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Abstract: Line broadening is usually dominated by interactions of an atomic system with a stochastic,
random medium. When, in addition to the random medium, a non-random field (such as a laser)
is applied, the line profile may be modified in significant ways. The present work discusses these
modifications and the methods to deal with them.

Keywords: stark broadening; external elecric field; satellites; Floquet

1. Introduction

Apart from natural broadening, line broadening of an atomic system requires a
stochastic, random medium [1]. Pressure broadening in particular involves the interactions
of the atomic system with the random medium. When, in addition to the random medium,
a non-random electric or magnetic field field, either externally or internally generated, is
applied, the line profile may be modified in significant ways. Specifically:

The first effect, usually neglected, is that the particle trajectories (or, in quantum terms
the dielectric function) and distribution functions may be affected. We know that this can
have an effect on the collision operators and lineshapes because we have already seen that
these differ for say straight line and hyperbolic trajectories. This effect is often neglected
(but see [2] for electric and for example [3,4] for magnetic fields) partly because it is hard to
treat and partly because if the memory loss (inverse halfwidth) timescale is short compared
to the electric field period or the cyclotron frequency is small compared to the line width
for magnetic fields, one does not expect a significant effect due to trajectory modification.

The second effect is that, even if trajectories are not modified at all, the potential in the
Schrödinger equation is modified because of the dressing of the interaction by the external
(for example laser) field. For an external laser field, this may result in the dressed emitter-
perturber interaction V(t) oscillating rapidly on the memory loss time scale. This means
that because the dressed interaction changes sign rapidly, so does dU/dt and memory loss
may be drastically inhibited [5,6]. The parameters of the external field determine exactly
how the plasma-emitter interaction is dressed by the external field and if it then oscillates
fast on the autocorrelation function C(t), i.e., the Fourier transform of the lineshape, time
scale [7], decay of C(t) is inhibited and as a result the line narrows.

The third effect, first investigated by Blokhintsev [8], is that sattelites may appear,
which is an effect that is medium-independent and only related to the external field (i.e., one
encounters them even without a medium, except that these sattelites are then δ-functions).

From a practical point of view this creates interesting opportunities for (X-ray laser
in the case of plasmas) laser-based control, i.e., using a laser to reduce the line width and
hence increase the gain, or arrange for merging sattelites so as to increase the line width
and hence delay saturation. In the more general case the external laser may be used to
dress the medium and affect whatever mechanism affects medium pressure broadening
(excluding thermal, i.e., Doppler broadening). Additional diagnostic possibilities when
a static field is present in a direction perpendicular to the oscillatory field have also been
suggested [9–11] and will be briefly discussed here. However, a detailed analysis of specific
experimental results is outside the scope of the present work and will be done separately.
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2. Theoretical Formulation

The line profile in direction e is:

Le(ω) = {limT→∞
1

2πT

∫ T/2

−T/2
dt1e−iωt1 deα0β(t1)

∫ T/2

−T/2
dt2eiωt2 ·deβα0(t2)} (1)

with {. . .} the usual plasma average, d the dipole moment and α0, β in principle complete
sets of states. The density matrix has been assumed to be trivial. This may be written as
(by using t = t2 − t1):

Le(ω) = limT→∞{
∫ T/2
−T/2

dt1
2πT deα0β(t1)

∫ T/2
−T/2 dteiωt·deβα0(t + t1)} (2)

= limT→∞
1

2πT {
∫ T/2
−T/2 dt1deα0β(t1)

∫ ∞
−∞ dteiωt·deβα0(t + t1)}

If we use the interaction picture with the 0th order Hamiltonian being the atomic plus
external field Hamiltonian and U and U0 the interaction and unperturbed time evolution
operators (U-matrices) respectively:

d(t) = U†(t)U0†(t)dU0(t)U(t) (3)

we have, since we have a Trace(〈α0| . . . |α0〉):

Le(ω) = limT→∞
1

2πT
∫ T/2
−T/2 dt1

∫ ∞
−∞ dteiωt (4)

〈α0|{U†(t1)U0†(t1)deU0(t1)U(t1)U†(t + t1)

U0†(t + t1)deU0(t + t1)U(t + t1)}|α0〉

Using the cyclic property of the trace and the fact that U† = U−1, recalling that U(t) = U(t, 0)
(from time 0 to time t) we have

U(t1)U†(t + t1) = U(t1, 0)[U(t1 + t, t1)U(t1, 0)]−1 = U†(t1 + t, t1) (5)

U(t + t1)U†(t1) = U(t + t1, t1)U(t1, 0)U−1(t1, 0) = U(t + t1, t1) (6)

Therefore the line profile along the e direction is:

Le(ω) = limT→∞
1

2πT
∫ T/2
−T/2 dt1

∫ ∞
−∞ dteiωt〈α0|{U0†(t1)de (7)

