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Abstract: We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically
characterized several isomers with interesting bonding patterns. We have used chemical intuition and
a cluster building method based on the tabu-search algorithm implemented in the Python program
for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points.
The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate
boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar
pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also
contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular
dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable,
except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict
that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO,
AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand
the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in
these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys
the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation
species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of
BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA
value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers
exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between
BAl−/0/+

4 and Mg is ionic in all these six systems.

Keywords: BAl4Mg−/0/+; planar pentacoordinate boron; planar tetracoordinate boron; π/σ double
aromaticity; global minima; chemical bonding.

1. Introduction

From the time that the concept of planar tetracoordinate carbon (ptC) emerged [1,2],
it was extended not only to its group elements (Si, Ge, Sn, etc.) [3–10] but also to other
elements such as B [11–17], Al [18,19], N [20–22], P [23], O [24], and lately even to the
F atom [25]. There are two main reasons why experimentalists [5,6,26–33] and theoreti-
cians [2,34–43] have put a great deal of effort into studying these special class of molecules:
(i) ptC is a fundamental deviation from the conventional ideas of tetrahedral tetracoor-
dinate carbon [44,45]; (ii) no two structural isomers behave in the same way chemically.
Thus, making this new class of molecules enhances our existing understanding about
chemical bonding, and one could potentially make new materials. Schleyer and co-workers
computationally identified the real local minima in lithium-substituted cyclopropane and
cyclopropene molecules for the first time in 1976 [34]. In the last five decades, a large array
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of molecules containing ptC atoms that are global and local minima were computationally
identified [10,14,15,46–58], and some were experimentally detected [5,26–33,59]. Lately,
the idea of ptC has been extended to planar hypercoordinate carbon (phC; Penta [60–66]
and Hexa [67–71] coordination) and also to other elements such as B [72–75] or N [76]
considering their potential applications in material science [77,78].

The idea of planar tetracoordinate boron (ptB) arrived as a byproduct of stabilizing the
ptC itself. Hoffmann and co-workers, in their seminal paper [2], outlined that essentially
two things are required for the electronic stabilization of the ptC atom: (1) appropriate
substituents that would act as a σ-donor/π-acceptor simultaneously—that is, σ-donors
would facile an electron transfer to the electron-deficient ptC atom and π-acceptors would
delocalize the pz or π-type lone pair; and (2) embedding the ptC atom into a (4n + 2)π
electron system. Considering the σ-donating and π-accepting nature of boron atoms,
molecules with ptC atoms were built in the past, where boron was used as a ligating atom
to the ptC atom [79,80]. Moreover, phC, phSi, and phGe molecules were also proposed
computationally using boron as ligands [67,81,82]. In the strange case of CB4, the most
stable form contains a ptB atom with a tricoordinate carbon and the ptC isomer lies
1 kcal mol−1 above the ptB isomer, calculated using coupled-cluster methods. By altering
the charge (CB+

4 ), the original objective of stabilizing the ptC atom was achieved. Notably,
the ptC isomer in CB+

4 was detected through the mass spectrometry of boron carbide by
Becker and Dietze [59].

Based on our earlier theoretical work on CAl4Mg−/0 [56], we were curious to see how
replacing C with B would affect the planar tetracoordination around four Al and one Mg
atoms. Thus, in this work, we analyzed the various structural isomers of BAl4Mg−/0/+

computationally using density functional theory (DFT). For the accurate evaluation of
relative energies, composite method CBS-QB3 was used for the low-lying isomers. To our
surprise, the global minimum geometries of the anion (1a) and cation (1c) contained a
ptB atom (see Figure 1), whereas the global minimum of the neutral (1n) contained a
planar pentacoordinate boron (ppB) atom. The bonding and kinetic stabilities of these three
isomers along with three other key low-lying isomers 2a; ppB, 2n; ptB, and 3c; ppB were
studied in detail.
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Figure 1. Global minima and low-lying isomers of BAl4Mg−/0/+ containing either ptB or ppB atoms.
Bond lengths are given in Å and Wiberg bond indices (green color) calculated at the (U)ωB97XD/6-
311++G(2d,2p) level are also shown. All isomers are minima, and ZPVE-corrected relative energies
are given in kcal mol−1.
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2. Computational Details

