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Abstract: We evaluate the performance of multipole, linear Paul traps for the purpose of studying
cold ion–atom collisions. A combination of numerical simulations and analysis based on the virial
theorem is used to draw conclusions on the differences that result, by considering the trapping
details of several multipole trap types. Starting with an analysis of how a low energy collision takes
place between a fully compensated, ultracold trapped ion and an stationary atom, we show that a
higher order multipole trap is, in principle, advantageous in terms of collisional heating. The virial
analysis of multipole traps then follows, along with the computation of trapped ion trajectories in
the quadrupole, hexapole, octopole and do-decapole radio frequency traps. A detailed analysis of
the motion of trapped ions as a function of the amplitude, phase and stability of the ion’s motion is
used to evaluate the experimental prospects for such traps. The present analysis has the virtue of
providing definitive answers for the merits of the various configurations, using first principles.

Keywords: ion trapping; ion–atom collisions; linear multipole traps; virial theorem

1. Introduction

Linear multipole Paul trap configurations are emerging as a natural choice for a wide
range of charged particle trapping experiments [1–13]. The study of mixtures of trapped
ions and atoms has spawned a variety of hybrid traps [3,7,14–22]. Such traps allow for the
simultaneous and overlapped trapping of cold atoms and cold ions. The objective of such
experiments is to study the interactions between the trapped ions and atoms, typically by
collisions. It is therefore necessary to evaluate which trap geometry is ideal for experimental
objectives to be met. The key question of interest here is whether higher order multi-pole
traps (Figure 1) are more favorable than a quadrupole trap or not, if the objective is to study
the ion–atom collisions at the coldest temperatures. The wider scope of such traps ranges
from single ion-based mass spectroscopy to optical spectroscopy experiments [23–27] and
a few ion-based quantum logic and computation experiments [28,29], experiments with
coulomb crystals with many ions [9,10,30–33] and single ions or ion clouds interacting with
cold atoms [7,10,13–15,34–37].

Optical access for laser beams and absence of strong magnetic fields [34] make linear
Paul traps a favorable choice for these experiments, apart from their relative simplicity of
modeling and the ability to perform numerical and analytical calculations. So while the
linear Paul trap can be used for a large number of experiments with different and ever
expanding objectives, here we examine and evaluate different linear Paul trap electrode
configurations, in an effort to decide which multipole rf linear electrode configuration
is suitable for the study of ion–atom collisions at the coldest temperatures. One of the
outstanding goals for hybrid-trap experiments is the realization of the s-wave regime for the
ion–atom system, when there is a single trapped ion in a cloud of ultracold atoms [11,38,39].

In a Paul trap, the dynamic trapping of an ion due to the radio frequency (rf) fields
applied to the electrodes results in ion motion which can be decomposed into two parts.
The ion exhibits a forced motion, which is the instantaneous response of the ion to the
time varying rf field (micromotion) and the slower (macro) secular motion, which is the
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trajectory of the trapped ion in the effective trapping field the ion experiences. In this
scenario, the lowest energy of a single ion in a quadrupole ion trap can be confined within a
compensated ion trap. Such an ion is insulated from micromotion due to the rf fields. Since
a linear quadrupole ion trap has a nodal line, where the acceleration on the ion vanishes,
any small deviation of the ion from this spatial location results in an increase in its motional
energy. If we now consider such a specially prepared ultracold ion in collision with an
ultracold atom in its vicinity, the mutual interaction between these two is sufficient to pull
the ion out of the compensated configuration. The resulting collision increases the kinetic
energy of the ion–atom pair compared to the s-wave limit, due to the energy coupled from
the trapping field via the mutual interaction [3,8,37].
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Figure 1. Electrode potential configuration for normal operation of (a) a 4-pole trap, (b) a 6-pole
trap, (c) an 8-pole trap and (d) a 12-pole trap, where V(t) = V0 sin ωt. We keep the parameters r0

and a fixed for all the trap configurations. Note that the 12-pole trap in (d) is also equivalent to the
superposition of three quadrupole traps (e1, e4, e7, e10),(e2, e5, e8, e11) and (e3, e6, e9, e12).