U0(t1)U†(t1 + t, t1)U0†(t + t1)deU0(t + t1)U(t + t1, t1)}|α0〉

Then using complete sets of states (in practice α, α′ . . . refer to upper and β, β′, . . . to
lower level states):

Le(ω) = limT→∞
1

2πT
∫ T/2
−T/2 dt1

∫ ∞
−∞ dteiωt (8)

{U0†
α0α(t1)deαβ·U0

ββ0
(t1)U†

β0β1
(t1 + t, t1)U0†

β1β′(t + t1)

deβ′α′U0
α′α1

(t + t1)Uα1α0(t + t1, t1)]

= limT→∞
1

2πT
∫ T/2
−T/2 dt1

∫ ∞
−∞ dteiωt

{Uα1α0(t + t1, t1)U†
β0β1

(t1 + t, t1)}U0†
α0α(t1)deαβ·

U0
ββ0

(t1)U0†
β1β′(t + t1)deβ′α′UL

α′α1
(t + t1)

Note that the only part involving the medium is {Uα1α0(t + t1, t1)U†
β0β1

(t1 + t, t1)},
as everything else involves only the time evolution of the atomic system U0 in the presence
of only the laser, but not the medium. If the C(t) time scale (i.e., the times involved) is
large compared to the deterministic field period this should be independent of the time
origin and hence may be replaced by {Uα1α0(t)U

†
β0β1

(t)}. Numerically, the interaction
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picture is perhaps more transparent and attractive because of the identification of peaks
and intensities via the plasma-independent part (a and b below) and because solving the
Schrödinger equation for the dressed interaction is advantageous, as the changes in the U-
matrix hapening on a given time scale are typically much smaller and hence the integration
faster. In other words, the alternative approach is to solve for each random perturber
configuration, the Schrödinger equation in the combined random plus nonrandom fields,
which evolution may be dominated by the nonrandom fields and to extract the peaks
from the Fourier transform and this has been done in previous Spectral Line Shapes
Workshops [12].

We can therefore write the line profile as a product of (a) dipole matrix D, (b) a plasma
independent matrix S and (c) a plasma dependent quantity:

Le(ω) = Dαββ′α′

∫ ∞

−∞
dteiωtSα0α1β1β0ββ′α′α(t){Uα1α0(t)U

†
β0β1

(t)} (9)

where the dipole term D is purely atomic,

Dαββ′α′ = deαβ·deβ′α′ (10)

and the plasma-independent (but laser-dependent) matrix S is:

Sα0α1β1β0ββ′α′α(t) = limT→∞
1

2πT (11)∫ T/2
−T/2 dt1U0†

α0α(t1)U0
ββ0

(t1)U0†
β1β′(t + t1)U0

α′α1
(t + t1)

S determines the sattelite structure and intensity, D determines the total line intensity
and {. . .} determines the broadening of each sattelite. In the case without a laser field,
U0

ij(t) = δijexp(−iωit) and S reduces to

Sα0α1β1β0ββ′α′α(t) = e−ıt(ωα′−ωβ′ )δ(ωα0 −ωβ0 −ωα′ + ωβ′)δα0α′δββ0 δα′α1
δβ′β1

(12)

Indeed, U0 can be Fourier-analyzed, resulting in δ − f unctions if U0 is periodic or
shifted periodic (i.e., involing extra imaginary exponentials), resulting in a sattelite structure
with repeated peaks. If not, then S is a broader structure. Note that no assumption has been
made thus far (e.g., hydrogenic emitter of basis or functional form of the external field (for
instance exactly harmonic), apart from {Uij(t + t1, t1)U†

kl(t + t1, t1)} = {Uij(t)U†
kl(t)}). To

identify C(t) and also to reduce this expression to as basis-independent a form as possible,
one may extract the “no laser” term exp[−ıt(ωα′ −ωβ′)] from S and write it separately. To
do this, simply use again the interaction picture on the time evolution operator U0, this
time with the atomic Hamiltonian as unperturbed and the laser as the perturbation, i.e.,

U0(t) = UA(t)UL(t) (13)

with the A and L superscripts denoting atomic and Laser Hamiltonians, respectively.
With the states denoting atomic states and using the diagonality of UA, S becomes:

Sα0α1β1β0ββ′α′α(t) = e−ı(ωα′−ωβ′ )tGα0α1β1β0ββ′α′α(t) (14)

with

Gα0α1β1β0ββ′α′α(t) = limT→∞
1

2πT
∫ T

0 dt1UL†
α0α1

(t1) (15)

UL
β1β0

(t1)UL†
ββ′(t + t1)UL

α′α(t + t1)exp[ıt1(ωα1 −ωβ1 −ωα′ + ωβ′)]

with UL determined by the Schroedinger equation:

dUL

dt
= − ı

h̄
eıHAt/h̄VL(t)e−ıHAt/h̄UL(t) (16)
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with VL the laser-emitter interaction and HA the atomic Hamiltonian.
Therefore the final result for the line profile along the direction e is:

Le(ω) = ∑
k

∫ ∞

−∞
dtei(ω−ωα′β′ )tCk(t) (17)

with
Ck(t) = Dαββ′α′Gα0α1β1β0ββ′α′α(t){Uα1α0(t)U

†
β0β1

(t)} (18)

where k refers to each α′ → β′ transition of interest. For example if we look at a hydrogenic
line, the various ωα′β′ could correspond to the different fine structure components.

