore, understanding the physics behind the MERT parameters
can help to provide more valuable data for an inverse scattering theory approach [26]. This
approach aims to reconstruct the scattering potential from the experimental cross-sections,
and MERT can potentially be a part of the inversion procedure.

In [27], we showed that an even simpler semi-empirical model than MERT could
describe very low-energy positron (antielectron) interaction with noble gases, namely the
rigid sphere approach. In this model, the interaction is described as a combination of an in-
finitive wall (hard-sphere) and the long-range polarization potential (∼r−4). Consequently,
one needs just one parameter (“the atomic radii”) to describe cross-sections at energies
much below 1 eV. So far, this simple model has not been tested thoroughly for electron
scattering by single atoms.

The goal of the present work is twofold. Firstly, we carry out an extensive (statistical)
MERT analysis of a vast amount of datasets for electron collision with noble gases to
study the systematics of parameters appearing in the effective-range expansion of the
short-range potential. Using Monte Carlo methods, we provide confidence ranges for
MERT parameters that are crucial for accurate predictions of cross-sections at low energies.
At the same time, we examine the convergence of various available experimental data
within the applied model. Secondly, we verify the applicability of the rigid sphere model
to the low-energy electron scattering by noble gases. The paper is organized as follows:
in Section 2, the principles of MERT and the rigid sphere model are briefly described.
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In Section 3, the results of both models are presented and discussed. The paper concludes
with a summary in Section 4.

2. Theoretical Models
2.1. Modified Effective Range Theory

The relative motion of a light electrically charged point particle and closed-shell atom
is described by the following radial Schrödinger equation (within a partial-wave formalism
in atomic units): [

d2

dr2 −
l(l + 1)

r2 +

(
e2µ

h̄2

)
α

r4 + Vs(r) + k2
]

Ψl(r) = 0, (1)

where l is the angular momentum quantum number, k is the wavenumber, α is the dipole
polarizability, and Vs(r) is the short-range potential. Note that the atomic units are em-
ployed throughout this paper. In particular, the electron mass (me), the Planck constant (h̄)
and the elementary charge (e) are equal to unity. Consequently, the reduced mass of the
electron–atom system (µ) can be also approximated to one.

Since Vs(r) can be neglected at large r, O’Malley et al. [10] proposed to include its
contribution in appropriate boundary conditions subjected to analytical solutions of the
Schrödinger equation with pure long-range polarization potential (∼r−4):[

d2

dr2 −
l(l + 1)

r2 +

(
e2µ

h̄2

)
α

r4 + k2
]

Φl(r) = 0. (2)

The latter equation is identical with Mathieu’s modified differential equation; hence
Φl(r) can be expressed in terms of Mathieu functions, whose behavior at small and large
distances r is determined by the standard boundary conditions (according to the quantum
scattering theory) imposed on the scattering wavefunction:

Φl(r)
r→0∼ r sin

(√α

r
+ γl

)
and Φl(r)

r→∞∼ sin(kr− l
π

2
+ ηl

)
(3)

where γl is a parameter determined by the short-range part of the interaction potential,
while ηl is the scattering phase shift.

The boundary conditions provide the following expression for the scattering phase shift:

tan ηl =
m2

l − tan2 δl + Bl tan δl(m2
l − 1)

tan δl(1−m2
l ) + Bl(1−m2

l tan2 δl)
, (4)

where Bl = tan(γl + lπ/2) and δl = π
2 (νl − l − 1

2 ). Here ml and νl denote the energy-
dependent parameters which can be determined numerically from properties of the Math-
ieu functions (see the numerical procedures described in [21,22]).

Integral elastic (σIE), momentum transfer (σMT), and differential elastic (dσ/dω) cross-
sections (all measured experimentally) are calculated using the standard partial wave
expansions:

σIE =
4π

k2

∞

∑
l=0

(2l + 1) sin2 ηl(k) (5)

σMT =
4π

k2

∞

∑
l=0

(l + 1) sin2[ηl(k)− ηl+1(k)] (6)

dσ

dω
=

1
k2 |

∞

∑
l=0

(2l + 1) exp ηl sin ηl(k)Pl(cos θ)|2 (7)

where θ is the scattering angle and Pl(x) are the Legendre polynomials.
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O’Malley et al. [10] showed that energy dependence of parameter Bl(k), related to the
unknown short-range potential, has the following general form:

Bl(k) = bl(0) +
1
2

√
αe2µ/h̄2ρl(0, k)k2. (8)

where bl(0) is the zero-energy contribution and

ρl(0, k) =
∫ ∞

0
Φl(0, r)Φl(k, r)−Ψl(0, r)Ψl(k, r)dr. (9)