Several trial geometries of BAl4Mg−/0/+ are generated by chemical intuition and
the cluster building procedure implemented in the Python program for aggregation and
reaction (PyAR) [83,84]. Modeling by intuition was conducted, targeting for ptB and
ppB based on similar reported molecules. The automated cluster building was done
as follows: first, a diatomic molecule was generated from two randomly chosen atoms
from B, Al, and Mg. To achieve the optimized geometry of these diatomic molecules,
another randomly chosen atom was added following the procedure described in [84] to
generate several (N) estimated geometries. All these geometries were optimized, unique
minima were chosen, and the further addition of random atoms was continued until
the target chemical formula was reached. We performed 10 different runs with N = 16
orientations for the BAl4Mg−/0/+ systems. The trial geometries were optimized using the
ORCA program [85] interfaced with PyAR [83,84]. The initial geometry optimizations were
carried out using PBE [86] functional with the def2-SVP [87] basis set including Grimme’s
empirical dispersion corrections (D3) [88] with Becke–Johnson (BJ) damping [89,90] and
resolution of identity (RI) approximation. After we filtered all geometries generated from
10 different runs, unique geometries were selected for further analysis. Some geometries
were reached from both intuitive and stochastic procedures. Overall, for BAl4Mg−/0/+, we
identified 33 stationary points, each on their singlet, doublet, and singlet potential energy
surfaces, respectively.

The geometries of all BAl4Mg−/0/+ isomers reported here are optimized further using
DFT with the (U)ωB97XD hybrid functional [91] and the 6-311++G(2d,2p) basis set [92,93]. Har-
monic vibrational frequencies are calculated for each stationary point to confirm whether
it is a minimum, transition state, or higher-order saddle-point. The number of imaginary
frequencies (NImag) obtained for each stationary point is indicated underneath the geome-
tries (see Figures 2–4). To obtain accurate relative energies, calculations are also conducted
using the composite method, CBS-QB3 [94], for the first nine low-lying isomers (eight for
cations) that lie below 20 kcal mol−1. All molecules were found to have no instabilities from
the wavefunction stability analysis [95] at the (U)ωB97XD/6-311++G(2d,2p) level. Triplet
and quartet geometry optimization and frequency calculations were also conducted for the
low-lying isomers. For brevity, triplet and quartet geometries are given in the supporting
information. We carried out ab initio molecular dynamics (AIMD) simulations using the
atom-centered density matrix propagation (ADMP) [96] method. These simulations were
performed to check the kinetic stability of six different BAl4Mg−/0/+ isomers that contain
ptB (1a, 2n, and 1c) or ppB atoms (2a, 1n, and 3c).

Chemical bonds in the global minima were analyzed using canonical molecular
orbitals (CMOs), adaptive natural density partitioning (AdNDP) [97,98], and natural
bond order (NBO) approaches [99]. Natural atomic charges (q) and Wiberg bond indices
(WBIs) [100] from the NBO analyses were calculated at the (U)ωB97XD/6-311++G(2d,2p)
level. Nucleus-independent chemical shift (NICS) [101] values were calculated to gauge
the π/σ dual aromaticity in both global and local minima. All the above calculations
were carried out with the Gaussian suite of programs [102]. An energy decomposition
analysis (EDA) was performed using the Q-Chem program [103] to check the interaction
between two fragments. A topological analysis of the electron localization function (ELF)
and Laplacian of electron density was carried out for both the neutral and anionic global
minima with the Multiwfn program [104] using the wave function file generated by the
Gaussian program [102]. For brevity, optimized geometries of high-energy isomers, Carte-
sian coordinates of all isomers, total energies, zero-point vibrational energies (ZPVEs),
net dipole moment, relative energies without and with ZPVE correction for all isomers,
and kinetic stability plots of a few isomers are given in the supporting information.
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Figure 2. Low-lying singlet isomers of BAl4Mg−. ZPVE-corrected relative energies (in kcal mol−1)
are calculated at the ωB97XD/6-311++G(2d,2p) level. The same energies obtained at the CBS-QB3
level (at 0 K) are shown in parentheses. Values indicated with asterisk marks are calculated at the
CCSD(T)/6-311++G(2d,2p)//ωB97XD/6-311++G(2d,2p) level. The number of imaginary frequencies
(NImag) obtained for each stationary point are indicated underneath the geometries.
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Figure 3. Low-lying doublet isomers of BAl4Mg. ZPVE-corrected relative energies (in kcal mol−1)
are calculated at the UωB97XD/6-311++G(2d,2p) level. The same energies obtained at the CBS-QB3
level (at 0 K) are shown in parentheses.
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Figure 4. Low-lying singlet isomers of BAl4Mg+. ZPVE-corrected relative energies (in kcal mol−1)
are calculated at the ωB97XD/6-311++G(2d,2p) level. The same energies obtained at the CBS-QB3
level (at 0 K) are shown in parentheses. Values indicated with asterisk marks are calculated at the
CCSD(T)/6-311++G(2d,2p)//ωB97XD/6-311++G(2d,2p) level.