3. Time-Periodic Fieds: Floquet Theory

Up until now the discussion has made no assumptions on the specific time-dependence
of the external field. We now consider the case of time-periodic fields. In that case Floquet’s
theorem shows that the U-matrix is a product of a time periodic matrix and an exponential
matrix. From Equation (16) note that UL has a Floquet structure if HA is degenerate.
In the more general case, UL itself does not have a Floquet structure, but the U0-matrix
for evolution in the presence of the time-independent atomic Hamiltonian plus periodic
field does.

The spectrum (Equation (12) is determined by the eigenvalues (often called quasi-
energies) of F0 as well as its eigenvectors (often called modes). Floquet theory has been
applied before for this problem [13,14]. The difference from the present approach is that in
the works cited Floquet theory was applied in the context of the impact/unified(Liouville)
theory, which in principle needs some approximation (typically perturbation theory) to
compute the self-energy matrix. Floquet’s theorem (see Appendix A) shows that U0 is the
product of a periodic function P(t) and an exponential:

U0(t) = P(t)eıBt (19)

with B constant and P periodic:

P(t) =
∞

∑
k=−∞

pkeıkΩt (20)

Hence we write: eıBt = EeıΛtE−1, with E the (time-independent) eigenvectors of B and
Λ a diagonal matrix with real eigenvalues. Unitarity means that E−1 = E† need not be
computed. Reality of eigenvalues is simple to see on mathematical (e.g., since eıBT = U(T)
is unitary, then BT must be Hermitian, i.e., B must be Hermitian) or, equivalently, physical
grounds (if the eigenvalues had a negative imaginary part, U(∞) would diverge, while if it
had a positive imaginary part, it would become 0, and thus result in population loss). If B
is degenerate, as in hydrogen-like species with no fine structure and no external fields or
consideration of quenching, then the case is trivial and B can effectively be absorbed in the
choice of the line center frequency. We can rewrite Equation (19) as

U0(t) = Z(t)eıΛtE−1 (21)

with the periodic matrix

Z(t) = P(t)E =
∞

∑
n=−∞

eıΩntzn (22)

and the subscript n denoting the nth Fourier component of Z in the Fourier series expansion
of the periodic function Z(t). Figure 1 displays matrix elements of the constant matrices zn
as a function of n.
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Figure 1. zn coefficients as a function of n, showing the rapid drop with increasing |n|.

The matrix S therefore gives rise to a sattelite structure, specifically, the satellite
structure from Equation (12) reads:

Sα0α1β1β0ββ′α′α(t) = eıΩt(p−l)limT→∞
1

2πT
∫ T/2
−T/2 dt1 (23)

E−1†
α0α2

e−ıλα2 t1 z†
nα2αzmββ2 eıλβ2

t1 E−1
β2β1

E−1†
β1β3

e−ıλβ3
(t+t1)z†

lβ3β′zpα′α3
eıλα3 (t+t1)E−1

α3α1
eıΩ(−n+m−l+p)

= eıt[Ω(p−l)+λα3−λβ3
]Eα0α2 z†

nα2αzmββ2 E−1
β2β1

Eβ1β3 z†
lβ3β′zpα′α3

E−1
α3α1

δ[Ω(−n + m− l + p) + λα3 − λα2 + λβ2 − λβ3 ]

At this point it may be instructive to consider the plasma-independent term for
directione

Sα0α1β1β0 = De
αββ′α′Sα0α1β1β0ββ′α′α(t) = ∑nmlp δ[Ω(−n + m− l + p) + λα3 − λα2 + λβ2 − λβ3 ] (24)

Eα0α2 Re
α2β2(n, m)E†

β2β0
Eβ1β3 ·Re†

α3β3
(p, l)E†

α3α1
eıt[(p−l)Ω+λα3−λβ3

]

with
Re

αβ(n, m) = z†
nαα′deα′β′zmβ′β (25)

Note the mixture of Floquet exponents and (n, m, l, p) due to the imaginary exponential
and the δ function.