Thus far all equations are exact. O’Malley et al. [10] proposed to approximate the
latter parameter by the energy-independent value at zero-energy. Then Bl(k) takes a form:

Bl(k) ≈ bl(0) +
1
2

√
αe2µ/h̄2Rlk2, (10)

where Rl = ρl(0, 0). Equation (10) is similar to the effective range expansion of the
scattering phase-shift in absence of the long-range potentials used to describe neutron–
proton collisions [8,9]. Hence, in analogy to the original effective-range theory, we can
call Rl as the “effective-range”, though the physical meaning of this parameter is rather
different. Since the error is of the order k4, it is expected that the approximation is valid
at low energies. We have already shown [21,22] that ρl(0, k) changes rather slowly with
increasing energy since MERT (using approximation (10)) is able to describe the scattering
cross-sections almost up to the energy thresholds for the first inelastic processes.

In the zero energy limit both integral elastic (Equation (5)) and momentum transfer
cross-sections (Equation (6)) can be expressed by the s-wave scattering length (A0):

σIE(k) ≈ σMT(k) = 4πA2
0, for k→ 0. (11)

The s-wave scattering length can be expressed in terms of b0 as A0 = −
√

αe2µ/h̄2/b0.
At low energies, the leading contributions come mainly from the first two or three

partial waves (l = 0, 1, 2) while the contributions of higher partial waves are small and they
are not modified by the short-range forces due to very high centrifugal barriers associated
with large l numbers. Therefore the scattering phase-shifts experienced by higher partial
waves can be described by the relations provided by Ali and Fraser [28]:

tan ηl(k) = αalk2 + (α2bl + βcl)k4, for large l, (12)

where

al =
π

(2l + 3)(2l + 1)(2l − 1)
, (13)

bl =
π[15(2l + 1)4 − 140(2l + 1)2 + 128]

[(2l + 3)(2l + 1)(2l − 1)]3(2l + 5)(2l − 3)
, (14)

cl =
3π

(2l + 5)(2l + 3)(2l + 1)(2l − 1)(2l − 3)
. (15)

Here β is the effective quadrupole polarizability of the target atom. The effective
quadrupole polarizability comprises two terms: the adiabatic quadrupole interaction and
the non-adiabatic dipole interaction, which in general are opposite in sign and of almost
the same magnitude.

Substituting Equations (4) and (10) for two or three first partial waves (and Equation (12)
for higher partial waves) into Equations (5)–(7) one gets relations which can be fitted to ex-
perimental data in order to determine the unknown parameters (bl and Rl) of the effective
range expansion of Bl(k).
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2.2. Rigid Sphere Approach

In the rigid sphere model, the interaction potential between the charged particle and
the neutral polarizable atom has the following form:

V(r) =
{

∞, r < r0
−αe2/2r4, r > r0

(16)

where r0 is the radius of rigid sphere.
Since the radial Schrödinger equation for the potential V(r) can be solved exactly

using Mathieu functions, we showed in reference [27] that the expression for the scattering
phase-shift of lth partial wave takes a following form:

tan ηl =
sin δl − [Clm2

l + cot(πνl)(m2
l − 1)] cos δl

cos δl + [Clm2
l + cot(πνl)(m2

l − 1)] sin δl
, (17)

where ml , νl and δl are the same parameters as in Equation (4). Energy-dependent pa-
rameter Cl(k) can be determined from the continuity conditions imposed on the Mathieu
functions at r = r0 (see [27] for more details). The only adjustable parameter is r0, the radius
of the rigid sphere.

For a potential in Equation (16) the s-wave scattering length can be described ana-
lytically as a function of dipole polarizability (α) and the radius of the hard-sphere (r0)
as [29]:

A0 =
√

α cot
(√α

r0

)
. (18)

Integral elastic (σIE), momentum transfer (σMT), and differential elastic (dσ/dω) cross-
sections can be calculated using Equations (5)–(7).

3. Results
3.1. MERT

One can use nonlinear least-square regression procedures to fit MERT to chosen cross-
section datasets and determine unknown parameters in the effective range approximation
given by Equation (10). However, due to the multiparameter nature of the model, it seems
to be more appropriate to use a Bayesian statistical inference for parameter estimation [30].
In contrast to the classical fitting, the Bayesian inference does not provide single point
estimation in parameter space but rather the probability density functions (PDFs) of model
parameters whose final form is shaped by (experimental or theoretical) observational
data. Once posterior PDFs for each parameter are known, it is useful to provide a point
estimation representing “best-fit” values together with an estimate of its errors. It can be
done using either the mode or the mean value of PDF with the variance of distribution
representing its uncertainty [30]. Generally, the larger the standard deviation of the pa-
rameter, the less sensitive model is to the changes of this parameter. Alternatively, one
can give a credible region representing the predictive probability limit of the model due to
parameters uncertainties (see [30] or [31] for a definition of this quantity).