3. Results and Discussion
3.1. Thermal Stability

Optimized geometries of the global minima (top row) and local minima (bottom row)
of BAl4Mg−/0/+ containing either ptB or ppB atoms are shown in Figure 1. Bond lengths
(in Å) and Wiberg bond indices (in green color) are shown for each isomer to justify the
ptB or ppB scenario in Figure 1.

The low-lying isomers of BAl4Mg−/0/+ are shown in Figures 2–4, respectively. ZPVE-
corrected relative energies obtained at the ωB97XD/6-311++G(2d,2p) (for anions and
cations) and UωB97XD/6-311++G(2d,2p) (for neutrals) levels are given for each geometry.
The same energies obtained at the CBS-QB3 level are given in parentheses. It is noted here
that for a few isomers (2a, 8a, 6c, and 8c), we could not calculate the relative energies using
the composite method CBS-QB3. As the latter method carries out geometry optimization
using the B3LYP functional [105–107] without any empirical dispersion corrections, in some
cases, the geometry either transforms to a low-lying isomer or global minimum itself. Thus,
the relative energy values are not given for geometries 2a, 8a, 6c, and 8c at the CBS-QB3
level. In these cases, the relative energy values given in parentheses were calculated at the
CCSD(T)/6-311++G(2d,2p)//ωB97XD/6-311++G(2d,2p) level. In this work, we rely on
the results obtained using the ωB97XD functional as it incorporates empirical dispersion
corrections. For BAl4Mg−/+, singlet isomers with a ptB atom (1a and 1c) were found
to be the global minima. The second low-lying isomer for the anion (2a) lies only 0.48
kcal mol−1 above 1a at the ωB97XD/6-311++G(2d,2p) level (see Figure 2). At CCSD(T)/6-
311++G(2d,2p)//ωB97XD/6-311++G(2d,2p) level, this gap increases to 0.92 kcal mol−1.
For the cation, the second low-lying isomer (2c) contains a tetrahedral tetracoordinate
boron atom, whereas the third isomer (3c) makes a clear case for the ppB atom (see
Figure 4). Furthermore, 2c and 3c lie 1.99 and 3.89 kcal mol−1 above 1c at the ωB97XD/6-
311++G(2d,2p) level. At CBS-QB3 level, this trend is reversed and 3c is more stable by
3.63 kcal mol−1 compared to 2c. For BAl4Mg neutral, the doublet isomer with ppB atom
becomes the global minimum (1n; see Figure 3) and the second low-lying isomer (2n) that
contains a ptB atom lies 0.98 kcal mol−1 above 1n at the ωB97XD/6-311++G(2d,2p) level.
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3.2. Kinetic Stability

To explore the kinetic stability of ptB and ppB isomers in BAl4Mg−/0/+, ab initio
molecular dynamics simulations were carried out using the ADMP [96] approach as
implemented in the Gaussian 16 program [102]. Six different isomers (see Figure 1) were
considered for these simulations at a temperature of 298 K and 1 atm pressure for 2000 fs of
time. The time evolution of the total energy (in a.u) plots for 1a (anion; ptB) and 3c (cation;
ppB) are shown in Figures 5 and 6, respectively. For brevity, similar plots of four other
isomers (2a, 1n, 2n, and 1c) are shown in the supporting information. To show the alteration
of the structure over the 2000 fs of time, we added snapshots at 400 fs intervals. These plots
show balanced oscillations in energy and steadiness in geometries. This represents the
kinetic stability of the minimum geometries. However, the trend of energy for the ppB of
BAl4Mg+ (3c) is different from the others. The energy fluctuation is comparatively higher,
and geometries (Figure 6) are not uniform. Here, at the end of the trajectory, it tends to
form a 3D-like structure with lower energy. After seeing this trend, we also carried out
additional simulations at 100 and 200 K for 3c alone, which shows a balanced oscillation in
energy and steadiness for this geometry. The time evolution of the total energy plot for
3c at low temperatures is given in the supporting information for brevity. Overall, these
results indirectly indicate that low-temperature measurements are necessary to trap the
cation 3c that exhibits a ppB atom.
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Figure 5. Energy evolution of ptB BAl4Mg− (1a) at 298 K for 2000 fs of time in the ADMP simulation
performed at the ωB97XD/6-311++G(2d,2p) level.
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Figure 6. Energy evolution of ppB BAl4Mg+ (3c) at 298 K for 2000 fs of time in the ADMP simulation
performed at the ωB97XD/6-311++G(2d,2p) level.