This may be written as

Sα0α1 β1 β0 = ∑
k

∞

∑
n=−∞

Qnkeı(Ωn+∆k)t (26)

The point is that n runs over all integers, while k runs over the distinct combination k
of differences in the upper-lower Floquet exponents. This results in a modified sattelite
structure: If the plasma-dependent quantity {Uα1α0(t)U

†
β0β1

(t)} is Fourier-analyzed in
terms of functions uj(ω), then the profile qualitatively consists of linear combinations of
uj(ω− nΩ− ∆k). In other words the total profile is the sum of a number of profiles, each
with their own intensity (given by Qnk), centers (given by Ωn + ∆k) and widths and shifts
(determined by decay of {Uα1α0(t)U

†
β0β1

(t)}), as illustrated in Figures 2 and 3, i.e.,

Le(ω) = ∑
nk

∫
dtCe

nk(t)e
ı(ω−ωnk)t (27)

with
ωnk = Ωn + ∆k (28)

and remaining factors forming the autocorrelation function of this component in direction e.
Figure 2 displays the positions and relative intensities of the various components

Ωn + ∆k for H-like Si L− γ under conditions similar to those described in Refs. [10,11].
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The difference between the intensities can exceed many orders of magnitude. Figure 3
displays the real parts of Cnk for some of the strongest components nk for H-like Si
L− γ under conditions similar to those described in Refs. [10,11], namely electron density
3.6 × 1022 e/cc, electron and ion temperatures 500 and 1 eV respectively and a linearly
polarized oscillatory field E0cos(Ωt) with E0 = 0.6 GV/cm and Ω = 1.07× 1016 s−1, as well
as a static field Fstatic of magnitude 2.1 GV/cm in the direction perpendicular to the oscilla-
tory field. Fine structure is included in the calculations. The sum of the autocorrelation
functions in the parallel and perpendicular directions is displayed. The calculation used
100 plasma particle configurations and an impact tail [15] for long times was recognizable.
Broadening by both electrons and ions was accounted for in the calculation shown.
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Figure 2. Combined Blokhinstev ( n = −1, 0, 1) and Floquet (∆k) components as labelled in Equa-
tion (26). for H-like Si Ł− γ (with fine structure included) under conditions similar to those in
Refs. [10,11]. The components form three clusters for n = −1, 0, 1, with each cluster member correspond-
ing to a different Floquet exponent. The intensities are relative percent intensities (they add to 100).
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Figure 3. Real part of (Cnk(t)) for five of the strongest components. for H-like Si L − γ (with
fine structure included) under conditions similar to those in Refs. [10,11], namely electron density
3.6 × 1022 e/cc, electron and ion temperatures 500 and 1 eV respectively and a linearly polarized
oscillatory field E0cos(Ωt) with E0 = 0.6 GV/cm and Ω = 1.07 × 1016 s−1, as well as a static
field Fstatic of magnitude 2.1 GV/cm in the direction perpendicular to the oscillatory field. Fine
structure is included in the calculations. The sum of the autocorrelation functions in the parallel and
perpendicular directions is displayed. The calculation used 100 plasma particle configurations and
an impact tail for long times was recognizable.
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If the outside field is not exactly periodic, it may still be Fourier-transformed. In that
case we do not get exactly sattelites, but a more spread out structure on which the medium
broadening will be superimposed.

3.1. Qualitative Remarks on the B-Matrix

The Floquet exponents λ are typically produced by a time-independent breakdown
of degeneracy, such as a constant Stark field or fine structure However, the λ are not
necessarily exactly equal to say the Stark shifts. The B-matrix is typically related to a
time-independent term, as stated above. It is shown in Appendix B that B is identically
0 if we solve for a pure periodic field (monochromatic or not) with no time-independent
term. Therefore, for degenerate cases, i.e., H-like species with no fine structure and in
the no-quenching approximation, B = e−ıωt with h̄ω the energy of the level in question;
alternatively B may be taken as 0 if we measure energy differences from the line transition.
If nontrivial (i.e., nondegenerate), B is related to a time-independent term in the Hamilto-
nian, and it makes no mathematical difference if this comes from the atomic Hamiltonian
itself, or from a possible static field. To our knowledge the joint action of a static and an
oscillatory field was first considered in [16,17].

Note that the B-matrix is never used directly; its eigenvalues and eigenvectors are all
we need.

3.2. General Lineshape and Static Solutions

From the previous discussion, it is obvious that the profile will in general be a super-
position of profiles centered at positions corresponding to combinations of n and k and
intensities as specified by Qnk. Depending on the width of these profiles (which does in
turn depend on the periodic field parameters) with respect to their separation, and the Qnk
intensities, these may appear as either isolated or overlapping features. It should then be
no surprise to see peaks and troughs in such profiles.

Although we will be dealing in detail with such predictions in a separate publication,
note that if one assumes small plasma effects, i.e., {Uα1α0(t)U

†
β0β1

(t)} ≈ δalpha1α0 δβ0β1 and
a random but static electric field (internally generated, e.g., ion acoustic turbulence or
static ion fields) in addition to the oscillatory field, the system (oscillatory plus static field)
is still periodic and the previous results apply, except that the final profile involves an
integral over the random static fields F and their distribution W(F):

Le(ω) = ∑kn
∫

dFW(F)
∫ ∞
−∞ dtei[ω+Ωn+∆k(F)]tQe

nk(F)

= ∑kn
∫

dFW(F)Qe
nk(F)δ(ω + nΩ + ∆k(F)) (29)

where now Qnk is a scalar, after matrix multiplication with {Uα1α0(t)U
†
β0β1

(t)}. Making
use of

δ( f (x)) = ∑
i

δ(x− xi)

| f ′(xi)|
(30)

with xi the roots of f (x) = 0 (and its 3-dimensional generalization), this reads:

Le(ω) = ∑
nki

W(Fi)Qnk(Fi)

|∇∆nk(Fi)|
. (31)

Note that Fi are functions of ω, as they are roots of ω + nΩ + ∆k(F) = 0. Some ∆k may
be unaffected by the static field (e.g., central components). For these of course, δ-function
profiles cannot be avoided in a static picture.