2. Microscopic Detail of Ultracold Ion–Atom Collision

For specificity, let us compare the scenarios of a single zero energy 40Ca+ ion at the
center of a quadruple and an octupole trap colliding with a zero energy 40Ca atom placed
proximate to the ion. In this scenario, the mutual ion–atom interaction potential results in
ion displacement from the compensated point and a collision initiates. On being displaced
from the center, the ion starts moving under the influence of its trapping field, and the
field does work on the ion in the presence of the atom, increasing the total energy of the
colliding system. To model this collision we set the time of the first collision to be equal to
t = 0, the ion–atom interaction potential is modeled by induced dipole interaction term,
−C4/r4, the collision is always head on and its sense reverses when ion–atom internuclear
separation approaches the repulsive wall of the ion–atom potential energy curve. The
ion atom calculation is two-dimensional and the trajectories of the ion–atom pair and
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the kinetic energy of the ion in the respective traps during an instance of such a collision
is illustrated in Figure 2. The collision is treated classically and all quantum aspects of
the collision are ignored. When the collision initiates, under the influence of the mutual
ion–atom attraction, in the presence of the rf trapping field, rf energy is pumped into the
collision partners, increasing the collision energy as the collision progresses. This is evident
for only very low energy collisions, where the time taken for the collision spans several rf
cycles. The collision is complex enough so that there can be several sequential collisions
between the ion–atom pair before they eventually separate.
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Figure 2. The time domain collision between a trapped and compensated stationary ion, initially located at the center of a
quadrupole (a) and octupole (b) trap, with a stationary atom in its vicinity is shown. The calculation is two-dimensional.
As a result of the mutual attraction of the trapped ion with the atom, in the presence of the trapping field, post collision,
both the ion and the atom gain kinetic energy. The amount of kinetic energy gained in the collision in (a,b) is illustrated in
(c,d), respectively.

An example of an ion–atom collision in an rf trap with quadrupole and octopole fields
is shown in Figure 2. Both traps have an rf of 5 MHz, and their rf voltages are ≈512 V and
≈256 V for the quadrupole and octopole, respectively. This ensures that the Mathieu qr
parameter is matched for the two traps, which is a fair condition to compare different traps
for a compensated ion. The collision parameters are adjusted so that the first collision takes
place at time t = 0 and because of the mutual interaction of the ion and the atom before
the collision, the ion shifts from its compensated position and the resulting post collision
energy of the ion increases. In the process of the collision, the action of the electric field on
the colliding partners has made the collision more energetic than the initial ion and atom
energies would suggest. The numerical treatment for this calculation closely follows that
of Cetina et al. [8].

Conventionally, most experimental efforts to study cold ion–atom collisions have
favored the quadrupole trap [19], barring a few exceptions [40–43]. In contrast, for rf
traps with larger numbers of electrodes, six, eight and twelve, the gradient of electric
field in the neighborhood of the trap center is much smaller than that of the quadrupole.
Due to this, as shown in Figure 3a similar ion–atom collision in an octopole trap would
transfer significantly less energy to the ion–atom system than in the case of the quadrupole.
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Although the two traps used in Figure 2 have the same value of Mathieu parameter qr,
the secular frequencies in eight-pole trap are much smaller than that of four-pole trap.
Due to the reduced rf amplitude close to the trap center, as the order of the poles increase,
the energy gained by the ion during collision reduces. It should be kept in mind that
the octupole trap does not have a strong restoring force at its center, resulting in the drift
of the ion to regions of higher fields post collision, where the ion’s micro-motion will
come into play. The above example illustrates that the higher multipole trap excites less
collision induced heating in a single collision event based on just the collision energy
change in Figure 2, and therefore working with a higher order multipole trap appears
to be advantageous. Thus, Figures 2 and 3 together provide a quantitative description
of ion heating in a collision which has a direct dependence on the form of the external
potential in which they collide. The figures summarize the consequences of the low energy
classical ion–atom scattering problem in the presence of a time-dependent field, which has
a dramatic impact on the fate of the collision. While the reduced one-dimensional problem
has been solved by Cetina et al. [8] for the quadrupole potential, this two dimensional
treatment is important, because of the xmyn product terms in the higher order multipole
traps, to illustrate the advantage of the octopole over the quadrupole configuration, in a
quantified manner.
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Figure 3. The change in the energy of the Ca ion–atom system, initially at rest, with the ion at the trap
center post collision is presented. The results for the quadrupole and octopole trap configurations are
shown. The energy gained is plotted against the phase of the electric field at the time of ion–atom’s
closest approach.