Bayesian parameter estimation requires the computation of multi-dimensional inte-
grals; a good solution for this computational problem consists of implementing Markov
Chain Monte Carlo (MCMC) methods [30]. MCMC algorithms using prior PDF and like-
lihood functions generate a sequence of model parameters from a Markov Chain whose
final stationary distribution is a desired posterior distribution. Here we adapt the MCMC
Matlab toolbox by M. Laine [32] containing the Delayed Rejection and Adaptive Metropolis
(DRAM) sampling algorithm with multivariate Gaussian proposal distributions introduced
by Haario and co-workers [33]. We assume a Gaussian likelihood and (uninformative)
prior PDF functions.

We choose available experimental total cross-sections (TCS) and momentum transfer
cross-sections (MTCS) below the ionization threshold as the observational data. TCS are
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measured usually in the most accurate (and absolute) way using electron beam techniques
(where electron collisions with single atoms are studied), while MTCS are derived indirectly
from the measurements of swarm transport parameters (where a cloud of electrons drifting
in an external electric field through dense atomic gas is investigated). Below the ionization
energy, TCS correspond to integral elastic cross-sections described by Equation (5), while
MTCS are given by Equation (6). To check the predictive capabilities of the present model,
the mean values of MERT parameters are used to calculate differential cross-sections (DCS,
Equation (7)) and compare with experiments. DCS are more sensitive than TCS and MTCS
to the correct values of the scattering phase-shift, so the comparison with the experimental
DCS is a good test for the correctness of the model.

3.1.1. Helium

In Figure 1a,b we show an example of Markov Chains (106 steps) for MERT parameters
and corresponding posterior PDFs obtained by fitting the model to experimental TCS for
electron–helium scattering by Buckman and Lohmann [34]. It was verified that below the
ionization threshold (24 eV) only two first partials waves (l = 0 and l = 1) are distorted by
the short-range interaction. Consequently, only four MERT coefficients (b0, R0, b1, and R1)
were used as the fitting parameters. The solid line in Figure 1c shows the MERT model
using mean values of determined PDFs, while the darkened gray area represents a 99%
prediction interval.

Similar MCMC fits were done to other data including TCS by Szmytkowski et al. [35]
and Shigemura et al. [36], as well as MTCS data available in the LXCat database:
https://nl.lxcat.net/home/ (accessed on 1 August 2021). The latter data source includes cal-
culations from S.F. Biagi’s FORTRAN code Magboltz 8.97 [37], the IST Lisbon dataset, [38],
and the Morgan dataset [39]. The mean values and standard deviations of MERT param-
eters are given in Table 1. In all studied cases, both PDFs for b0 and R0 parameters are
characterized by relatively narrow standard deviations, however only b0 mean values
are comparable with each other. Although mean R0 differs between fits, its values are
relatively small, not far from zero. It suggests that the short-range interaction is rather
weakly dependent on incident electron energy below the ionization threshold and the scat-
tering is strongly governed by the scattering length alone (A0). Large standard deviations
for b1 and R1 demonstrate that model is weakly sensitive to both parameters. It reflects
a small contribution of p-wave to the scattering process in almost the entire considered
energy range. Although the p-wave phase shift increases slowly with electron energy, its
contribution to cross-sections reaches of only about 20% at 20 eV i.e., the maximum energy
considered. Consequently, it is difficult to determine b1 and R1 more precisely.

Table 1. Mean values and standard deviations of MERT parameters (appearing in the effective range
approximation, Equation (10)) for e−+He elastic scattering. The results were calculated using the
dipole polarizability α = 1.407 a3

0 [40] and the effective quadrupole polarizability β = 0.0 a5
0.