Additionally, note that irrespective of the exact form of W, W(0) = 0. Then:

a If ∆nk is independent of Fi, we get the usual static results of δ-functions for central
components at the Blokhitsev positions or integer multiples of Ω.

b For ω = nΩ, the δ-function argument is zero for ∆nk(Fi) = 0, which is typically
satisfied for Fi ≈ 0, at least for H-like species. However, then the distribution function
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W(0) = 0 ensures a zero result which could show up as a dip. Hence in this view one
might expect intensity drops and these should practically coincide with the Blokhintsev
peaks at nΩ to the extent that |∆k| � Ω.

It should be stressed that static fields in plasmas are often wishful thinking: Of course
one effect of a laser field is to dress the emitter-plasma interaction by an oscillatory function,
which may oscillate rapidly and hence change the sign of the interaction in the Schrödinger
equation and hence tend to keep {Uα1α0(t)U

†
β0β1

(t)} is “small”. However, some broadening
mechanism will need to provide the memory loss and the dressing just descirbed will only
delay the ultimate decay of C(t) and hence effectively increases the memory loss time (the
inverse of the width) in the autocorrelation function. If some random static field is the
dominant mechanism, this clearly cannot work for lines with a central component and for
other lines it has to be strong enough to provide memory loss on a time scale where it is
static. For a field to be considered constant (static) in this context, it must change on a time
scale significantly longer than the autocorrelation function’s time scale. A field is static not
because it is “large” or “small”, but because it varies little on the inverse HWHM time scale.
This requires some broadening mechanism to provide this memory loss. The mechanism
just discussed assumes that {Uα1α0(t)U

†
β0β1

(t)} ≈ I on a time scale that the static field both
does not change and has produced an appreciable memory loss. We have just explained
that the profile is a sum of profiles, each with its own central position, intensity and width
and shift and is never strictly zero.

3.3. Numerical Floquet Solution

For a periodic field (such as a laser), use of Floquet theory represents a way to
significantly optimize the calculation: Compared to solving the Schrödinger equation
in the external plus plasma particle field, which may be dominated by the external field for
high field amplitudes, the alternative algorithm can be significantly more efficient:

The point is that if B (actually its eigenvalues and eigenvectors) is reliably computed
and P(t) is determined in [0,T], we effectively have computed the plasma-unperturbed
evolution operator for all times. Since the periodic field intensity may well exceed the
plasma microfield, even by orders of magnitude, if we solve for the total (deterministic laser
plus stochastic plasma) field, the change over a given time step can de dominated by the
deterministic field. Thus, it is numerically quite convient to use the interaction picture after
having solved the 0th order Hamiltonian with the periodic field; it also directly identifies
the sattelite positions. In addition, if a numerical solution is necessary, it is important
that we only need U0 for the laser period, not the time of interest for C(t), which may be
much larger.

3.3.1. Direct B Eigendecomposition

Direct B eigendecomposition is conceptually simple and involves the following steps:

1. Determination of B. Since U0(0) = I = P(0) = P(T), U0(T) = e−ıBT , compute once
and for all U0(T), i.e., the time evolution for one period in the presence of the periodic
field and no plasma. Since U(T) must be unitary, accuracy is typically important
and since the problem is typically stiff, a geometric integrator, preserving unitarity,
should be used [18].

2. Diagonalize U0(T) = EeıΛTE−1 to obtain the eigenvalue decomposition of B once
and for all. Since U0(T) is unitary, the best way is to compute the Schur factorization:
U(T) = XTX†, where X is unitary, and since U(T) is unitary, the upper triangular
matrix T is unitary and hence diagonal.Thus the columns of X are eigenvectors of
U(T) and form an orthonormal basis.

3. Compute, also once and for all, the satellite structure: For all distinct eigenvalues
λi of B, consider all sattelite positions ∆i + nΩ, for all integer n resulting in satellite
position in the region of interest, where ∆i refers to all combinations of differences in
the upper-lower level Floquet exponents. This also helps optimize the frequency grid.
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4. Compute interpolation tables for each entry of the Z(τ) matrices for 0 ≤ τ ≤ T, so
that when U0(t) is required, we interpolate to get Z(tmodT) and multiply by eıΛE†.