In the discussion that follows, we examine the totality of relevant aspects of a hybrid
trap experiment and come to the conclusion that, despite the fact that the quadrupole
trap transfers a significant amount of energy to the ion post collision in the ideal case,
it is still the trap of choice for ultracold ion–atom experiments. There exist a number of
favorable characteristics of a four-pole trap, which speak in its favor over the higher order
for ultracold ion–atom experiments. We analyze in this article the other factors which
are relevant to conducting the overall ion-atom hybrid trap experiment. Our analysis is
part analytic, where we use the virial theorem and in part numerical. We will discuss a
simple application of the virial theorem to the problem of a charged particle in the secular
potential. The simulations for the trapped ion in various trap configurations illustrate the
behavior of a trapped ion in the various traps and allow for detailed and nuanced analysis
of the problem.
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3. Ion Trap Configurations

A linear multi-pole Paul trap has 2k (k, integer) cylindrical electrodes of diameter
a, which are all held parallel to the trap axis z, such that on the transverse plane, the
centers of the electrodes are equidistant points on a circle of radius r0. Hence, such traps
are referred to as 2k-pole traps, the simplest of which is a linear quadrupole trap (k = 2,
4-pole trap). In the common modes of operation, radio frequency electrical fields applied
to the electrodes create a trap at the center of the geometry. This is achieved by applying
ac voltages of opposite polarity to alternate electrodes, which spatially confine charged
particles in the transverse direction. For confinement along the trap axis, another set of
electrodes (end caps [22], segmented electrodes [29]) are used, to which dc voltages are
applied in order to obtain the necessary trap depth and curvature along the symmetry
axis of the 2k-pole trap. In what follows, we shall solve the for the ion trajectories two
dimensions.

The trapped ion trajectories obey the Mathieu equation, the solution of which can
be decomposed into two parts [44]. The macro-motion is characterized mainly by the
pseudo-potential (proportional to r2k−2, where r is the distance from trap center in the
transverse plane) seen by the ion, which is the time averaged trapping field over the fast rf
cycles. The micro-motion of the ion is its response to the electric field at the instantaneous
position of the ion. For most experiments with ion traps, micro-motion is undesirable as it
limits the cooling of the ions, induces decoherence or limits ion control.

As higher order pseudo-potentials would exhibit a potential of the kind rn, n ≥ 2 is
the potential form at the center of the electrodes, ions in a higher order 2k-pole trap are
expected to experience a lesser electric field on average compared to ions in a four-pole
trap. Thus, the magnitude and effect of micro-motion would decrease with an increase
in the order of a 2k-pole trap, which is one of the motivations for building them. This
is illustrated in Figure 2, where the micromotion is not visible on the trajectories for the
eight-pole trap but distinctly visible on the four-pole trap. In principle, the number of
poles can be very large, though necessary a/r0 ratios for optimum stability of the trap and
geometrical constraints have seen experimental configurations up to 22 poles [45].