Data A0(a0) R0(a0) b1 R1(a0)
Mean Std Mean Std Mean Std Mean Std

TCS (1× 10−1–20 eV) [34] 1.177 0.002 −0.058 0.015 −139 520 6 501

TCS (5× 10−1–20 eV) [35] 1.174 0.003 0.085 0.017 −86 519 −95 511

TCS (6× 10−3 –20 eV) [36] 1.189 0.002 0.006 0.020 −90 528 −98 511

MTCS (1× 10−4–20 eV) [37] 1.180 0.003 0.132 0.034 −42 488 −91 475

MTCS (2× 10−1–20 eV) [38] 1.183 0.005 0.088 0.037 17 26 −10 34

MTCS (1× 10−2–20 eV) [39] 1.186 0.002 0.146 0.020 34 359 −87 440

https://nl.lxcat.net/home/
https://nl.lxcat.net/home/
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Figure 1. MCMC−MERT fit to experimental total cross−sections for electron−helium scattering by
Buckman and Lohmann [34]: (a) Markov Chains for MERT parameters (b0, R0, b1, R1) determined
during the fitting procedure. (b) Posterior probability density functions (PDFs) for MERT parameters
estimated from Markov Chains. (c) MERT calculations using mean values of PDFs (solid line) and a
99% credible region (darkened gray area).
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Interestingly, b0 is very close to −1 in all fits (see Markov chains and PDFs in
Figure 1a,b), it implies that the s-wave scattering length for He is numerically equal
(within the error of the analysis) to the square root of dipole polarizability in atomic

units: A0 ≈
√

αe2µ/h̄2. Note however that this also corresponds to the position of the
maximum value of the p-wave centrifugal barrier, see Figure 2. In other words, the position
of the maximum of the repulsive long-range potential for p-wave determines effective
spatial boundaries of the target seen by low-energy electrons when colliding with the
He atom.

1 2 3 4 5 6 7 8 9 10
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9

10

p
o

te
n

ti
a

l 
(e

V
)

l = 1

l = 2

e
-
 - He

Figure 2. The positive (repulsive) part of the long-range electron−helium effective potentials for
the p and d partial waves. The distance between interacting elements is scaled by the square root of
dipole polarizability (in atomic units).

The MERT results are compared with experimental DCS in Figure 3. It is clear that the
agreement is good. It proves that e−−He elastic scattering below the ionization threshold is
governed mainly by the s-wave scattering length. The latter quantity is equal approximately
to the square root of dipole polarizability of the He atom (in atomic units).
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Figure 3. Angular dependencies of MERT−derived differential cross−sections at 1.5, 5, 12, and 20 eV
for e−−He scattering. The present results are compared with experimental data of Brunger et al. [41],
Andrick et al. [42], Register et al. [43], and Shyn [44] .
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3.1.2. Neon

Similar MCMC−MERT analysis as for He has been done for other noble gases.
For neon (Ne), TCS have been measured by many research groups below the thresh-
old (16 eV) for the first Feshbach resonance (see references in [1,35]). Generally, good
quality MERT fits can be achieved for many data. However, we found that only TCS by
Szmytkowski et al. [35] and Shigemura et al. [36] covers enough wide energy range with
sufficient resolution to determine MERT parameters confidently for both s and p partial
waves. Both partial waves provide major contributions to the scattering cross-sections in
the considered energy range. In the present analysis we take into account also swarm-
derived MTCS from the LXCat database. This includes data by Puech [45], Morgan [39],
Siglo [46] , Robertson [47], and Magboltz 8.9 [37]. The results of MCMC−MERT fits are
given in Table 2. For comparison, we also present the results of simultaneous MERT fit
(using nonlinear least-squares regression) to the large collection of TCS datasets reported
in [24].

This time, unlike for He, fitting the model to different datasets provide similar spreads
of A0 and b1 mean values. Moreover, the R0 parameter is positive in all cases, and it
is much larger than for helium. On the other hand, the R1 coefficient is small (it varies
close to zero for different datasets). Hence the contribution of short-range interaction to
the p-wave scattering is rather weakly dependent on the incident electron energy. Large
standard deviations for b2 and R2 demonstrate that the model is weakly sensitive to both
parameters since the contribution of d-wave to the scattering process is relatively small in
almost the entire considered energy range (though not negligible at the upper part of the
energy range).

In Figure 4 we compare MERT DCS with experimental data. In general, the agreement
is good except for calculations using MERT parameters obtained from MTCS of Puech [45].
The discrepancy increases with the energy. This suggests that the interplay between the
MERT parameter for p and d partial waves in this particular case is not correct.

