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Abstract: Polarizabilities and hyperpolarizabilities, α1, β1, γ1, α2, β2, γ2, α3, β3, γ3, δ and ε of
hydrogenic systems have been calculated in the presence of a Debye–Huckel potential, using pseu-
dostates for the S, P, D and F states. All of these converge very quickly as the number of terms in the
pseudostates is increased and are essentially independent of the nonlinear parameters. All the results
are in good agreement with the results obtained for hydrogenic systems obtained by Drachman.
The effective potential seen by the outer electron is −α1/x4 + (6β1 − α2)/x6 + higher-order terms,
where x is the distance from the outer electron to the nucleus. The exchange and electron–electron
correlations are unimportant because the outer electron is far away from the nucleus. This implies
that the conventional variational calculations are not necessary. The results agree well with the
results of Drachman for the screening parameter equal to zero in the Debye–Huckel potential. We
can calculate the energies of Rydberg states by using the polarizabilities and hyperpolarizabilities in
the presence of Debye potential seen by the outer electron when the atoms are embedded in a plasma.
Most calculations are carried out in the absence of the Debye–Huckel potential. However, it is not
possible to carry out experiments when there is a complete absence of plasma at a particular electron
temperature and density. The present calculations of polarizabilities and hyperpolarizabilities will
provide accurate results for Rydberg states when the measurements for such states are carried out.

1. Introduction

Recently, Qi et al. [1] reported a calculation of the dipole polarizability α1 of the
hydrogenic systems in the screened Coulomb potential due to the systems being in hot
dense plasmas. The screened potential in this case is the Debye–Huckel potential given by
Equation (1).

V(r) = (−Ze2/r) exp(−µr), (1)

where 1/µ = (kBTe/4πe2ne)1/2 is the Debye screening length, kB is the Boltzmann constant,
Te and ne are the plasma electron temperature and density, respectively. There are other
calculations of energy and polarizability by Zimmermann [2], Bahar et al. [3], Paul and Ho [4],
Fowler [5] and Saha et al. [6]. The expression for polarizabilities is given by Equation (1).

Si,k = Σ < 0 | vi | N> | <N | vi | 0>/(EN − E0)k, (2)

where vi = r1
iPi(cosθi) and the various polarizabilities are given by Equation (2).

αi = Si,1, βi = Si,2 and γi = Si,3. ΨN are intermediate states of the appropriate angular
momentum and Σ indicates the sum of all such states.

2. Calculations and Results

Qi et al. [1] solved the Schrodinger equation in both the discrete and continuous
spectrum of the potential given in Equation (1) by using the symplectic integration scheme.
The contribution of the continuum states to the polarizability is particularly important
for large µ when the electron binding energy is small and coupling to the continuum is
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strong. Saha et al. [6] solved the eigenvalue problem by the variational method using a
large Slater-type orbitals basis for the discrete states. The contribution of the continuum
states was not considered.

In the present calculation, we used pseudostates [7] for helium and the negative hy-
drogen ion to calculate polarizabilities and hyperpolarizabilties. In [7], the wave functions
were of Hylleraas form because the systems consist of two electrons. Definitive results
were obtained for the polarizabilities and hyperpolarizabilties. Now we are dealing with
single-electron systems and therefore wave functions consist of one electron only and are
very simple.

Pseudostates used in this calculation are given by

ΨS = Σi=0Ciri exp(−asr) Y00(Ω), (3)

ΨP = Σi=1Diri exp(−apr) Y10(Ω), (4)

ΨD = Σi=2Eiri exp(−adr) Y20(Ω), (5)