5. Next, solve for the time evolution in the plasma microfield V(t), dressed by U0(t).

3.3.2. Spectral Methods

Alternatively, spectral methods, relying on a Fourier decomposition and using smooth-
ness of the interaction to drop high frequency terms have been applied to Floquet problems,
for instance in Refs. [19,20]. That is, the periodic Hamiltonian H(t) may be written as:

H(t) =
∞

∑
k=−∞

hkeıkΩt (32)

and B is related to h0, i.e., a time-independent term. Of course h0 always contains the the
atomic Hamiltonian, but could also include terms such as a static field.

As may be seen from Equation (16), if we have a degenerate atomic Hamiltonian (e.g.,
hydrogen-like with no fine structure and no quenching), UL has a Floquet structure since
the imaginary exponentials cancel and we are effectively left with a periodic interaction.
Furthermore, in the diagonal basis for the atomic Hamiltonian,

UA = e−ıω0t I, (33)

where I is the unit matrix and ω0 the level energy. Hence from Equation (13) we only need
to solve for UL with the pure laser field and then shift the eigenvalues of B by ω0.

If we Fourier-expand

U0(t) =
∞

∑
n=−∞

pneınΩteıBt (34)

and use Equation (32), we have from the Schrödinger equation:

ı
∞

∑
n=−∞

pneınΩt(Ωn + B)eıBt =
−ı
h̄

∞

∑
k=−∞

∞

∑
j=−∞

hk pjeıΩ(k+j)teıBt (35)

Right-multiplying by e−ıBt and simplifying we have since n = k + j:

h̄pn(nΩI + B) =
∞

∑
k=−∞

hk pn−k (36)

Typically, the matrix hk is only nonzero for k = 0 (time-independent Hamiltonian) and
k = ±1, e.g., a monochromatic field. In that case we get a set of equations involving the
known hi and unknown pj and, B, e.g.,

h̄p−1(B−ΩI) = h−1 p0 + h0 p−1 + h1 p−2 (37)

h̄p0B = h−1 p1 + h0 p0 + h1 p−1 (38)

h̄p1(ΩI + B) = h−1 p2 + h0 p1 + h1 p0 . . . (39)

h̄pk(kΩI + B) = h−1 pk+1 + h0 pk + h1 pk−1 . . . (40)

and, of course the initial condition:

∞

∑
n=−∞

pn = I, (41)
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The point is that the coefficients pk drop rapidly for large |k|. Hence this infinite set of
equations can be truncated if we set qk = 0, |k| > m, where m is a maximum non-negligible
coefficient index. Hence if we set

pij
k = 0, |k| > m (42)

we have 2m + 1 unknown matrices pk, plus the matrix B, i.e., a total of 2m + 2 unknown
matrices and 2m + 1 matrix equations for pk plus the initial conditions. Because of the pkB
term, this is a nonlinear system. Of course, B could be determined by the first method.

3.3.3. Analytical Solutions

In some cases, analytical solutions are possible. A common and important case is a
planar oscillatory field, for instance a static field in the z-direction and an oscillatory field
in the x-y plane, of the form

d · E = E0[xcos(Ωt) + ycos(Ωt)] (43)

The idea is that the net field has direction whose xy component Et is obtained by rotating
about the z-axis. Thus, noting that

xcos(Ωt) + ysin(Ωt) = e
−ıΩtLz

h̄ xe
ıΩtLz

h̄ (44)

We can solve the Schrödinger equation for the rotated states |r〉 = eıΩtLz/h̄|i〉 where |i〉 are
the hydrogen spherical states:

e
ıΩtLz

h̄
dU0

dt
= − ı

h̄
(e

ıΩtLz
h̄ H0 + eE0e

ıΩtLz
h̄ e

−ıΩtLz
h̄ xe

ıΩtLz
h̄ )U0(t), (45)

i.e.,

e
ıΩtLz

h̄
dU0

dt
= − ı

h̄
(H0 + eE0x)e

ıΩtLz
h̄ U0(t) (46)

since H0 commutes with Lz. Renaming Ũ0(t) = e
ıΩtLz

h̄ U0(t) and adding ıΩLz
h̄ Ũ0(t) to

complete the derivative of Ũ0(t) results in the elimination of the time-varying E-field:

dŨ0(t)
dt

= − ı
h̄
(H0 + ΩLz + eE0x)Ũ0(t) (47)

Hence by diagonalizing the time independent H0 + ΩLz + eE0x = QMQ−1, Ũ0(t) is
obtained:

Ũ0(t) = QeMt (48)

i.e.,
U0(t) = e

−ıΩtLz
h̄ QeMt (49)

4. Discussion

The key results of the present paper is Equation (26), which shows a spectrum consist-
ing of features at the Floquet exponents, shifted by the Blokhintsev structure, i.e., integer
multiples of the laser frequency Ω. These Floquet exponents indexed by k and Blokhintsev
sattelites couple and in general involve more time evolutions than usual. For instance for
Lyman lines, it would normally suffice to solve the systems

〈i|dU
dt
|np〉 = − ı

h̄
〈i|V′|k〉〈k|U|np〉, (50)

i.e., we would only need to solve for the evolution of the np states. This is no longer the
case, making calculations (in this respect) harder.
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It was also shown in the Appendix that the Floquet exponents are nontrivial only
if the time-independent Hamiltonian is non-degenerate. This can be either because the
atomic Hamiltonian is nondegenerate, or because the perturbation has a static component
that breaks degeneracy.