For each of the configurations in Figure 1, we analyze the dynamics of the ion using
the virial theorem. The success and applicability of the virial approach is very valuable as,
it reduces a complex dynamical non-linear problem with time variation of the potential
and cross terms in the coordinates to one that can be solved almost by inspection. However,
this approach needs to be validated carefully with explicit numerical trajectory calculations
so the conclusions arrived at are shown to be reliable, once and for all. Since in a linear Paul
trap and its extensions discussed above, the configuration comprises the multipoles and
two DC biased, end cap electrodes, in the analysis for the optimal trap below, we confine
ourselves to the plane perpendicular to the axis of the trap as illustrated in Figure 1.
This results in simplification and still allows for the problem to be analyzed in terms of
mean energy.

4. Virial Theorem for 2k-Pole Traps

Let ac voltages of V0 sin ωt and−V0 sin ωt be applied to alternate electrodes of a linear
Paul trap, i.e., V0 is amplitude and ω is the frequency. The 2-D pseudo potential (in the
transverse plane) experienced by an ion due to the 2k electrodes is given by

V∗ =
k2q2V2

0

4mω2r2k
0

r2k−2, (1)

where q is the charge and m is the mass of the ion and r0 is the size of the trap given by
the distance from the center of the trap to the center of any electrode [42]. Stable trapping
of ions is achieved when the amplitude of micro-motion is smaller than the distance from
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the geometric center, i.e., when relative change in the electric field amplitude during a
micro-motion cycle is small. An adiabaticity parameter η, is used to quantify this,

η =
k(k− 1)2qV0

mω2rk
0

rk−2. (2)

When k = 2, η is a constant (i.e., for a four-pole trap) and the well known Mathieu
stability criteria apply [46]. It should be noted that the Mathieu parameter qr in 2-D is the
same as η and thus the four-pole ion trap is stable if η ≤ 0.908. When k > 2, stability of the
ion trajectory is probabilistic and subject to initial conditions of the ion. In higher order
traps, it is found that only for η / 0.3 ≡ ηmax, stable ion trajectories exist. This limits the
spatial extent to which the ion can span, rmax as η is a function of r (for k > 2),

rmax =

[
ηmaxmω2rk

0
2k(k− 1)qV0

]1/(k−2)

. (3)

Thus, the effective trap depth for a 2k-pole trap is given by V∗(rmax), which is very
different from that of a four-pole trap. In such a scenario, the average kinetic energy of a
trapped ion is described by

〈Ttot〉 = 〈Ts〉+
〈

Tµ

〉
, (4)

where 〈Ttot〉 is the total kinetic energy, 〈Ts〉 is the mean secular energy and
〈

Tµ

〉
the

micromotion energy. The average secular kinetic energy 〈Ts〉 of a particle bound by a
potential of form Equation (1) is given by the virial theorem as

〈Ts〉 = (k− 1)〈V∗〉 (5)〈
Tµ

〉
= 〈V∗〉 (6)

〈U〉 = 2〈V∗〉 (7)

Therefore, the ratio between average total kinetic energy and average potential energy
〈U〉, of an ion, defined here as ν, in a 2k-pole trap is

ν =
〈Ttot〉
〈U〉 = k/2. (8)

The immediate consequence of Equation (8) is that, for the same ion energy, the larger
fraction of the ion energy is kinetic. This implies that, when all other things are equal,
the ion in the center of the higher order trap will be more energetic than its quadrupole
counterpart, which in turn implies that the ion has to be cooled down much further in order
to be centered at the trap. This is detrimental to the execution of the ion–atom collision
experiment with higher order multipoles in the manner discussed in Section 2, where the
ion has to be positioned at the trap center as precisely as possible in order for it to be well
compensated. So while it is indeed true that there is an advantage to having an higher
order trap, to keep collisional heating in check, there are problems with initializing the
system, flagged by the virial theorem.