Furthermore, we analyzed the bond length of B1–Mg2 (Figure 7) for all the six ge-
ometries over the period of 2000 fs with the time interval of 250 fs. The bond length
ranges from 3.063–3.657Å, 3.013–3.727Å, and 3.608–3.889Å for the ptB of BAl4Mg− (1a),
BAl4Mg (2n), and BAl4Mg+ (1c), respectively. Though the cationic ptB system in BAl4Mg+

contains 16 valence electrons, 1c showed the maximum steadiness of energy as well as
minimum change in bond length over the period of 2000 fs at 298 K compared to the other
two ptB systems. The anionic ptB BAl4Mg− (1a; 18 v. es) shows a slightly lower scale
of bond length variation (0.594Å) as compared to the neutral ptB BAl4Mg (2n; 17v. es),
which shows a variation of 0.714Å in bond lengths. Similarly, ppB BAl4Mg+ (3c) shows a
maximum uniformity of the B1–Mg2 bond length (ranging from 2.139–2.315Å) compared
to the other two ppB BAl4Mg−/0 systems (2a and 1n). The bond length ranges for 2a and
1n are 2.523–3.366Å and 2.402–0.684Å, respectively. The latter two ppB systems cover the
bond length variation from the ppB to the ptB region, and the fluctuations are quite high
compared to the rest of the other four isomers. Furthermore, 2a (18 v. es) depicts a lower
range of bond length variation (0.843Å) compared to 1n (17 v. es); i.e., 1.282Å.

In brief, the observation from the ADMP calculations suggests that all the geometries
show steadiness in total energy (in a.u) over the period of 2000 fs. Maximum steadiness is
perceived for ptB BAl4Mg+ (1c), whereas ppB BAl4Mg+ (3c) shows minimum steadiness
in terms of total energy. Both the cationic form of ptB and ppB BAl4Mg+ demonstrate a
smooth and minor change of the B1–Mg2 bond length. However, only the trajectory of
ppB BAl4Mg+ produced a comparatively different geometry (3D like) from the planar
tetracoordinate (2D) system. Nevertheless, simulations carried out at low temperatures
(100 and 200 K) suggest that 3c retains planarity.
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Figure 7. Bond length evolution of ptB and ppB BAl4Mg−/0/+ at 298 K for 2000 fs of time in the
ADMP simulation performed at the (U)ωB97XD/6-311++G(2d,2p) level.

3.3. Natural Bond Orbital Analysis

We employed an NBO scheme for the distribution of natural charge over the BAl4Mg−/0/+

systems and analyzed WBI values for the boron atom coordination. The summary of the
natural population analysis (NPA) charges for ptB (1a, 2n, and 1c) and ppB (2a, 1n, and 3c)
systems are given in Table 1. This shows that a notable amount of charge transfer takes
place from the peripheral aluminum atoms to the central boron atom. The natural charges
on the central boron atom vary from −2.74 to −2.84 for ptB systems and −2.57 to −2.80
|e| in ppB systems. The anions in both ptB and ppB show the highest negative charge
on the boron atom. Moving from anion to neutral, the negative charge (absolute value)
decreases in both the systems. As a result, an opposite trend is observed in the peripheral
atoms; i.e., the positive charge increases. This also indicates that the charge transfer from
the surrounding atoms to the boron atom decreases. The negative charges on the boron
atom suggest that boron acts as a σ-acceptor in all the systems. From the valence electronic
configuration of the boron given in Table 1, the 2px orbital population is significantly lower
than that of the 2py and 2pz orbital in the anion. The planner systems lie in the yz plane,
and thus 2px orbital is perpendicular with respect to the molecular plane. The perpen-
dicular boron 2px orbital participated in π-back bonding in the anionic system, whereas
this is less probable in neutral and cationic species. The WBItotal is calculated for both ptB
and ppB systems by taking the sum of four B–Al and one B–Mg values (see Table 2). The
WBI values of B–Al (3,4) are in the range 0.89 to 0.94 in case of ptB and 0.77 to 0.84 in ppB
systems which indicate covalent bonding with the central boron atom. However, B–Al
(5,6) WBI values are somewhat smaller than B–Al (3,4), suggesting a lower covalency along
that bond. The B–Mg WBI values are comparatively lower than those of the B–Al bonds.
This implies a partial covalent character of this bond. The B–Mg WBI value increases from
anion to cation in both ptB and ppB systems.
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Table 1. The natural charges (q, |e|) of BAl4Mg−/0/+ containing ptB and ppB systems and their
corresponding valence electronic configuration.