Figure 4. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 10,
and (d) 15 eV for e−−Ne scattering. The present results are compared with experimental data of Shi
and Burrow [48], Linert et al. [49], Cho et al. [50], Register and Trajmar [43], Gulley et al. [51], and
Szmytkowski et al. [35].
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Table 2. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Ne elastic scattering. The results were calculated using the dipole polarizability α = 2.571 a3

0 [40] and
the effective quadrupole polarizability β = 0.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2 R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (7× 10−3–16 eV) [36] 0.228 0.004 3.710 1.970 −0.192 0.014 −0.080 0.054 −1 50 1 50

TCS (5× 10−1–16 eV) [35] 0.225 0.007 1.955 4.18 −0.192 0.013 −0.042 0.030 0.228 501 6 501

all TCS (7× 10−3–16 eV) [24] 0.227 - 3.697 - −0.231 - −0.028 - 0.001 - 0.361 -

MTCS (1× 10−4–16 eV) [45] 0.241 0.002 3.652 0.180 −0.201 0.004 0.001 0.016 −0.472 40 1 50

MTCS (1× 10−2–16 eV) [39] 0.228 0.003 4.674 0.162 −0.225 0.007 −0.063 0.023 −0.455 48 1 49

MTCS (3× 10−2–20 eV) [46] 0.226 0.002 4.779 0.160 −0.223 0.005 −0.067 0.022 −0.235 46 0.722 48

MTCS (3× 10−2–7 eV) [47] 0.222 0.001 5.93 0.220 −0.239 0.004 0.074 0.026 −0.101 47 2 50

MTCS (1× 10−4–16 eV) [37] 0.224 0.001 3.596 0.366 −0.212 0.005 −0.090 0.014 0.008 0.055 0.436 0.25

3.1.3. Argon

In the case of argon (Ar), we found that the trustworthy MERT parameters can
be obtained from the fits to TCS by Buckman and Lohmann [34], Ferch et al. [15], and
Kurokawa et al. [52]. All of these datasets cover almost a full region of Ramsauer–Townsend
minimum. In addition we verified that the following swarm-derived MTCS (from the
LXCat database) can be analyzed confidently with MERT: Puech [45], Morgan [39], IST-
Lisbon [38], Hayashi [53], and Magboltz 8.9 [37]. The results of MCMC−MERT fits are given
in Table 3. Similar to Ne, both A0 and b1 are comparable for different datasets. However,
the mean values of other MERT parameters ( R0, R1, R2, and b2) are characterized by some
spread, which prevents the determination of a confidence interval for these parameters.
Nevertheless, most of the MERT parameters provide DCS that are in excellent agreement
with experimental data, as shown in Figure 5. The exception is the fit to Puech dataset [45],
where too much uncertainty for the d wave parameters is obtained and, consequently,
the compliance with the measurements is lower.

Table 3. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Ar elastic scattering. The results were calculated using the dipole polarizability α = 11.23 a3

0 [40] and
the effective quadrupole polarizability β = 0.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (1.2× 10−1–10 eV) [34] −1.500 0.010 −0.427 0.153 −0.448 0.011 0.072 0.037 0.206 0.001 0.315 0.014

TCS (8× 10−2–10 eV) [15] −1.490 0.010 −0.142 0.010 −0.496 0.010 0.188 0.025 1.075 0.238 −0.272 0.175

all TCS (7× 10−3–10 eV) [52] −1.400 0.010 −0.661 0.150 −0.463 0.016 0.130 0.046 0.339 0.092 0.213 0.065

MTCS (1× 10−3–10 eV) [37] −1.460 0.010 0.101 0.167 −0.437 0.005 −0.198 0.054 0.069 0.022 0.425 0.012

MTCS (1× 10−2–10 eV) [53] −1.490 0.010 0.845 0.472 −0.456 0.009 −0.017 0.163 0.206 0.136 0.317 0.104

MTCS (1× 10−3–10 eV) [38] −1.560 0.010 1.557 0.198 −0.471 0.036 0.074 0.143 1.043 0.484 −0.305 0.394

MTCS (3× 10−3–10 eV) [39] −1.490 0.010 1.189 0.044 −0.451 0.007 0.077 0.028 0.699 0.065 −0.063 0.054

MTCS (1× 10−4–10 eV) [45] −1.570 0.020 1.742 0.396 −0.510 0.058 0.322 0.164 7.55 19.56 −5.53 15.92
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Figure 5. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 7.5,
and (d) 10 eV for e−−Ar scattering. The present results are compared with experimental data of Gib-
son et al. [54], Weyhreter et al. [55], Cho and Park [56], Srivastava et al. [57], and Milewska et al. [58].