5. Equivalence of Trajectory Calculations and Virial Results

To quantify the results, we study numerically the dynamics of a single ion in various
2k-pole traps. The simulations once again were performed for a Calcium ion, 40Ca+ in
two dimensions. The potentials were generated in Simion software with r0 = 0.707 cm and
a = 0.1 cm used for the electrode sizes. The rf frequency applied, ω was kept constant for
all traps at 2π× 5 MHz.
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Dynamics of an Ion in a 2k-Pole Trap

An electric potential V(t) = V0Sin(ωt) with opposite polarity was applied to alternate
electrodes. The time dependent potential energy profiles for an ion, U2k(x, y, t) were
generated both using the ideal functional form and using SIMION [47] software and used
to solve the equations of motion for the ion

m
d2x
dt2 = −q

δU2k(x, y, t)
δx

, (9)

m
d2y
dt2 = −q

δU2k(x, y, t)
δy

. (10)

Using the trajectories obtained by solving the above coupled differential equations,
we calculated the ratio of 〈Ttot〉 and 〈U〉 of the ion in the trap. The values of this ratio
obtained when computed for a multiple of the period of the secular motion are shown
in Table 1. We show, with the numerical results, that the relation, Equation (8) derived
from virial theorem holds. In the presence damping, the motion of the ion in the trap is
still consistent with the virial theorem. The damping term was added to the equation of
motion of the ion, to model laser cooling. In order to make the coefficient of the damping
term realistic, it was calculated from the scattering force due to laser beams at saturation
intensity. This calculation does not capture the stochastic nature of laser cooling and hence
fails to provide a cooling limit as in the case of real laser cooled atoms. Using the trajectories
of the ion calculated with and without damping, we calculated the ratio of 〈Ttot〉 and 〈U〉
in the trap. These numbers are given in Table 1. It can be seen that the results of the virial
theorem for ion traps hold even with damping or laser cooling.

Table 1. Virial analysis of 2k-pole traps in normal operation. Results for the coefficient ν from simulated trajectories using
various appropriate potentials are shown, which illustrate the compliance with Equation (8). The average values were
computed over several macromotion cycles and the standard deviation is shown as the error.

Quadrupole Trap Hexapole Trap Octupole Trap Do-Decapole Trap
k = 2 k = 3 k = 4 k = 6

Ideal Potential V(t)(y2−x2)
r2

0

V(t)(3x2−y2)y
r3

0

V(t)(6x2y2−x4−y4)
r4

0

V(t)(x2−y2)(x4−14x2y2+y4)
r6

0

ν: Theory 1 1.5 2 3

ν: using ideal potential 1.00 ± 0.05 1.50 ± 0.07 2.01 ± 0.09 3.00 ± 0.17

ν: using SIMION potential 0.99 ± 0.03 1.48 ± 0.07 2.03 ± 0.08 1.01 ± 0.20

ν: with constant damping 1.10 ± 0.06 1.55 ± 0.08 1.98 ± 0.09 3.04 ± 0.19

The evolution of ion trajectories in the different trap potentials throws up some
interesting results. In ultracold atom physics, it is normal to evolve the ion trajectories from
the origin, with an initial velocity. In addition, for laser cooled ions, the ions accumulate at
the bottom of the defined secular potential. When cooling multiple ions, laser cooling of
ions leads to a space charge limited density distribution of the cooled ions. In quadrupole
potentials, these form ion crystals [48] and in higher order multipole potentials a dense
localized distribution of ions is formed, which to the best of our knowledge has not led to
ion crystals being produced [43].