Type Species qB qMg qAl3 qAl4 qAl5 qAl6
Valence Electronic
Configuration of B

ptB BAl4Mg− (1a) −2.84 0.69 0.18 0.18 0.38 0.38 2s1.37 2p1.31
x 2p1.52

y 2p1.56
z

BAl4Mg (2n) −2.79 0.90 0.25 0.25 0.69 0.69 2s1.42 2p1.37
x 2p1.53

y 2p1.39
z

BAl4Mg+ (1c) −2.74 1.13 0.33 0.33 0.97 0.97 2s1.44 2p1.35
x 2p1.56

y 2p1.32
z

ppB BAl4Mg− (2a) −2.80 0.83 0.16 0.16 0.32 0.32 2s1.36 2p1.26
x 2p1.52

y 2p1.60
z

BAl4Mg (1n) −2.60 1.12 0.27 0.27 0.47 0.47 2s1.40 2p1.39
x 2p1.52

y 2p1.29
z

BAl4Mg+ (3c) −2.57 1.47 0.44 0.44 0.61 0.61 2s1.43 2p1.39
x 2p1.56

y 2p1.14
z

Table 2. Wiberg bond indices for BAl4Mg−/0/+ containing ptB and ppB systems.

Type Species B1-Mg2 B1-Al3 B1-Al4 B-Al5 B1-Al6 WBItotal on B

ptB BAl4Mg− (1a) 0.074 0.907 0.907 0.651 0.651 3.190
BAl4Mg (2n) 0.064 0.889 0.889 0.614 0.614 3.064
BAl4Mg+ (1c) 0.081 0.937 0.937 0.650 0.650 3.255

ppB BAl4Mg− (2a) 0.045 0.842 0.842 0.726 0.726 3.180
BAl4Mg (1n) 0.119 0.769 0.769 0.683 0.683 3.023
BAl4Mg+ (3c) 0.355 0.843 0.843 0.644 0.644 3.328

3.4. Molecular Orbital Analysis

Key molecular orbitals of BAl4Mg−/0/+ containing the ptB atom are given in Figure 8,
whereas the same orbitals containing the ppB atom are given in Figure 9. Energies of the
MOs obtained at the (U)ωB97XD/6-311++G(2d,2p) level are given in eV units. We further
decomposed the MO composition with the natural atomic orbital method. For brevity, com-
positions and major contributions are given in the supporting information (see Table S7).
The highest occupied molecular orbital (HOMO) for anionic and neutral ppB species is
mainly composed of the B 2pz orbital and Al (5,6) 3pz orbital. All the pz orbitals are in a
bonding interaction. In contrast, the Mg 3s orbital contributes significantly in the case of
anionic and neutral ppB BAl4Mg. As the cationic species has one electron fewer than the
neutral species, its HOMO resembles the HOMO–1 of the neutral and anionic species. It is
composed of a B 2py orbital along with an Al (5,6) 3s orbital for ptB structure. For the ppB
cationic case, besides the B 2pz orbital, Al (3,4) 3s and 3pz orbitals participate in HOMO.
HOMO–3 of the anionic and neutral system and HOMO–1 of the cationic species are of
π-type MO, which are formed from B 2px and Al 3px orbital. A significant contribution
is made by the B 2px orbital. The HOMO–LUMO energy gaps (∆EH−L) are 4.59, 1.17,
and 4.71 eV for anionic, neutral, and cationic ptB BAl4Mg, respectively, and 0.43, 1.46,
and 4.59 eV for anionic, neutral, and cationic ppB BAl4Mg species, respectively. In the
neutral BAl4Mg, the HOMO has one unpaired electron; i.e., singly occupied MO (SOMO).
Moving from anionic to cationic species, ∆EH−L increases, indicating that cationic BAl4Mg
is more stable than its anionic form in both ptB and ppB cases. This is also evident from
the lower HOMO energy compared to HOMO–1 of anionic and neutral BAl4Mg. However,
the Mg atomic orbital contribution is present only in HOMO–2 for all the ptB BAl4Mg
species. In the HOMO–2 of ptB BAl4Mg+, major contributions come from B 2pz, Mg 3s,
and Al (3,4) 3py, 3pz orbitals. In contrast to anionic and neutral ptB BAl4Mg, no significant
contribution was found from boron. A similar type of composition is also found for the
ppB BAl4Mg HOMO–2 orbital. In the HOMO of both anionic and neutral ppB BAl4Mg,
there is a significant contribution from the Mg 3s orbital. So, there is a B–Mg coordination
present for these species, which is absent in the ptB case. In the LUMO of cationic ppB
BAl4Mg, an orbital contribution from Mg 3s is found besides the B 2pz orbital. This result
suggests that, besides making bonds with four aluminum atoms, the central boron also
has a fifth coordination with the Mg in the ppB species. As the neutral BAl4Mg has one
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unpaired electron, we also calculated the spin density (see Figure 10) for the ptB BAl4Mg.
The unpaired electron is delocalized on four Al atoms and with the boron 2pz orbital. Al
(3, 4) have the highest Mulliken spin density.