3.1.4. Krypton

We analyzed a huge amount of available experimental TCS [35,52,59–61] and
MTCS [37,39,46,62–67] for krypton (Kr) at low energies. We found that the fits to only
three datasets (Buckman [59], Jost [61] and Hunter [64]) provide trustworthy MERT pa-
rameters that allow reconstructing experimental DCS below 10 eV. The results of fits are
given in Table 4. For comparison, we also show the results of MERT fit (see [23]) to DCS
measured with the magnetic-field angle analyzer, as reported by Zatsarinny et al. [68].
This experimental technique allows DCS measurements in full angular range (from 0◦ to
180◦). Moreover, the data of Zatsarinny et al. [68] were obtained in a vast energy range
with incredibly high resolution (15 meV). Consequently, as we showed in [23], the MERT
parameters can be extracted quite accurately.

Similar to Ne and Ar, both A0 and b1 are comparable for all four datasets. Other MERT
parameters are determined with much lower accuracy but still provide relatively good
agreement with experimental DCS (see Figure 6).

Table 4. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Kr elastic scattering. The results were calculated using the dipole polarizability α = 16.86 a3

0 [40] and
the effective quadrupole polarizability β = 8.0 a5

0 [20].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (0.175–10 eV) [59] −3.280 0.010 −0.509 0.068 −0.552 0.010 0.054 0.026 0.267 0.011 0.466 0.118

TCS (0.3–10 eV) [61] −3.380 0.030 0.929 0.077 −0.664 0.012 0.121 0.027 0.249 0.019 0.503 0.026

DCS (<10 eV) [23] −3.480 - 0.533 - −0.599 - 0.125 - 0.039 - 0.720 -

MTCS (0.1–8 eV) [64] −3.380 0.020 0.340 0.128 −0.527 0.030 −0.389 0.111 0.099 0.041 0.608 0.022
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Figure 6. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c)
7.5, and (d) 10 eV for e−−Kr scattering. The present results are compared with experimental data
of Srivastava et al. [57], Danjo [69], Linert et al. [70], Cho et al. [71], Weyhreter et al. [55], and
Zatsarinny et al. [68].

3.1.5. Xenon

The MCMC−MERT analysis of experimental TCS data for Xenon (Xe) has already been
reported in [25]. In Table 5 we give only those MERT parameters that allow reconstructing
experimental DCS below 10 eV. The most recent experimental TCS of Kurokawa et al. [52],
and older measurements by Alle et al. [72] and Guskov et al. [73] are not included in
the present analysis because the fits to these cross-sections do not provide correct DCS.
Additionally, in the present work, we analyzed different MTCS [37,45,62,64,66,74], however
only the fit to data by Hayashi [75] is consistent with DCS. For comparison, we also present
in Table 5 the results of simultaneous robust MERT fit to all available TCS (using MATLAB
routine for nonlinear least-square regression of multiple data sets) done in reference [25].

Since the d-wave plays an important role in e−+Xe elastic scattering below 10 eV, it is
much easier to determine MERT coefficients associated with this partial wave than for other
noble gases. Consequently, this time all three parameters A0, b1, and b2 are comparable
between different sets given in Table 5. Moreover, even R2 values are also of the same
order. However, the spreads of R0 and R1 are too large to estimate the confidence intervals
for both of them. Nevertheless, such uncertainties in both parameters do not have an
important influence on DCS calculations, which are in good agreement with experiments
(see Figure 7).

Table 5. Mean values and standard deviations of MERT parameters (appearing in the effective range approximation,
Equation (10)) for e−+Xe elastic scattering. The results were calculated using the dipole polarizability α = 27.04 a3

0 [40] and
the effective quadrupole polarizability β = 16.8 a5

0 [17].

Data A0(a0) R0(a0) b1 R1(a0) b2(a0) R2(a0)
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

TCS (0.125–10 eV) [60] −6.510 0.050 −0.136 0.163 −0.690 0.048 0.023 0.040 0.220 0.035 0.593 0.040

TCS (0.2–10 eV) [61] −6.870 0.011 −0.484 0.376 −0.670 0.082 0.232 0.057 0.170 0.083 0.663 0.071

TCS (0.5–10 eV) [35] −6.750 0.500 0.462 0.526 −0.630 0.127 0.023 0.074 0.290 0.100 0.644 0.095

all TCS (0.5–10 eV) [25] −6.490 - 0.097 - −0.680 - −0.019 - 0.200 - 0.668 -

MTCS (0.001–10 eV) [53]−6.210 0.010 −0.043 0.181 −0.775 0.097 0.163 0.051 0.184 0.135 0.810 0.113
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Figure 7. Angular dependencies of MERT−derived differential cross−sections at (a) 1, (b) 5, (c) 7.9,
and (d) 10 eV for e−−Xe scattering. The present results are compared with experimental data of
Register et al. [76], Gibson et al. [77], Linert et al. [78], and Weyhreter et al. [55].