In the case corresponding to the single compensated ion, it is required to first produce
this ion. This will be done by ionizing an atom from a distribution of atoms contained
within the trap and followed by subsequent cooling of the ion. With this motivation
we consider the motion of an ion within the trap volume, for the different multipolar
configurations. Unlike previous studies which deal with phase space and real space
trajectories in such traps for an ion created at the trap center with finite kinetic energy,
we simulate trajectories for a realistic case of an ion being created away from the trap
center with zero initial kinetic energy. For specific initial phase relations, the probability
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distribution of the ion position with respect to the radial coordinate is shown in Figure 4 for
the multipole configurations. The insets at the top of each panel show the phase space plot
of the ion trajectories in one direction. For each trajectory, the coefficient ν is calculated over
multiple periods of the secular motion. In each case the virial theorem holds within the
numerical error and its value corresponds closely to the theoretical value of the trapped ion
in its secular potential [6,49]. For all traps, the radial position distribution for the non-zero
initial phase, corresponding to the ion being confined within a lower and an upper bound
in r. The most limiting radial confinement is seen for an ion created equidistant from the
two nearest electrodes. Another observation we make is that, in this limiting case of the
initial phase, the lower bound for r overlaps with the initial radial position, in this case
0.1r0, for a quadrupole trap and the upper bound for r overlaps with the initial radial
position for a higher order trap. The results for k > 2 in Figure 4 show that the nature
of the phase space trajectories varies significantly with the initial phase, thus implying
that calculation of statistical averages is further complicated in higher order traps. This
dependence on the initial phase can be attributed to the presence of xmyn terms in the
potential form of higher order traps, leading to the coupling of the motion in the two
dimensions. Despite the separate nature of phase space trajectories, the virial theorem
result ν = k/2 is found to be valid in every individual case. The real space trajectory of
an ion in a four-pole trap is close to an ellipse in two dimensions and for the case of the
limiting phase, the lower bound of the radial orbit occurs at 0.1r0 and, due to micromotion,
the upper bound of the radial coordinate appears as broadened in the probability densities
shown in Figure 4a–c. However, the real space trajectory of an ion in traps with k > 2
spans a circularly symmetric region between two radial bounds. The inner bound occurs at
r = 0 for θ = 0 and at a finite radius for non-zero θ, this manifests as the two radial peaks,
which are sharply cut-off, in the density distributions in Figure 4 for higher pole traps, at
the turning points. The radial confinement for the limiting value of θ is narrowest for k = 3
and becomes wider for higher k traps.

To address what the chance is of finding an ion at a particular distance from the trap
center, we calculated two scenarios. In the first, illustrated in Figure 5a, the probability
distribution of the ion created at a distance of 0.1r0 from the origin, with zero initial velocity
and at different angular displacements with respect to the electrode axes was computed.
As seen from the probability density plots in Figure 4, the ion coverage of the trap volume
has tremendous variety. It is therefore important to understand the statistical likelihood
of the ion occupying a particular region of space. This was therefore studied with respect
to the angular creation of the ion in the multipole trap in Figure 5a and its inset. The
most reasonable experimental situation is that there is an cold atom ensemble located
about the ion trap center. If the ion is to be created from such an ensemble of atoms by
threshold ionization, what would the spatial distribution of the ion be? This is illustrated
in Figure 5b where the probability distribution of the ion created at a distance generated
from a two-dimensional Gaussian distribution of width 0.05r0, with zero initial velocity is
plotted. The spatial density distribution of the ion, over repeated instances, is illustrated
in the inset. So, Figures 4 and 5 allow us to conclude what the trapped ion distribution
would be that we would have to deal with in an experiment, in particular instances and
on average.
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Figure 4. We show the probability distribution for the radial position coordinate, r, in different traps for a stationary ion
which is created at t = 0, with initial position of radius r(0) = 0.1r0 and azhimuth angle θ; we also show the corresponding
phase space trajectories in the insets. Our results reveal that all higher order pole traps differ from quadrupole traps in some
ways. Trap dynamics with these realistic initial conditions have not been studied earlier explicitly. The results in panels
(a–c) for quadrupole trap, show that, change in θ does not effect the form of phase space density. This is in accordance with
the other studies where the ion is created at r(0) = 0 with non-zero velocities. However, our results for higher order traps in
panels (d–l), unveil completely different behavior of ion motion in practical higher pole traps. Not only are the position
distributions unique with characteristic sharp cut offs at r = r(0), but the nature of the phase space trajectory shown in
the insets, also varies significantly with θ. This is important to be factored in when working with higher pole traps while
evaluating ensemble average quantities.
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Figure 5. Panel (a) shows the probability distribution for an ion created at radial distance of 0.1r0, with random angular
coordinate θ for various 2k-pole traps. Panel (b) shows the probability distribution for an ion created with a Gaussian
distribution of width 0.05r0, centered with the ion trap for various 2k-pole traps. The insets show the corresponding density
distribution.