(−2.67; σ) (−2.89; σ) (−3.52; σ) (−3.70; π) (−4.59; σ) (1.92; σ*) 

B
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 (1
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B
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l 4M
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Figure 8. Molecular orbitals of BAl4Mg−/0/+ containing a ptB atom. Energies are in eV calculated at
the (U)ωB97XD/6-311++G(2d,2p) level.
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Figure 9. Molecular orbitals of BAl4Mg−/0/+ containing a ppB atom. Energies are in eV calculated
at the (U)ωB97XD/6-311++G(2d,2p) level.
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Figure 10. Spin density plot of BAl4Mg (2n) containing a ptB atom calculated at the UωB97XD/6-
311++G(2d,2p) level.

3.5. Adaptive Natural Density Partitioning (AdNDP) Analysis

We performed AdNDP analysis [97,98] as implemented in Multiwfn [104] for both
ptB and ppB geometries of BAl4Mg−/0/+ to find the bonding scenarios in these systems.
After NBO analysis, we mainly focused on the delocalized nc–2e bonds, where n starts
from 3 to 6 (total number of atoms). All nc–2e bonding orbitals obtained for 1a, 2n, and 1c
that show the ptB atom are given in Figure 11. For the anion and cation, there are two 3c–2e
and one 6c–2e σ bonds with an occupation number (ON) of 1.99 |e| each and one 5c–2e π
bond with an ON of 1.99 |e|. For neutral, the only difference that we observed was that the
alpha orbital shows a maximum ON of 1.00 |e| with a 6c–2e σ bond, whereas in beta, it is a
5c–2e σ bond. The 5c–2e π bond remains the same in both the cases. Overall, for all ptB
cases, four multi-center two electron bonds (and thus eight electrons in total) that show the
highest ONs support the idea of 2π/6σ double aromaticity. Likewise, for ppB geometries
(2a, 1n, and 3c), we performed AdNDP analysis, and the nc–2e bonding orbitals are shown
in Figure 12. For the anion, there are two 5c–2e σ bonds with an ON of 1.99 |e| each, one
6c–2e σ bond with an ON of 2.00, and one 5c–2e π bond with an ON of 1.98 |e|. For the
cation, one can clearly see that the delocalization is increased in the system as there are two
6c–2e σ bonds with an ON of 2.00 |e| each, and one 5c–2e σ bond and one 5c–2e π bond
both with an ON of 1.99 |e| each. For neutral, we see similar trends in both alpha and beta
cases. Once again, even for ppB systems, 2π/6σ double aromaticity is maintained.

3.6. NICS Analysis

In all these six isomers of BAl4Mg−/0/+, the π/σ-dual aromaticity can also be inde-
pendently confirmed through NICS values. These values computed at 0 (on the ring) and
1 Å (above the ring) for ptB and ppB isomers at the (U)ωB97XD/6-311++G(2d,2p) level
are shown in Figure 13. The pink dots represent the position of the ghost atoms. These
positions are approximately chosen from the ring critical points obtained through AIM
analysis. All the NICS values obtained are negative in all the cases. This indicates that
both σ- (NICS(0)) and π-aromaticity (NICS(1)) are present in all these six different isomers,
which supports the conclusion reached from the AdNDP bonding patterns.
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Figure 11. AdNDP bonding patterns of BAl4Mg−/0/+ containing ptB atom.
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Figure 12. AdNDP bonding patterns of BAl4Mg−/0/+ containing ppB atom.
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Figure 13. Nucleus-independent chemical shift (NICSs; in ppm) values for BAl4Mg−/0/+ calculated
at the (U)ωB97XD/6-311++G(2d,2p) level. NICS (1) (green color) is calculated at 1 Å above the ring,
whereas NICS (0) (blue color) refers to on the plane values.

3.7. AIM Analysis

We calculated various electron density descriptors at (3, –1) bond critical points for
six different BAl4Mg species. These results are summarized in Table 3. The contour
diagram of ∇2ρ(r) along with BCP paths and the corresponding ELF plots are shown
in Figures 14 and 15. The existence of bonds between the central boron atom and four
surrounding Al atoms is confirmed in both ptB (1a, 2n, and 1c) and ppB (2a, 1n, and 3c)
systems. However, additional Mg atom coordination is found in the case of all the ppB
species. Although the electron density at B–Mg BCP is lower compared to other BCPs,
the low values of electron density (ρ(rc)) at the BCPs indicate closed-shell type bonding.
This is also evident from the positive ∇2ρ(rc), which indicates lower electron density at the
BCPs. The total energy density H(rc) = G(rc)+V(rc) at the corresponding BCPs is negative
for all the cases, suggesting a partial covalent character. The G(rc)/V(rc) values are within
0.5 and 1, which indicate the absence of a non-covalent interaction and partial covalent
character. This is also supported by the G(rc)/ρ(rc) values, which are less than 1. The ELF
plots show the extent of electron sharing among the central B to the peripheral atoms and
electron density delocalization within the BAl4Mg system. In the ppB system, there is
electron delocalization between B and Mg besides B and Al, which is absent in the case of
ptB BAl4Mg species, which supports our previous analyses.
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BAl4Mg− (1a)   BAl4Mg (2n)  BAl4Mg+ (1c)  

Figure 14. Contour map of the Laplacian of electron density (∇2ρ(r)) with the bond paths (top row)
and color-filled map of ELF (bottom row) for BAl4Mg−/0/+ containing the ptB atom calculated at
the (U)ωB97XD/6-311++G(2d,2p) level.

