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Abstract: In the present paper, the correction of the recombination and ionization processes of the
hydrogen atom due to the thermal interaction of two charges was considered. The evaluation was
based on a rigorous quantum electrodynamic (QED) approach within the framework of perturbation
theory. The lowest-order radiative correction to the recombination/ionization cross-section was
examined for a wide range of temperatures corresponding to laboratory and astrophysical conditions.
The found thermal contribution was discussed both for specific states and for the total recombination
and ionization coefficients.

Keywords: hydrogen atom; recombination and ionization processes; thermal radiative corrections;
heat bath

1. Introduction

The electron recombination/ionization process has been widely discussed in the
literature. Since the end of the 20th century, the study of this effect has found application
in modern physics with the aim of a detailed description of laboratory experiments and
the cosmological evolution of the early Universe. The theoretical prescription for electron
recombination is precisely given within the framework of the quantum mechanical (QM)
approach, which allows one to carry out the non-relativistic evaluation (based on the
solution of the Schrödinger equation) for light atomic systems and easily extends to the
relativistic case within the Dirac formalism. Recently, focusing on simple examples of the
hydrogen atom, a rigorous derivation of the corresponding cross-section was obtained
within the framework of quantum electrodynamics (QED) [1]. In particular, quantum
mechanical results were obtained by considering a one-loop self-energy Feynman diagram.
In addition, in [1], it was demonstrated that the QED approach accommodates a thorough
description of the effects induced by the blackbody radiation and, by excellence, strictly
take into account the finite lifetimes of atomic levels.

One of the advantages of the QED approach is its ability to consistently take into
account the radiative corrections to the recombination and ionization processes. For
example, the derivation of the corresponding radiative QED corrections in the framework
of the two-time Green function method using the adiabatic S-matrix formalism can be
found in [2]. Concentrating on the development of the thermal QED theory (TQED), in this
paper, we describe the lowest-order radiative correction that occurs when evaluating the
exchange of thermal photons between two charges [3]. A consistent calculation of thermal
corrections to the emission probabilities in hydrogen and singly ionized helium atoms were
presented in [4,5], and the correction due to thermal interaction was recently evaluated
in [6], showing its importance for the study radiation processes.

Adopting the formalism developed in [1,6] for the vertex-type radiative thermal
correction to a particular case of the radiative recombination process, we estimate the
Feynman graphs shown in Figure 1.
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Figure 1. Feynman diagrams representing the thermal correction to the thermal interaction potential.
A wavy line (γ) indicates the photon emission process; and a dashed line (γT) corresponds to the
thermal Coulomb photon exchange of a bound electron with a nucleus. The double-solid line denotes
the bound electron in the nucleus field (the Furry picture). Notations i and f represent the initial and
final states of a bound electron, respectively, and m corresponds to the intermediate state represented
in the electron propagator. Subfigures (a,b) represent the accompanying Feynman graphs and, as
usual, differ from each other in the order of time for the emission and interaction vertices.

The process of electron transition from the initial state of the continuous spectrum
i = ε to the bound state with the emission of a photon is considered here for the hydrogen
atom placed in a heat bath. Working in non-relativistic approximation, the wave function of
the incident electron can be described as the series expansion over spherical waves [7–11].
The cross-section of the recombination process, σrec, can be expressed via the ionization
cross-section, σion, by the detailed balance relation (in relativistic units h̄ = c = m = 1):

σrec
nl = 2(2l + 1)σion

nl
k2

p2 , (1)

where k is the momentum of the emitted photon, p ≡ |~p| is the incident electron momentum
and nl is the principal quantum number and orbital momentum of the bound atomic state,
respectively. The corresponding QED derivation of the cross-section for the radiative
recombination process using the one-loop self-energy correction can be found in [1].

In the following section, we briefly present the mathematical derivations for the vertex
thermal correction to the one-electron recombination process. Numerical calculations
of this correction to the partial cross-sections and then to the total recombination and
ionization coefficients are presented in Section 3. A discussion and conclusions of the
obtained results are presented in the last section and can be found throughout the paper.