3.1.6. MERT Parameters

In Figure 8a, we show MERT-derived scattering length versus the dipole polarizability.
We use values averaged over coefficients determined in MCMC−MERT analysis of different
datasets (Tables 1–5). The standard deviations of the mean values are used to indicate
the uncertainties in the determination of coefficients. For Ar, Kr, and Xe, the attractive
polarization potential overcomes the repulsive exchange interaction due to relatively large
dipole polarizabilities. Consequently, the scattering length is negative, and it changes
linearly with polarizability (as shown by the dashed line). On the other hand, for He and
Ne, the repulsive interaction with electrons is slightly dominant, making the scattering
length positive, and a small deviation from the linear dependency A0(α) is observed.

In Figure 8b, we plot the zero-energy contribution (b1) of the short-range potential to
the p-wave scattering phase-shift versus dipole polarizability. A clear regular tendency is
observed, b1 becomes more negative with increasing polarizability. We do not give a b1 for
helium due to the high uncertainties in MCMC−MERT analysis (see Table 1). However,
the observed tendency suggests that this parameter is small (close to zero) for He.

Unfortunately, we can not make a similar plot for the b2 parameter (i.e., the zero-energy
contribution of short-range potential to the d-wave phase shift) due to too high uncertainty
related to this coefficient. Nevertheless, a careful inspection of data from Tables 3–5 (Ar, Kr,
and Xe) shows that, unlike b1, the b2 parameter is always positive.

Similarly to the b2 parameter, the “effective ranges” (R0, R1, and R2) can not be
estimated accurately and they vary depending on the dataset used for analysis. Clearly,
the effective-range corrections are relatively small in the low-energy regime in comparison
to the leading contributions due to the s-wave scattering length, the p-wave, and the d-
wave zero-energy contributions. Consequently, the effective-range parameters are strongly
affected by measurement uncertainties in the experimental data in the low-energy domain.
Extending the energy range to higher energies in MERT analysis does not work since
the effective-range approximation (Equation (10)) becomes less accurate with increasing
electron energy. Nevertheless, the present results show that the effective-range corrections
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may be comparable with leading contributions in the case of s-wave for Ne and d-wave for
Xe, where the corresponding Rl values, obtained from different fits, are of the same order
of magnitude.
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Figure 8. (a) MERT−derived s−wave scattering lengths and (b) parameter b1 for rare gases plotted
versus static dipole polarizability. The presented results are the mean values of MCMC−MERT
analysis of different experimental cross−section datasets. The standard deviations of mean values
are given to demonstrate the uncertainties in the determination of coefficients. The dashed lines are
sketched as the guide to eyes to show general tendencies in A0(α) and b1(α) dependencies.

3.2. Rigid Sphere Model

The rigid sphere model requires the proper choice of the hard-core radius r0. We
found [27] that for positron scattering on noble gases, the r0 corresponds to the positions of
the principal maxima in the radial distributions of outermost atomic orbitals. It reflects
the fact that the positron does not penetrate far inside the atom due to the strong repulsive
static potential (that can be modeled as the hard core). The first attempt to apply a similar
model for electron scattering was done by Reisfeld and Asaf [79] who proposed to use the
atomic radii calculated from the van der Waals equations of state as the hard-core radii.
They aimed to describe the scattering length for electron interaction with noble gases as a
function of atomic dipole polarizability. However, such a choice of radii was criticized by
R. Szmytkowski [80] who proved its incorrectness. If the rigid sphere model applies, we
can benefit from Equation (18) relating r0 with the scattering length. In our calculations we
use mean values of the scattering length (〈A0〉) determined in the present MERT analysis.
Such a choice of r0 determination gives negative radii for Ar, Kr, and Xe. This is obviously
an unphysical outcome, limiting our analysis only to He and Ne, where r0 is positive.
Interestingly, a similar discrepancy between negative- and positive-scattering-length gases
was noticed in multiple-scattering theories [81] describing electron interaction with dense
gases. To solve this problem, Borghesani et al. [81–83] developed a hard-sphere-like model
for electron multiple-scattering.

All parameters used in the present model are given in Table 6. The r0 for electrons
is much higher than the corresponding values for positrons [27]. It may be due to the
different nature of the repulsive potential for both particles: positrons are repelled by static
interactions while electrons are repulsed by the exchange potential.

Table 6. Parameters used in the rigid sphere model: the dipole polarizability (α), the mean value of
the scattering length determined in the present MERT analysis (〈A0〉), and the rigid sphere radius
(r0) determined from Equation (18).