BAl4Mg (1n)  BAl4Mg+ (3c)  BAl4Mg− (2a)   

Figure 15. Contour map of the Laplacian of electron density (∇2ρ(r)) with the bond paths (top row)
and color-filled map of ELF for BAl4Mg−/0/+ containing ppB atom calculated at the (U)ωB97XD/6-
311++G(2d,2p) level.
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Table 3. Electron density descriptors (in a.u.) at the (3, –1) bond critical points (BCP) and ring critical point (RCP) obtained
from the (U)ωB97XD/6-311++G(2d,2p) level for BAl4Mg−/0/+ (1a, 2n and 1c) with ptB atom. The topological parameters
such as Lagrangian kinetic energy G(rc), potential energy density V(rc), energy density E(rc) or H(rc), −G(rc )/V(rc ),
and G(rc)/ρ(rc) at the critical points are also given.

System BCP & RCP ρ(rc) ∇2ρ(rc) G(rc) V(rc) H(rc) ELF −G(rc)/V(rc) G(rc)/ρ(rc)

1a B1-Al5 0.0611 0.1090 0.0505 −0.0739 −0.0234 0.2250 0.6838 0.8266
B1-Al4 0.0705 0.1370 0.0628 −0.0912 −0.0284 0.2320 0.6884 0.8909
B1-Al6 0.0611 0.1090 0.0505 −0.0739 −0.0234 0.2250 0.6838 0.8266
RCP 0.0213 0.0135 0.0075 −0.0115 −0.0041 0.2850 0.6460 0.3492
Al3-Mg2 0.0243 0.0123 0.0088 −0.0144 −0.0057 0.3090 0.6065 0.3603
B1-Al3 0.0705 0.1370 0.0628 −0.0912 −0.0284 0.2320 0.6884 0.8909
Al4-Mg2 0.0243 0.0123 0.0088 −0.0144 −0.0057 0.3090 0.6065 0.3603

2n B1-Al6 0.0611 0.1090 0.0505 −0.0738 −0.0233 0.2260 0.6839 0.8254
B1-Al4 0.0688 0.1250 0.0590 −0.0867 −0.0277 0.2400 0.6805 0.8583
B1-Al3 0.0688 0.1250 0.0590 −0.0867 −0.0277 0.2400 0.6805 0.8583
B1-Al5 0.0611 0.1090 0.0505 −0.0738 −0.0233 0.2260 0.6839 0.8254
RCP 0.0203 0.0104 0.0056 −0.0086 −0.0030 0.3840 0.6502 0.2762
Al4-Mg2 0.0273 0.0068 0.0088 −0.0159 −0.0071 0.3960 0.5536 0.3215
Al3-Mg2 0.0273 0.0068 0.0088 −0.0159 −0.0071 0.3960 0.5536 0.3215

1c B1-Al4 0.0677 0.1040 0.0541 −0.0821 −0.0281 0.2630 0.6584 0.7985
B1-Al3 0.0677 0.1040 0.0541 −0.0821 −0.0281 0.2630 0.6584 0.7985
B1-Al6 0.0633 0.1090 0.0521 −0.0770 −0.0249 0.2350 0.6771 0.8231
B1-Al5 0.0633 0.1090 0.0521 −0.0770 −0.0249 0.2350 0.6771 0.8231
RCP 0.0197 0.0186 0.0069 −0.0092 −0.0023 0.2600 0.7533 0.3527
Al4-Mg2 0.0289 0.0076 0.0095 −0.0172 −0.0077 0.4010 0.5550 0.3303
Al3-Mg2 0.0289 0.0076 0.0095 −0.0172 −0.0077 0.4010 0.5550 0.3303

2a B1-Al3 0.0689 0.1130 0.0570 −0.0857 −0.0287 0.2540 0.6651 0.8276
B1-Al4 0.0689 0.1130 0.0570 −0.0857 −0.0287 0.2540 0.6651 0.8276
B1-Al5 0.0625 0.1130 0.0526 −0.0769 −0.0243 0.2240 0.6841 0.8417
B1-Al6 0.0625 0.1130 0.0526 −0.0769 −0.0243 0.2240 0.6841 0.8417
B1-Mg2 0.0296 0.0557 0.0189 −0.0239 −0.0050 0.1550 0.7918 0.6395