2. Thermal Vertex Correction to the Recombination Process

To obtain the lowest-order thermal correction to the recombination cross-section, it is
convenient to use the adiabatic S-matrix formalism for reducible Feynman graphs (Figure 1),
when each interaction vertex contains an additional exponential factor exp(−η|t|). The
exponential pre-factor, however, is not necessarily needed at the top of the thermal inter-
action indicated by the cross in these diagrams. The S-matrix element corresponding to
Figure 1a) is:

S(3)
η = (−ie)2iZe

∫
d4x1d4x2d4x3ψ̄ f (x1)γ

µ Aµ(x1) (2)

×e−η|t1|S(x1, x2)e−η|t2|γνDβ
νλ(x2, x3)jλ(x3)ψi(x2),

where integration is extended over space–time variables xi which denote the spatial position
vector~r and the time variable t. The Dirac matrices are denoted as γµ, where µ takes the
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values µ = (0, 1, 2, 3), ψa(x) = ψa(~r)e−iEat is the one-electron Dirac wave function, ψ̄a is
the Dirac conjugated wave function and jσ(x) is the four-dimensional nuclear current.

The standard electron propagator defined as the vacuum-expectation value of the
time-ordered product of electron-positron field operators can be represented in terms of an
eigenmode decomposition with respect to one-electron eigenstates [11,12]:

S(x1, x2) =
i

2π

∞∫
−∞

dωe−iω(t1−t2) ∑
n

ψn(~r1)ψ̄n(~r2)

ω− En(1− i0)
, (3)

where summation runs over the entire Dirac spectrum. The photon wave function,
Aµ(x), is:

Aµ(x) =

√
2π

ω
e(λ)µ eikµxµ

. (4)

Here, e(λ)µ are the components of the photon polarization four-vector, xµ is the space–
time four-vector, kµ is the photon momentum four-vector with the space vector ~k and

photon frequency ω = |~k|. Using the transversality condition γµe(λ)µ = ~e~α (~e is a transverse
space vector of the photon polarization), the wave function for the emitted/absorbed real
photon takes the form:

~A(x) =

√
2π

ω
~eei(~k~r−ωt) ≡

√
2π

ω
e−iωt ~A(~k,~r). (5)

The thermal part of photon propagator was found in [3] in the form:

Dβ
λσ(x2x3) = 4π

∫
C1

d4k
(2π)4

eik(x2−x3)

k2 nβ(|~k|), (6)

where k2 ≡ k2
0 −~k2, nβ(|~k|) represents the Planck distribution function (exp(β|~k|)− 1)−1,

β = 1/(kBT), kB is the Boltzmann constant and T is the temperature in Kelvin. The notation
C1 in Equation (5) denotes integration in the k0 plane over the contour shown in Figure 2.

Figure 2. Integration contour C1 in k0 plane. Arrows on the contour define the pole-bypass rule. The
poles ±ωk are denoted with ×marks.

At first, one can integrate over the d4x3 variables in Equation (2) which leads to the
four-dimensional Fourier transform of the nuclear current jσ(k). For the point-like nucleus
within the static limit, it can be simplified to jσ(k) = j0(k) = 2πδ(k0)ρ(~k) = 2πδ(k0). Then,
the arising δ-function leads to the doubled three-dimensional Fourier transform of the
function nβ(|~k|)/~k2. A rigorous derivation of the remaining integrals can be found in [3],
which gives rise to the thermal Coulomb potential.
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Then, the S-matrix element, Equation (2), can be found by

S(3)
η = −4πZe3

∫
d4x1d4x2ψ̄ f (x1)γ

µ Aµ(x1)e−η|t1| (7)

×S(x1, x2)e−η|t2|
∫ d3k

(2π)3
ei~k~r2

~k2
nβ(|~k|)ψi(x2).

It should be noted here that the same expression could be immediately written in
the thermal Coulomb gauge and must be regularized at |~k| ≡ κ → 0, as can be seen
in [3,6]. In the interest of brevity, we subsequently omit the evaluation of the Feynman
graphs in Figure 1 (as the corresponding calculations completely repeat the evaluation of
bound–bound transition probability presented in [6]).

According to [6], the regularized thermal correction to the emission probability is
reduced to:

∆Wrad
i f =

4Ze4ζ(3)
9π2β3 〈i|~α~A| f 〉ωi f d~ν× (8)[

∑′

m

〈 f |~α~A∗|m〉〈m|r2|i〉
Ei − Em

+ ∑′

m

〈 f |r2|m〉〈m|~α~A∗|i〉
E f − Em

+
1
2
〈 f |~α~A∗|i〉〈i|r2|i〉

ωi f
− 1

2
〈 f |r2| f 〉〈 f |~α~A∗|i〉

ωi f

]
,

where ζ(3) is the Riemann zeta function. The recombination cross-section dσ is related to
the transition probability by the relation dσ = dW/j, where j = υ is the particle flux density
per unit volume (υ is the velocity of particles equal to the speed of light for photons).