The agreement of the hexapole and the do-decapole electrode configuration with the
virial theorem is shown in table one. All values are as expected, except in the case for the
do-decapole SIMION trajectory calculation, where the ratio of 〈Ttot〉/〈U〉 is consistent with
that of a quadrupole. We presume that this is a finite grid and grid size numerical effect,
where the pseudo-potential is effectively decomposed into three independent quadrupole
potentials, which is what is reflected in the value of the 〈Ttot〉/〈U〉 ratio in that instance.
When the potentials analytic form is used, the value of ν = 3 results for the same ratio,
as per expectations both with and without damping. It is therefore an instance where
one has to be cautious with the results of explicit numerical calculations. This instance
underlines the necessity for cross checking the qualitative and the explicit calculations
against each other.

6. Discussion and Conclusions

We first observe that the agreement of the computed ion motion with the virial
theorem holds well, for all the multipole traps considered here. It is therefore reasonable to
conclude that an analysis based on the proper application of the virial theorem provides
a legitimate platform for discussions on what to expect of ion traps, without performing
detailed computations. Since we initiate the ions at a distance from the center with zero
energy, we do not have a length scale for each trap corresponding to the energy of the
ions; therefore, we chose to keep the parameter qr fixed when comparing various multipole
traps. From the discussion above, given the same rf frequency and fixing the operating
value of qr = 0.1 for all multipole traps, we see that with increasing k, the trap depths
reduce. This is the consequence of the fact that for a constant qr, V0 ∝ 1/k, so, as the number
of poles increases, the rf voltage required for a stable trajectory decreases. In addition
rmax ∝ [1/k(k− 1)V0]

(1/(k−2)), which means the radius for which the adiabatic operating
condition of the ion trap persists, shrinking with increasing k. If the ion motion is not
described by the adiabatic condition, then the conventional description of the trapped ion
motion breaks down and the motion becomes sensitive to small changes. This implies that
the kinetic energy of the trapped ion has to be lower at the time of production. That is
determined by the extent of cooling of the atoms from which the ion is created, which
cannot be reduced arbitrarily. Creating an ion with external ionization processes needs to
be performed with greater care for higher order multipole traps.

Within the regime of applicability of the virial theorem, 〈Ttot〉/〈U〉 = k/2 applies,
as seen in Table 1. When we allow for the presence of stray fields and field inhomogeneities,
the requirement of a minimum trap depth is produced. In this situation, if a certain
minimum trap depth is required to hold the ion, then the kinetic energy is increases as k/2
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times the mean trap potential energy. This can be problematic in the actual realization of a
highly controlled multipole trap.

A practical issue for higher order multipole traps is that the secular motion slows
down with respect to the applied rf frequency. It therefore takes the ion much more time
to span the full phase space for the trapping conditions, and this time increases with
the number of multipoles. While this poses a significant computational challenge, it is
also detrimental to the time scales of typical dilute gas experiments. This is because the
precision with which the ion’s state can be known is harder to determine and therefore to
set up a controlled ultracold ion–atom experiment of the kind described in the beginning
without the deleterious effect of the rf excitation of the ion during collision becomes more
difficult with larger k.

For the same qr and rf frequency, higher order multi-pole ion traps have significantly
lower trap depths, compared to the corresponding quadrupole trap. When k > 2, the spatial
extent of stable trapping is much smaller than the physical size of the trap, unlike in a
quadrupole trap. This result, when seen in the context of a large number of ions in the
trap and relative ion density in higher order traps, is at its maximum for a finite r, and the
density at r = 0, decreases as 2k increases. This is undesirable for interactions with spatially
localized cold atoms.