Last, it was shown that the profile consists of structures centered at combinations of
Blokhintsev and Floquet components, with widely different intensities and a broadening
determined by the {Uα1α0(t + t1, t1)U†

β0β1
(t1 + t, t1)} term and computational methods

were presented.

5. Conclusions

The present work considered the problem of an external deterministic, periodic oscilla-
tory field in a random medium and the modifications to the pressure-broadened spectrum
of atomic lines. The autocorrelation function can be decomposed as a product of two factors,
one of which is medium-dependent and the other medium-independent. Furthermore,
the medium-independent factor is a product of a purely atomic factor and an atomic plus
laser-dependent one.

Using the Floquet theorem, it is shown that the spectrum consists of structures (peaks)
at positions corresponding to the Blokhintsev sattelites shifted by the Floquet exponents. It
is also shown that nontrivial Floquet exponents arise as a result of a nondegenerate term in
the time-independent Hamiltonian.

The problem in hand has been tackled before [12] by solving the Schrödinger equa-
tion with all stochastic and deterministic fields included. The present approach has the
advantages of transparency, in that the structure S is obtained directly, rather than being dis-
covered by the numerical Fourier transform and that if the laser amplitude dominates the
random fields, numerical integration with the direct approach can be harder, although in
the method used before one has less systems to solve, as for instance for Lyman-lines, only
matrix elements 〈i|U(t)|2p〉 are required. In particular if one is interested in optimizing
laser parameters, it may be advantageous to obtain the distances between peaks without
having to run the full calculation, which will determine the degree of overlap.
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Informed Consent Statement: Not applicable.
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Appendix A. Floquet Theory

In this appendix, a derivation of Floquet’s theorem is given. First we note that if X(t)
is a fundamental matrix, then

Lemma A1. S(t) = X(t)C, with C a time-independent non-singular matrix, is also a fundamental
matrix because

d
S
dt

=
dX
dt

C = A(XC) = AS (A1)

Lemma A2. R(t) = X(t + T) is also a fundamental matrix, as:

d
R
dt

= d
R

d(t + T)
= A(t + T)X(t + T) = A(t)R(t) (A2)

Lemma A3. From the above we see that if we define the matrix M(t) = X−1(t)X(t + T),
i.e., X(t + T) = X(t)M(t), then by Lemma A2 X(t + T) is a fundamental matrix. Then if we
take the constant matrix M0 = M(t0), then by Lemma A1, both S(t) = X(t)M0 and Z(t) =
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X(t)M(t) are fundamental matrices that coincide for t = t0; hence they must coincide for all times.
Therefore

X(t + T) = X(t)C (A3)

with C a time-independent matrix. In that case C can be written explicitly as the value for t = 0:

C = X−1(0)X(T) (A4)

Furthermore in our case the fundamental matrix is the identity matrix I at t = 0, i.e., X(0) =
X−1(0) = I, so that:

C = X(T) (A5)

and
X(t + T) = X(t)X(T) (A6)

Floquet’s theorem follows by writing
C = eBT (A7)

and
Q(t) = X(t)e−Bt (A8)

It remains to show that Q is periodic with period T. This follows from

Q(t + T) = X(t + T)e−B(t+T) = X(t)Ce−B(t+T) = X(t)eBTe−B(t+T) = X(t)e−Bt = Q(t) (A9)

where
eBTe−B(t+T) (A10)

follows from the fact that B is a constant matrix, with an eigenvector decomposition that is the same
in both exponentials, i.e.,

eBTe−B(t+T) = PeΛT P−1Pe−Λ(t+T)P−1 = Pe−ΛtP−1 (A11)

Appendix B. B-Matrix for a Periodic Interaction with No Time-Independent Term

The purpose of this appendix is to show that for a periodic interaction V(t) with
no constant term, the Floquet B-matrix is identically 0. This means that in view of
Equations (13) and (16) for a degenerate atomic Hamiltonian HA, B = eıω0t I with I the unit
matrix and h̄ω0 the level energy. To this end we use the Dyson expansion:

U(t) = I −
∞

∑
k=1

(
−ı
h̄
)kGk (A12)

and

Gk =
∫ t

0
dt1V(t1)

∫ t1

0
dt2V(t2) . . .