One of the conclusions following from the result of Equation (8) is that matrix ele-
ments contain the scalar operator r2 that preserves the parity of the state, i.e., the matrix
element (r2)nm is nonzero for states with the same orbital angular momentum due to the
orthogonality property. Thus, further integration over the angles of the momentum ~p
represented in the electron wave function for the continuum state can be performed in an
ordinary manner using the orthogonality property for the Legendre polynomials, Pl(cos θ):∫

dθ~pPl′(cos θ
~p~r′)Pl(cos θ~p~r) =

4π

2l + 1
Pl(cos θ

~r~r′), (9)

and the recurrent formula:

xPl(x) =
(l + 1)
(2l + 1)

Pl+1(x) +
l

(2l + 1)
Pl−1(x). (10)

The wave function for the state from the continuum with the energy ε = p2/2 can be
written in the form:

ψp =
1

2p

∞

∑
l=0

il(2l + 1)eiδl Rpl(r)Pl(cos θ~p~r), (11)

where Rpl(r) is the radial part of the wave function and the phase factor δl can be omitted
as immaterial for our purposes.

The result for the electric dipole photon emission is well known and leads to:∫
dθ~pdθ~rdθ~r′〈εl′|~r|nl〉〈nl|~r′|ml′〉 = (12)

l
(4π)2

2l + 1
Ipl−1;nl Inl;ml−1 + (l + 1)

(4π)2

2l + 1
Ipl+1;nl Inl;ml+1,
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which holds for n = m and l′ = l ∓ 1, respectively. Here:

Ipl′ ;nl =

∞∫
0

dr r3Rnl(r)Rpl′(r), (13)

Analytical representation of the radial wave functions of discrete Rnl(r) and the continuum
Rpl′(r) states for the hydrogen atom can be found in textbooks [8,11]. Then, radial integrals
of the type Equation (13) are usually calculated employing the Gordon formula, as can be
seen, for example, in [13–15]. The expression (12) is written for the first term in Equation (8)
and easily adapts to the second one.

Combining all the results, the final expression for recombination to an arbitrary bound
nl state can be written as

∆σnl =
64Ze4ζ(3)
9(2l + 1)β3 l>

[
−1

2
Ipl′ ;nl Rnl;nl Inl;pl′+

+ ∑
m

(m 6=ε)

En − Em

Eε − Em
Ipl′ ;nl Inl;ml′Rml′ ;pl′+ (14)

+ ∑
m

(m 6=n)

Em − Eε

En − Em
Ipl′ ;nl Iml;pl′Rnl;ml

(Eε − En)
2,

where l> = max(l, l′) and the expression (14) consists of two contributions with l′ =
l − 1 and l′ = l + 1 according to (12). Pointing out that the third term in Equation (8)
is a correction to the wave function of the continuum state, it can be excluded from
consideration, as can be seen in [2]. Here, we introduce the notation:

Rnl;pl′ =

∞∫
0

dr r4Rnl(r)Rpl′(r) = (15)

2l+l′+1 pl′n−l−2

[(2l + 1)!]2

√
(n + l)!

(n− l − 1)!

[
8πp

1− e−
2π
p

]1/2

×
l′

∏
s=1

√
s2 +

1
p2

∞∫
0

dr r4+l+l′ e−
r
n−ipr ×

F
(
−n + l + 1, 2l + 2,

2r
n

)
F
(

i
p
+ l′ + 1, 2l′ + 2, 2ipr

)
The integral (15) (as well as (13) which leads to Gordon’s formula) can be analytically

calculated using the derivative with respect to the parameter before r in the exponent, and
the multiplicity of the derivative is determined by reducing it to a tabular integral:

∞∫
0

dt tc−1e−st
1F1(a; c; t) 1F1(α; c; λt) = (16)

(c− 1)!
(s− 1)a(s− λ)α

sa+α−c
2F1

(
a, α; c;

λ

(s− 1)(s− λ)

)
.