ΨF = Σi=3Firi exp(−afr) Y30(Ω), (6)

where Ci, Di, Ei, and Fi, are the eigenvectors. With a few terms and taking the nonlinear
parameters equal to 1.0 for hydrogen atoms, we obtained results for αi, βi, and γi which
agree very well for µ = 0 with the known results. We varied all the nonlinear parameters
in Equations (3)–(6). However, results were not sensitive to the variation of nonlinear
parameters. Therefore, we kept it fixed at 1.0. It is certainly possible to use the hydrogenic
functions. The use of pseudostates makes calculations very simple and straightforward.
This reduces the efforts involved in the computation. We give in Table 1 the presently
calculated results for αi for various values of µ, using 20 terms in the expansion for wave
functions (3) and (4). The results are very well converged for shorter expansions as well.
We see that the agreement is very good. The present calculation is very easy to carry out
compared to that of Qi et al. [1]. They have to calculate each bound state and the wave
function corresponding to that state. They also included the continuum of the electron-
hydrogenic system. It should be noticed that only those values of µ can be used to calculate
α1 for which the ground state of the hydrogen atom remains bound.

Table 1. Comparison of the presently calculated results for αi for hydrogen atom for various values
of µ, using 20 terms in the wave functions.

M Present Qi et al. [1]

0.00 4.500 4.500

0.01 4.50220 A

0.02 4.50868 4.50820

0.025 4.51346 4.51299

0.050 4.55220 4.55176

0.0625 4.58049 4.58003

0.10 4.69978 4.69933

0.20 5.27637 5.27661
A: No results are given for this value of µ by the authors.

In Table 2, we give β1, γ1, α2, β2, γ2, α3, β3, γ3, ε and δ for a few values of µ. The
third-order polarizability δ has the following form [8]:

δ = ΣN,M <0 | vi | N><N | vj | M><M | <M | vk | 0>/(EN − E0)(EM − E0), (7)
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Table 2. Polarizabilities and hyperpolarizabilities for hydrogen atoms for various values of µ.

µ = 0.0 0.02 0.025 0.05 0.0625 0.10 0.20

β1 5.3750 5.3917 5.4009 5.4751 5.5305 5.7636 6.9384

γ1 6.6458 6.6750 6.6911 6.8219 6.9182 7.3313 9.5128

α2 15.000 15.0540 15.0838 15.3246 15.5008 16.2498 20.0479

β2 13.3750 13.4453 13.4840 13.7977 14.0284 15.0195 20.3300

γ2 12.4948 12.5829 12.6315 13.0262 13.3179 14.5872 21.8128

α3 131.2500 131.989 132.396 135.6875 138.1049 148.490 204.341

β3 102.031 102.817 103.249 106.758 109.349 120.632 185.434

γ3 83.2044 84.0320 84.4974 88.1980 90.9547 103.142 178.390

E 59.2125 59.7110 59.9307 61.7172 63.0371 68.7756 101.226

∆ 106.500 107.036 107.331 109.724 111.484 119.044 159.391

The values that (ijk) can take are all the permutations of [1,2].
The fourth-order hyperpolarizability only involving dipole terms has the following

form [8]:

ε = ΣN,M,P <0 | v1 | N><N | v1 | M><M | v1 | P | 0>/(EN -E0)(EM - E0)(EP − E0) (8)

In Equations (7) and (8), potentials v1, v2, and v3 are given reference [8] and are not
repeated here. The notation |0>, |N>, |M>. and |P> represent wave functions for the
angular momenta S, P, D, and F given in Equations (3)–(6) to be appropriately used to
obtain nonzero matrix elements in Equations (7) and (8).

Similarly, by taking the nonlinear parameters equal to 2.0, we obtain results which
agree with those obtained by Drachman [7] for µ = 0, using the Dalgarno and Lewis
method [9]. The present results are given in Table 3. It can be seen that the polarizabilities
and hyperpolarizabilities increase as µ increases. Since the ground state of the He ion is
very tightly bound compared to that of the hydrogen atom, it is possible to have much
larger values of µ.

Table 3. Polarizabilities and hyperpolarizabilities for the helium ion for various values of µ.