Another problem of higher order traps is that the pseudo-potential becomes more and
more flat in a higher multi-pole trap, the cooled ion is not spatially confined to the center
of the trap. This is likely to be a problem for experiments where ion localization is required.
Another deduction that can be made from the virial theorem analysis is that the prospects
of laser cooled ion crystals in higher order multipole traps is quite bleak. This is because,
for crystals to be created, multiple points in space are required where the net force due to
laser cooling, external drive fields and ion–ion repulsion become zero. Only this will allow
the ions to be motionless at those locations and therefore crystallize. However the cooling
requirements for the ion in higher order traps, as discussed above, is much more stringent.
This is perhaps why, in higher order multipole traps, ion crystals have remained elusive,
despite advances in laser cooling.

Recent studies with higher order multipole traps have shown that the flat poten-
tial is dimpled due to field imperfections and this results in a potential which has local
quadrupole minimas within the higher order multipole field [43,45]. In this scenario,
the lowest point of the higher order multipole trap converts into a defined number of
quadrupole traps, depending on the order of the multipole. So, in the case of really efficient
cooling, it is quite likely that the ions find themselves in the dimpled quadrupole potential,
which is sensitive to the local field environment. However, since these local minimas are
not at the geometric center of the trap, the utility of these for interactions with a localized
atomic ensemble is moot. In this case, when the ion is trapped in the local quadrupole field,
the discussion accompanying Figures 2 and 3 has limited applicability.

Quadrupole traps have some advantages over higher 2k-pole traps like larger trap
depths, stability, better ion loading probability and deterministic stability. In order to
capitalize on the advantages of both kinds of traps when needed, one can use either two
concentric traps, one four-pole and another a higher 2k-pole trap or operate a higher 2k-pole
configuration with modified polarities on different electrodes to make it an equivalent
four-pole trap. Implementation of higher order linear multipole trap setup can provide
versatility for experiments. In Figure 6, we show a few examples of alternate operation
schemes for obtaining an equivalent quadrupole trap. This gives the opportunity to switch
between a quadrupole and a higher order trap to exploit the best of both configurations.
The large trap depths of the quadrupole trap and better shielding from stray electric
fields can be accessed in the effective quadrupole schemes and relatively low electric
field experienced by ions in higher order traps near the trap center can be accessed in the
regular 2k-pole trap scheme, making it a versatile tool. While the configurations shown
in Figure 6b–d lead to an effective quasi-quadrupole trap, the scheme shown in Figure 6a
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leads to a pure quadrupole trap with the additional grounded electrodes ensuring the
points of zero potential, thereby providing additional stability against stray fields.
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Figure 6. Alternate trap configurations for using an 8-pole or 12-pole setup as a modified quadrupole
are shown. Panel (a) is an 8-pole structure with alternate electrodes explicitly grounded. Panel (b)
shows a skewed quadrupole trap. Panel (c) shows an effective quadrupole trap with an 8-pole setup,
where successive electrodes are at a phase difference of Pi/2. Finally, panel (d) shows a 12-pole
structure, with a quadrupole field configuration and multiple shielding electrodes.

Putting together all the above results, it is not easy to see the practical advantage
of using a higher order multipole trap to confine the ion for ultracold ion–atom physics.
This is because such experiments are performed with both positional and state control of
the colliding partners and the spread in position of the ion for a higher order multipole
is experimentally hard to overcome. It is perhaps more advantageous to work with a
very weak, well shielded quadrupole trap. The trap configurations in Figure 6 are a
path to harness the advantages of the quadrupole trap and the higher order multipole
trap. However such a trap configuration may present significant operational challenges.
The virial theorem and its explicit verification provides the base for quick conclusions
about energetics, which is very useful for complicated potentials. On the other hand, if
the objective is to study collisions at higher energy between atoms and neutrals in buffer
gas regimes then higher order multipoles can be used very fruitfully for a vast array of
experiments, keeping in mind the arguments made above [40,50].
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