Here, 1F1 is the confluent hypergeometric functions of the first kind and 2F1 is Gauss’s
hypergeometric functions. The first contribution in Equation (14) is also given by Rnl;nl =
n2

2 (5n2 + 1− 3l(l + 1)).
The analytical result for Rnl;nl shows impetuous growth with an increase of n, which

makes us conclude the significance of the correction of Equation (14) for highly excited
states. Nonetheless, as pointed out in [6], the approximation r � 1 is valid for low-
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lying states and may be violated for Rydberg states. The legitimacy of using such an
approximation is dictated by the series expansion of the potential found in [3] in the
vicinity r

β � 1. In [6], it was found (see Table IV there) that the calculations of the full

form for the thermal potential and approximated by the r2 contribution deviate starting
from n = 20 at 300 K and n = 10 at 3000 K. However, we now found that the r/β thermal
potential argument was incorrectly parameterized (the α was omitted). Numerical values
corresponding to the correction of the lowest order [6] were recalculated with the correct
scaling and are listed in Table 1.

Table 1. Numerical values of energy shifts ∆Eβ
A = 〈A|Vβ(r)|A〉 for different atomic states A at

temperatures T = 300 K (upper line) and T = 3000 K (lower line) in a hydrogen atom. The first
column shows the considered state (nA, lA). In the second column, the energy shift is calculated with
the approximate potential Vβ(r) given by Equations (38) and (52) in [6]. In the third column, the
energy shift is calculated with the potential Vβ(r) given by Equation (51) in [6]. All values are in Hz.

(nA, lA) ∆Eβ
nAlA

, Equation (38) ∆Eβ
nAlA

, Equation (51)

(1,0) −3.36 −3.36
−3.36× 103 −3.36× 103

(2,0) −46.98 −46.98
−4.698× 104 −4.698× 104

(10,0) −2.80× 104 −2.80× 104

−2.80× 107 −2.80× 107

(10,9) −1.29× 104 −1.29× 104

−1.29× 107 −1.29× 107

(20,0) −4.48× 105 −4.48× 105

−4.48× 108 −4.47× 108

(20,19) −1.93× 105 −1.93× 105

−1.93× 108 −1.93× 108

(100,0) −2.80× 108 −2.78× 108

−2.80× 1011 −2.78× 1011

(100,99) −1.14× 108 −1.13× 108

−1.14× 1011 −9.171× 1010

(200,0) −4.47× 109 −4× 109

−4.47× 1012 −3.72× 1011

(200,99) −1.80× 109 −1.73× 109

−1.80× 1012 −5.06× 1011

As a result, it turns out that there is no deviation up to n ≈ 100 at such temperatures.
The numerical values of the thermal corrections to the transition rates taking into account
thermal shifts listed in Table 1 are given in Table 2 and can be directly compared with the
results presented in Table V from ref. [6].

Table 2. Recalculated transition rates and thermal corrections at T = 300 K to one-photon electric
dipole transitions between highly excited states due to the thermal energy shift, see Equations (53)
and (54) in [6] for details. All values are given in s−1.

ni, li n f , l f Wi f ∆W ind
i f ∆Wv

i f ∆Wv,ind
i f

(10, 9) (9, 8) 1.320× 104 5.419× 103 2.213× 10−5 2.811× 10−6

(50, 1) (49, 0) 2.682 3.077× 102 1.998× 10−4 1.524× 10−2

(50, 49) (49, 48) 7.137× 10−1 81.861 2.190× 10−5 1.671× 10−3

(70, 1) (69, 0) 4.840× 10−1 1.541× 102 2.759× 10−4 5.852× 10−2

(70, 69) (69, 68) 9.369× 10−2 29.830 2.186× 10−5 4.636× 10−3

(100, 1) (99, 0) 7.953× 10−2 74.387 3.858× 10−4 2.407× 10−1

(100, 99) (99, 98) 1.093× 10−2 10.221 2.175× 10−5 1.356× 10−2
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3. Recombination and Ionization Coefficients

The thermal correction to the effective cross-sections evaluated in the previous section
allows one to define the corresponding correction to the recombination and ionization
coefficients [10]. The rate of recombination to the n-th level due to the spontaneous
recombination processes, αnl , is given by

αnl =

∞∫
0

σrec
nl f (v)vdv, (17)

where σrec
nl represents the spontaneous recombination cross-section, f (v) is the Maxwell–

Boltzmann distribution function with the velocity of incident electrons v (v = p in
our units):

f (v)dv = 4π

(
1

2πkBT

)3/2
v2e−

v2
2kBTe dv . (18)

The presence of the Maxwell–Boltzmann distribution function in the recombination
coefficient restricts the magnitude of the incident electron momentum p. The typical
speed can be estimated as p2 ∼ 2kBT � 1 up to T ∼ 105 K, which justifies the used
non-relativistic approximation.