∫ tk−1

0
dtkV(tk) (A13)

for the case where V(t) is periodic with no time-independent term. This is relevant for
H-like lines without fine structure and quenching, i.e., a degenerate atomic Hamiltonian.
We want to show that the result is a period function and hence B in Floquet’s theorem is
explicitly 0. In that case we write

V(t) =
′

∑
n

vneınΩt (A14)

with the prime in the sum denoting that the sum runs over all integer n except n = 0.
Consider the last integral:
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∫ tk−1

0
dtkV(tk) =

′
∑
n

vn

ınΩ
(eınΩtk − 1) (A15)

The next integral: ∫ tk−2
0 dtk−1V(tk)∑′n

vn
ınΩ (eınΩtk − 1) = ∑′nq

vqvn
ınΩ (A16)∫ tk−2

0 dtk−1(eı(n+q)Ωtk−1 − eıqΩtk−1)

= ∑′nq
vqvn
ınΩ [ eı(n+q)Ωtk−2−1

ı(n+q)Ω − eıqΩtk−2−1
ıqΩ ]

Unless n + q = 0, this has the same dependence of tk−2 as Equation (A15) has on tk−1, so
that when all integrations are carried out, we are left with a function of t that involves
integral powers of eıΩt, which is obviously periodic. The only way that this will not happen
is if n+ q = 0. Indeed, in Equation (A17) q is again nonzero if V(t) has no time-independent
term. n + q could be 0, but these terms come in pairs, e.g., n = 1, q = −1 and n = −1, q = 1
(for n or q = 0 we would have a single contribution, not pairs with different sign due to
the denominator, so it is important that V(t) has no time-independent component). Then
we have for positive n the terms

v−nvn − vnv−n

ınΩ

∫ tk−2

0
dtk−1 = tk−2

v−nvn − vnv−n

ınΩ
(A17)

If V is only (atomic electron) position-dependent, e.g., for a dipole interaction the dipole
moment is proportional to the atomic electron position operator, then vn and v−n commute
and the n + q = 0 terms indeed cancel. For instance take an ellipitically polarised laser field

E0[cos(Ωt) + αcos(Ωt + φ)] (A18)

with φ a phase and α a number between 0 and 1. Except for factors involving eE0
2 , we have

the only nonvanishing terms:

v1 = x + αe−ıφy, v−1 = x + αeıφy (A19)

with x, y the atomic electron opsition operators, so that

v1v−1 = xx + α2yy + α(xyeıφ + yxe−ıφ) (A20)

and
v−1v1 = xx + α2yy + α(eıφyx + e−ıφxy) (A21)

which are equal since x and y commute.
Floquet’s theory deals with first order linear differential equations of the form:

dx(t)
dt

= A(t)x(t) + b(t) (A22)

where x(t) is an n-dimensional vector and A(t) = A(t + T) an nxn dimensional matrix
with periodic coefficients and period T. In our case the vector x is simply the UL-matrix and
A(t) = − ı

h̄ V(t), with b(t) = 0. Hence we have a homogeneous system The Floquet theory
considers the fundamental matrix X(t), which is a matrix with collumns n independent
solutions. In our case:

X =


UL11 UL12 · · · UL1n
UL21 UL22 · · · UL2n

...
...

. . .
...

ULn1 ULn2 · · · ULnn

 (A23)

i.e., the matrix of the evolution of each state of the upper or lower level.
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The Schrödinger equation for a hydrogen-like system in a time-periodic potential:

dU0(t, t0)

dt
= − i

h̄
V(t)U0(t, t0) (A24)

where U0(t, t0) represents the evolution from t0 to t, with U0(t0, t0) = I (the identity ma-
trix).

For a time periodic potential V(t) = V(t + T). From the Schrödinger equation for
t > t0 in [0,T]:

dU0(t + nT, t0 + nT)
dt

= − i
h̄

V(t + nT)U0(t + nT, t0 + nT) = − i
h̄

V(t)U0(t + nT, t0 + nT) (25)

In other words, U0(t + nT, t0 + nT) satisfies the same equation as U0(t, t0) and fur-
thermore the same initial condition

U0(t0 + nT, t0 + nT) = U0(t0, t0) = I (26)

Therefore U0 is periodic:
U0(t + nT, t0 + nT) = U0(t, t0) (27)

Next, using the property of time evolution operators:

U0(t, t0) = U0(t, tn)U0(tn, tn−1)U0(tn−1, tn−2) . . . U0(t2, t1)U0(t1, t0) (28)

we have

U0(t + nT, t0 + nT) = U0(t + nT, t0 + nT)U0(t0 + nT, t0 + (n− 1)T) (29)

U0(t0 + (n− 1)T, t0 + (n− 2)T) . . . U0(t0 + 2T, t0 + T)U0(t0 + T, t0)

= U0(t, t0)Un
0 (t0 + T, t0)

using Equation (27) once for t = t, t0 = t0 and n times for t = t0, t0 = t0 − T. Therefore it is
enough to compute the U-matrix in the time period of the perturbation. U0(t0 + T, t0) is
sometimes called the Floquet operator F0 and in principle depends on t0, since in principle
ergodicity is broken.
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