1n B1-Al4 0.0653 0.1100 0.0538 −0.0802 −0.0264 0.2430 0.6708 0.8231
B1-Al3 0.0653 0.1100 0.0538 −0.0802 −0.0264 0.2430 0.6708 0.8231
B1-Mg2 0.0336 0.0765 0.0248 −0.0305 −0.0057 0.1460 0.8137 0.7381
B1-Al6 0.0585 0.0997 0.0472 −0.0695 −0.0223 0.2250 0.6791 0.8078
B1-Al5 0.0585 0.0997 0.0472 −0.0695 −0.0223 0.2250 0.6791 0.8078

3c B1-Al5 0.0541 0.0513 0.0343 −0.0558 −0.0215 0.2960 0.6149 0.6339
B1-Al6 0.0541 0.0513 0.0343 −0.0558 −0.0215 0.2960 0.6149 0.6339
B1-Mg2 0.0346 0.0739 0.0247 −0.0309 −0.0062 0.1540 0.7985 0.7135
B1-Al4 0.0649 0.1240 0.0564 −0.0817 −0.0254 0.2220 0.6895 0.8681
B1-Al3 0.0649 0.1240 0.0564 −0.0817 −0.0254 0.2220 0.6895 0.8681
RCP 0.0378 0.0184 0.0137 −0.0229 −0.0091 0.4410 0.6006 0.3636
Al6-Al5 0.0428 −0.0327 0.0061 −0.0204 −0.0143 0.8580 0.2999 0.1429

3.8. ALMO-EDA

We obtained an energy decomposition analysis (EDA) based on absolutely localized
molecular orbitals (ALMO-EDA) calculations using the QCHEM program [103]. The total
interaction energy is composed of four components as shown in Equation (1)

∆Eint = Emolecule −
f rags

∑
Z

EZ

= ∆EPREP + ∆EFRZ + ∆EPOL + ∆ECT

(1)

Two fragments named X(BAl−/0/+
4 ) and Y(Mg) were considered to check the in-

tramolecular interactions for all the six different structures (both ptB and ppB). The sharing
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of interaction energy (∆Eint) terms such as the preparation energy (∆EPREP), frozen energy
(∆EFRZ), polarization energy (∆EPOL), and charge transfer (∆ECT) are given in Figure 16.
Herein, the ∆EFRZ increases for ppB BAl4Mg−/0/+ compared to ptB BAl4Mg−/0/+. This
term shows the energy change from the interaction of two fragments without the spin-
coupling (SC), polarization (POL), or charge transfer (CT). It includes electrostatics, Pauli
repulsion, exchange-correlation as well as dispersion corrections. The smaller value of
∆EPREP shows that the geometry distortion and orbital rehybridization of each fragment
to the original structure are very small in all cases. Two terms ∆EPOL and ∆ECT demon-
strate that polar, charge-shift, and ionic-type interactions are present in all the six cases.
Similar observations for ptC systems are reported elsewhere [108]. Thus, our calcula-
tions for ptB/ppB systems support the notion that there is charge transfer from Y(Mg)
to X(BAl−/0/+

4 ), as with ptC systems. Therefore, we can formulate our global and local
minima of ptB and ppB as [X]−[Y]+.
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Figure 16. Total interaction energy containing four energy components for ptB and ppB systems of
BAl4Mg−/0/+ obtained at the (U)ωB97XD/6-311++G(2d,2p) level.

4. Conclusions

Various isomers of BAl4Mg−/0/+ are theoretically identified for the first time using a
tabu-search algorithm and chemical intuition. Three isomers (1a, 2n, and 1c) containing ptB
atom and three isomers (2a, 1n, 3c) containing ppB atom are studied in detail. The global
minima for the anion and cation contain a ptB atom with 18 and 16 valence electrons,
respectively. The global minimum for the neutral exhibits a ppB atom with 17 valence
electrons. The low-lying isomers of the anion (2a) and cation (3c) with 18 and 16 valence
electrons, respectively, also exhibit a ppB atom. Ab initio MD simulations carried out
at 298 K indicate that all isomers are kinetically stable except 3c. At this temperature,
the cation geometry (3c) breaks apart from its original structure. However, low-temperature
simulations carried out at 100 and 200 K suggest that 3c retains planarity and thus remains
kinetically stable. Therefore, detecting 3c through gas phase experiments is viable at low
temperatures. The electron affinity value of BAl4Mg is 2.15 eV, and therefore it is possible
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to detect 1n (ppB) through 1a (ptB). Energy decomposition analysis carried out for all these
six systems indicates that the interaction between fragments BAl−/0/+

4 and Mg is ionic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atoms9040089/s1, Supplementary file 1: Supporting information for this paper.
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