The similar expression can be written for the stimulated recombination coefficient:

α
β
nl =

∞∫
0

σrec,fi
nl f (v)vdv, (19)

and the total recombination coefficient is:

αtotal ≡ αA = ∑
nl

αnl , (20)

where index A corresponds to the so-called case A when the coefficient αtotal includes the
direct recombination process to the ground state, while case B in astrophysical studies
excludes this process.

Recently, the influence of finite lifetimes on the stimulated transition rates in hydrogen
and helium atoms was studied in [16–18], while this effect for bound-free transitions is
described in detail in [1]. In the latter case, the numerical calculations become much more
complicated when summing over nl for the recombination/ionization coefficients due to
the presence of the Lorentz factor. The effect of finite lifetimes itself in the recombination
process reaches the level of few percent of the ‘ordinary’ stimulated transitions, leveling out
at high temperatures and large values of nl. Although the corresponding widths of atomic
levels can be taken into account here, we will leave it and focus on numerical calculations
of the corresponding well-known spontaneous and stimulated rates. The latter can be
expressed, as can be seen in [9,10], as

σrec,fi
nl = σrec

nl nβ(ε + Enl), (21)

where Enl is the ionization potential of the nl state.
The corrections to the partial spontaneous and stimulated recombination coefficients

(∆αnl and ∆α
β
nl , respectively), partial ionization coefficient (∆βnl), that we are interested in

can also be calculated using Equations (1), (17), (19)–(21). The corresponding numerical
results for the 1s and 2s states in the hydrogen atom are given in Table 3 separately for
each of the three summands in Equation (14). It should be noted here that the calculations
are well converged upon the summation over the intermediate spectrum m, which were
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carried out by the direct summation of each individual state ml < ε to m = 100. The values
listed in Table 3 are guaranteed to be within five digits.

Table 3. Thermal corrections to the partial recombination and ionization coefficients for spontaneous and stimulated
processes for the 1s and 2s states at different temperatures. The coefficients αnl are calculated using Equation (14), the first,

second and third contributions are denoted as ∆α
(1)
1s , ∆α

(2)
1s , ∆α

(3)
1s , respectively. Values with index β denote corresponding

stimulated recombination corrections. Summation over m in Equation (14) was performed in the range m ∈ [1, 100], which
guarantees the given numbers in the table. The correction to the partial ionization coefficient ∆βnl is given as a total

contribution and coincides with the sum of ∆α
(1)
nl , ∆α

(2)
nl , ∆α

(3)
nl , ∆α

β,(1)
nl , ∆α

β,(2)
and and ∆α

β,(3)
and , as it should be according to the

detailed balance. All values are given in m3s−1.

T = 300 K T = 1000 K T = 3000 K T = 5000 K T = 10,000 K T = 20,000 K

α1s 9.4939× 10−19 5.1848× 10−19 2.9688× 10−19 2.2812× 10−19 1.5819× 10−19 1.0787× 10−19

α
β
1s 0.0 6.9968× 10−88 2.0781× 10−42 2.2263× 10−33 1.1211× 10−26 2.0858× 10−23

∆α
(1)
1s −3.3362× 10−29 −6.6434× 10−28 −1.0148× 10−26 −3.5689× 10−26 −1.9282× 10−25 −1.0049× 10−24

∆α
β,(1)
1s

0.0 −8.9930× 10−97 −7.1673× 10−50 −3.5334× 10−40 −1.4032× 10−32 −2.0339× 10−28

∆α
(2)
1s −1.4502× 10−24 −1.0971× 10−23 −6.3683× 10−23 −1.4172× 10−22 −4.1445× 10−22 −1.1997× 10−21

∆α
β,(2)
1s

0.0 −2.6489× 10−92 −8.3235× 10−46 −2.6099× 10−36 −5.5717× 10−29 −4.3721× 10−25

∆α
(3)
1s −3.3162× 10−29 −6.4671× 10−28 −9.4444× 10−27 −3.2380× 10−26 −1.6872× 10−25 −8.5139× 10−25