Atom α(a3
0) 〈A0〉(a0) r0(a0)

He 1.407 1.181 1.50

Ne 2.671 0.228 1.14
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In Figures 9 and 10 we show the scattering phase-shifts of s, p, and d-waves as well as
the integral elastic cross-sections calculated using the rigid sphere model. Present results
are compared with other theoretical and experimental determinations. For both gases,
the model provides the s-wave and d-wave phase shifts that are in excellent agreement with
other works to as high energy as 1 eV (for neon even up to 6 eV for s-wave). For p-wave,
the agreement is worse; nonetheless, since its contribution is small compared to s-wave
at low energies, the model can reconstruct experimental total cross-sections almost up
to 1 eV for both atoms. This result suggests the in the case of He and Ne, the repulsive
exchange potential felt by an incoming slow electron is sufficiently strong to be modeled
by the infinitive barrier, while the attractive part of the potential (static and polarization)
can be described effectively by the long-range r−4 interaction.
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Figure 9. The rigid sphere model (solid lines) for low-energy e−−He scattering: (a) s−wave
phase−shift, (b) p−wave phase−shift, (c) d−wave phase−shift, and (d) integral elastic
cross−sections. The model is compared with other works: phase−shifts by McEachran and Stauf-
fer [84], Hudson et al. [85], and Williams [86]; total cross−sections by Buckman and Lohmann [34],
Ferch et al. [87], Szmytkowski et al. [35], and Shigemura et al. [36].
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Figure 10. The rigid sphere model (solid lines) for low−energy e−−Ne scattering: (a)
s−wave phase−shift, (b) p−wave phase−shift, (c) d−wave phase−shift and (d) integral elas-
tic cross−sections. The model is compared with other works: phase−shifts by Garbaty and
LaBahn [88], O’Malley and Crompton [89], McEachran and Stauffer [90], Dasgupta and Bha-
tia [91], Saha [92], Williams [86], and Cheng et al. [18]; total cross−sections by Shigemura et al. [36],
Szmytkowski et al. [35], Ferch et al. [93], Gulley et al. [51], and Kumar et al. [94].

4. Summary

We performed an extensive MCMC−MERT analysis of cross-sections for electron
scattering from noble gases in the present work. We analyzed many experimental datasets
of integral cross-sections, including total and momentum transfer cross-sections (TCS
and MTCS). We selected those experimental data that comply with the differential cross-
sections (DCS) within the current model. This statistical analysis was done to determine the
confidence ranges for the MERT parameters appearing in the effective-range expansion of
the short-range potential. We found that both the s-wave scattering length and the p-wave
leading contribution can be determined confidently from available data. We showed that
both parameters change in a regular manner with the dipole polarizability of atomic targets.
On the other hand, other MERT parameters, including the “effective ranges”, can not be
determined with the same confidence. Nevertheless, some interesting tendencies can be
spotted from the present study. In particular, the d-wave leading term seems to be positive
for Ar, Kr, and Xe, where the d-wave contribution is not negligible below the threshold for
the first inelastic process.

In the particular case of e−–He scattering, we noticed that the s-wave scattering length
is numerically equal to the square root of dipole polarizability of helium when expressed
in atomic units. Interestingly, this also corresponds to the position of the maximum of the
centrifugal potential barrier for the p partial wave. In other words, the repulsive part of
p-wave interaction potential determines effective spatial boundaries of the helium atom
“seen” by slow electrons. Similar correspondence is not observed for other noble gases.

We also verified the applicability of the rigid sphere model for low-energy electron
interaction with noble gases. As could be expected, the hard-sphere model is roughly
applicable for He and Ne only (which do not show the Ramsauer–Townsend minimum)
since their integral cross-section changes slowly in the limit of zero energy (note also a
similar approach for He by Borghesani in this issue [83]). The model can not be applied for
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argon, krypton, and xenon, where the repulsive exchange interaction is not strong enough
with respect to the attractive part of the interaction potential. Consequently, the repulsive
part can not be modeled effectively by the infinitive wall.

Finally, we showed in this paper that MERT could describe cross-sections at low
energies for such highly polarizable systems as Kr and Xe. The question remains if our
model is also applicable for other atomic targets, for example, tungsten (W) and beryllium
(Be). Knowledge of cross-sections of atoms (including metals) is decisive in modeling
plasmas, particularly in thermonuclear reactors. In tokamak-like reactors, the temperature
and plasma density in the case of carbon-lining of the walls are well predicted by the
theoretical simulations. However, in the case of a W-lined reactor, the discrepancy between
the measured and modeled densities is by a factor of three [95]. It is due to the lack of
reliable cross-sections. The study of MERT applicability for other atoms is in progress.
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