µ = 0.0 0.02 0.025 0.05 0.0625 0.10 0.20

α1 0.28125 0.28139 0.28146 0.28209 0.28255 0.28451 0.29374

β1 0.08394 0.08406 0.08409 0.08439 0.08461 0.08556 0.09006

γ1 0.02596 0.02599 0.02601 0.02614 0.02623 0.02665 0.02864

α2 0.23438 0.23459 0.02347 0.23568 0.23640 0.23945 0.25390

β2 0.05225 0.05232 0.05235 0.05267 0.05291 0.05389 0.58670

γ2 0.01220 0.01222 0.01224 0.01234 0.01241 0.01272 0.14245

α3 0.51269 0.51343 0.51384 0.51717 0.51962 0.53003 0.58004

β3 0.09964 0.09984 0.09994 0.10083 0.10148 0.10426 0.11780

γ3 0.02031 0.02037 0.02039 0.02063 0.02080 0.02153 0.02518

ε 0.05792 0.05802 0.05808 0.05853 0.05886 0.06027 0.06716

δ 0.41602 0.41655 0.41684 0.41926 0.42104 0.42861 0.46501

3. Rydberg States of He

The long-range potential, in terms of polarizabilities, seen by the outer electron is
given by
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U(x) = −α1/x4 + (6β1 − α2)/x6 + (δ + 16γ/5)/x 7 + (−α3 + 15β2 − ε − α1β1 − 72γ1 [1 + L(L + 1)/10])/x8, (9)

where x is the distance of the outer electron from the nucleus. In Table 4, we give the
expectation value of U(x) in MHz for the wave function of the outer electron in N = 10
and L = 7 and 8 states and compare the present results for µ = 0.0 with those obtained by
Drachman [10] without the second-order corrections. We see that the agreement is very
good even when very simple wave functions are used.

Table 4. Comparison of the presently calculated Rydberg states with the results of Drachman.

N L Present
(MHz)

Drachman [6]
(MHz)

10 7 −48.60605124 −48.60604738

10 8 −24.17853458 −24.17853458

The expectation values of 1/xn for n = 4, 5, 6, 7, 8, 9 and 10 were calculated for µ = 0.0
and therefore cannot be used when the helium atoms are embedded in the plasma.

4. Transition Rates

Transition rates are given by

A(np→ 1s) = 8.032× 109 (Enp − E1s)
3

9

∞∫
0

Rnp(r)r3R1s(r)dr (10)

In the above equation, Rnp(r) and R1s(r) are the hydrogen functions for np and 1s
states. In Table 5, we show how the transition rates from 4p, 3p and 2p states to the 1s state
in hydrogen atoms change with the screening parameter. It can be seen that all the rates
decrease with the increase in the screening parameter µ. Using the exact wave functions,
we find the transition rates for 2p, 3p and 4p states to 1s state equal to 0.626, 0.167 and
0.0682 in units of 109 s−1 when there is no screening and exact hydrogenic functions are
used. The last one is not in agreement with the one obtained from pseudostates while the
first two are in good agreement with those obtained using pseudostates.

Table 5. Transition rates in sec (−1) 4p, 3p and 2p states of hydrogen atoms to the 1s state. The rates
have been multiplied by 10(−9).

µ A (2p→1s) A (3p→1s) A (4p→1s)

0.000 0.624293 0.166670 0.071760

0.020 0.618343 0.160013 0.066440

0.025 0.615137 0.156613 0.064150

0.050 0.590180 0.131877 0.053783

0.0625 0.572693 0.115647 0.051620

0.1000 0.503290 0.061607 0.058523

0.2000 0.215653 0.034923 0.070210

5. Conclusions

We showed that by using pseudostates, it is possible to obtain good results for polariz-
abilities and hyperpolarizabilties for hydrogenic systems, energies of Rydberg states in the
helium atoms and transition rates in hydrogen atoms. The present results obtained using
pseudostates for µ = 0 agree with those obtained using elaborate wave functions. Since
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there is always the presence of a plasma at a particular electron temperature and density,
the present results will be useful for comparison with observations. A detailed account
of development of the field and possible applications is given in reference [10]. Using the
perturbation theory, wave functions, polarizabilities and hyperpolarizabilities given here,
the energies of various Rydberg states of any quantum numbers can easily be calculated in
the Debye potential.
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