∆α
β,(3)
1s

0.0 −8.9365× 10−97 −6.8742× 10−50 −3.3163× 10−40 −1.2731× 10−32 −1.7797× 10−28

∆β1s −1.4503× 10−24 −1.0972× 10−23 −6.3702× 10−23 −1.4178× 10−22 −4.1479× 10−22 −1.2019× 10−21

α2s 1.3919× 10−19 7.6117× 10−20 4.3716× 10−20 3.3664× 10−20 2.3419× 10−20 1.5998× 10−20

α
β
2s 5.02703× 10−77 2.7449× 10−37 4.2385× 10−26 6.3229× 10−24 2.3283× 10−22 1.2711× 10−21

∆α
(1)
2s −1.9237× 10−29 −3.8311× 10−28 −5.6857× 10−27 −1.9496× 10−26 −1.0001× 10−25 −4.8333× 10−25

∆α
β,(1)
2s −6.9737× 10−87 −1.3982× 10−45 −5.6939× 10−33 −3.8470× 10−30 −1.0792× 10−27 −4.3657× 10−26

∆α
(2)
2s −1.8429× 10−26 −1.3955× 10−24 −8.1121× 10−24 −1.8065× 10−23 −5.2879× 10−23 −1.5317× 10−22

∆α
β,(2)
2s −1.0928× 10−82 −9.0071× 10−42 −1.4704× 10−29 −6.4156× 10−27 −1.0055× 10−24 −2.4067× 10−23

∆α
(3)
2s −2.6134× 10−28 −5.0962× 10−27 −7.4361× 10−26 −2.5487× 10−25 −1.3296× 10−24 −6.7418× 10−24

∆α
β,(3)
2s −3.5101× 10−52 −1.8839× 10−44 −7.5179× 10−32 −5.0406× 10−29 −1.4108× 10−26 −5.7965× 10−25

∆β2s −1.8458× 10−25 −1.4010× 10−24 −8.1921× 10−24 −1.8346× 10−23 −5.5330× 10−23 −1.8508× 10−22

The numerical results in Table 3 show mostly insignificant contributions to the partial
coefficients α1s(2s), α

β

1s(2s) and β1s(2s). However, according to the discussion at the end of
the previous section and the definition in Equation (20), summation over nl leads to an
increase in the heat correction for the total coefficients αA, α

β
A and βA to such an extent

that the summation result does not converge. Situations in which the same pattern occurs
were discussed in [19,20]. A stocktaking of the effects limiting the divergent partition
sum ∑

nl
(2l + 1)n(Boltzmann)

nl is described in detail in [19]. The simplified model in our case

is as follows. The probability wn that the state n is not destroyed by the mixing thermal
interaction corresponding to the matrix element (r2)ab between two arbitrary states a and
b should be inserted into the sum over nl states in Equation (20). Then, according to
Equation (8), we compare the thermal correction ∆Eβ

nl ∼ β−3n2(5n2 + 1− 3l(l + 1)), as can
be seen in [3], with the Lamb shift scaled ∆EL ∼ 1.24214× 10−6n−3 for the ns(l = 0) state
in atomic units [12]. We solved equation ∆EL = ∆Eβ

ns for a specified temperature, which
gives the same results if the partition function exp(−(∆Eβ

ns)/∆EL) equaled to e−1. The
result can be written as

n∗ =
1.14026

(kBT)
3
7

, (22)

wn = e−(
n

n∗ )
7 ≈ e−0.399(kBT)3n7

in atomic units.
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Still, one should take into account the thermal energy shift for the energy levels of the
atom in the unperturbed cross-section. This can be done by modifying the unperturbed
cross-section by replacing Ea → Ea + ∆Eβ

a . Then, it can be found that the third and fourth
contributions in Equation (8) (or the first one in Equation (14)) are canceled out by this
replacement, and contributions proportional to the cube and the square of ∆Eβ

a remain.
However, these corrections are of the next order in α, so we omit their further calculations.

Below are the results of numerical calculations of the total ionization and recombina-
tion coefficients and thermal corrections to them. The case B can be easily obtained by the
subtraction of corresponding values of α1s from αA, as can be seen in Table 3. Numerical
values of the total coefficients αA, α

β
A, ∆αA, βA and ∆βA are collected in Table 4 for different

temperatures. The values are obtained by the direct summation of partial coefficients with
the partition function Equation (22) up to n, m = 100.

Table 4. The corrections to the total recombination and ionization coefficients for spontaneous and stimulated processes for
case A at different temperatures. All values are given in m3s−1.

T = 300 K T = 700 K T = 1000 K T = 3000 K T = 5000 K T = 10,000 K T = 20,000 K

αA 4.32385× 10−18 2.52126× 10−18 2.00071× 10−18 9.63800× 10−19 6.78908× 10−19 4.16397× 10−19 2.50652× 10−19

α
β
A 2.15163× 10−18 1.72895× 10−18 1.56064× 10−18 1.10529× 10−18 9.29960× 10−19 7.28372× 10−19 5.65045× 10−19

∆αA −2.29004× 10−20 −1.41894× 10−20 −1.16107× 10−20 −6.26605× 10−21 −5.04184× 10−21 −2.74662× 10−21 −2.64351× 10−21

∆α
β
A 2.56355× 10−21 1.50305× 10−21 1.16062× 10−21 4.99707× 10−22 8.75126× 10−23 2.46134× 10−22 −6.53582× 10−23

βA 6.47549× 10−18 4.25021× 10−18 3.56135× 10−18 2.06909× 10−18 1.60887× 10−18 1.14477× 10−18 8.15697× 10−19

∆βA −2.03369× 10−20 −1.26864× 10−20 −1.04501× 10−20 −5.76635× 10−21 −4.95433× 10−21 −2.50048× 10−21 −2.70887× 10−21

4. Discussion and Conclusions

The numerical results obtained in this work for the thermal correction Equation (14)
for specific 1s and 2s states are given in Table 3. One can find an increasing value of the
correction with elevating temperature. In particular, considering the recombination process
at room temperature 300 K, the thermal contribution is −1.4503 × 10−24, whereas the
spontaneous recombination coefficient for the 1s state is approximately 10−18. This relation
is valid for the 2s state, which leads to the conclusion that for a ratio of approximately
10−6, this correction is rather insignificant in laboratory experiments. The opposite case
corresponds to higher temperatures. For example, at 20,000 K, the thermal correction to
the recombination cross-section reaches a level of 1.1% with respect to the spontaneous
one and is two orders of magnitude larger than the stimulated recombination coefficient
α

β
1s. The relative value of the order of 1.1% with respect to spontaneous recombination

into the 2s state is retained, but the thermal correction is an order of magnitude less than
the stimulated coefficient. Thus, one can expect a significant contribution of the thermal
correction to the total (summed over all nl states) recombination coefficient. Moreover,
directly following from the discussion presented above, as can also be seen in [3], the
increasing value of the correction with the principal quantum number n sets the need for
such a calculation.

Performing a direct summation over nl of the thermal correction Equation (14) results
in a diverging contribution. To ’streamline’ this, we followed the procedure described
in [19,20], where physical conditions are discussed in detail. According to [19], the prob-
ability wn that the state n is not destroyed by the mixing thermal interaction should be
introduced, limiting the divergent partition sum. The numerical results of the summation
with the probability wn, as in Equation (22), are listed in Table 4.

In particular, as follows from Table 4, the thermal correction to the total recombination
coefficient is approximately 0.3% at any temperature. This value can be compared with
the achieved accuracy of astrophysical experiments aimed at studying the recombination
of the early Universe. Then, considering the thermal effect giving by Equation (14) in the
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astrophysical context of the recombination of the early universe, the fitting formula for the
total recombination coefficient (the same as in [21]) is:

αS
B = 10−19 a tb

1 + c td m3s−1, (23)

can be found with the parameters a = 4.4648, b = −0.6092, c = 0.7470 and d = 0.5049
(t = TM/104 K) instead of a = 4.309, b = −0.6166, c = 0.6703, and d = 0.5300 known
from [22,23]. We used the data from Table 4 to find the estimate in the modification of the
ionization fraction. As in [1], a change in the coefficients a, b, c and d can lead to a 0.2%
contribution to the ionization fraction of the primordial plasma, repeating the effect of the
finite lifetimes of atomic states (the contribution decreases with increasing temperature
and is more significant for low temperatures). However, such a seemingly insignificant
contribution is of interest for further planned experimental data and is highlighted by the
constantly produced new data with unprecedented precision [24].
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