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Abstract: Amplified Spontaneous Emission is ubiquitous in systems with optical gain and is respon-
sible for many opportunities and shortcomings. Its role in the progression from the simplest form
of thermal radiation (single emitter spontaneous emission) all the way to coherent radiation from
inverted systems is still an open question. We critically review observations of photon bursts in
micro- and nanolasers, in the perspective of currently used measurement techniques, in relation to
threshold-related questions for small devices. Corresponding stochastic predictions are analyzed,
and contrasted with burst absence in differential models, in light of general phase space properties.
A brief discussion on perspectives is offered in the conclusions.
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1. Introduction

Amplified Spontaneous Emission (ASE) is a pervasive phenomenon ever present
in any optical system which exhibits gain. Its origin lies in the existence of the induced
emission, symmetric of absorption, postulated by Einstein [1] in his seminal paper on
radiation. In the field of lasers and optical amplifiers, which has grown a few decades later,
it has progressively gained importance as a competitor [2], precursor [3] or substitute [4] of
lasing and broadband noise source [5] or pulsed source in optical amplifiers (cf. [6] and
references therein for numerous applications).

From the laser point of view, fundamental aspects of ASE begin with the realization
of the existence of a threshold for the spontaneous amplification [7,8]. Overcoming this
threshold amounts to enabling the amplification of a signal at the end of a pumped sample
to be spontaneously amplified through propagation in the medium—whence the term ASE.
In such a case a “mirrorless laser” can be built [9], and one of its early experimental realiza-
tion is the (transversely excited, high pressure) N2 laser [10,11]. As already mentioned, and
to be expected, systems with high gain—which make for excellent oscillators—have been
very well sought after for their ease in realizing a laser [12,13], as well as the more versatile
dye-based counterparts, for which a thorough characterization of the combined ASE and
coherent emission has been conducted [14] (corrections to initially established relations,
mostly applicable to solid state lasers, have been later determined [15]). An alternative
representation of ASE, seen as amplified noise, has been also proposed [16].

At the macroscopic scale, ASE is responsible for astrophysical laser sources [8,17],
on the one hand, and has been exploited to strongly improve the efficiency of the Free
Electron Laser, using a self-amplification regime [18–20], or for UV amplification [21]. ASE,
exploited as a biocompatible nonlinear, scattering induced amplifier [22], is the natural
precursor of random lasing [23,24] and is predicted to appear in concomitance with a
reduction in the number of degrees of freedom in such systems [25].

From the point of view of field monochromaticity, a large amount of ASE is detrimental
in conjuction with coherent emission in bulk lasers [2] or fiber amplifiers [26]. However,
it enables pulse shortening [27] and very broadband lasers and amplifiers [28], whose
current application is the generation of ultrashort pulses [29] approaching the attosecond
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regime. In this sense, ASE is strongly beneficial to the realization of sources with extreme
performance. Current interest, at an entirely different lengthscale, covers the micro- and
nanoscopic regime, where on the one hand solid-state microdisk lasers suffer from the
incoherent emission component [30], while ASE is used as a measure of the potential for
obtaining lasing action in nanodevices [31,32] even before achieving actual lasing—its
usefulness is therefore in validating the selection of candidates for nanolasing emission.
Strong technological interest in ASE appears in the investigation of colloidal systems [33]
and their threshold engineering [34] as well as in organic lasers [35,36] as reviewed in [37].

A very interesting regime in superluminescent diodes has been identified, where the
superpossonian statistics approaches the lasing regime as the current supplied to the device
is increased [38]. In addition to the potential technological interest proposed in the original
paper, this observation may suggest the emission of frequent, ultrashort ASE pulses which
amount to a quasi-continuous emission. Whether this is a generic kind of emission is a
question which is now of great interest in relation with photon condensation. Without
entering into a detailed discussion of this line of research, which escapes the scope of this
contribution, we highlight this emerging topic, susceptible of leading to a more complete
description of the physics of radiation in its evolution from the entirely spontaneous emitter
relaxation into the purely coherent (lasing) emission.

The observation of the condensation of photons in interaction with a resonant medium
in a cavity [39], and of its different statistical and non-stationary properties [40,41], has
prompted the investigation of its occurrence even in other systems [42,43], hinting to a phe-
nomenon more general than what initially considered (even without considering polariton
and excitons which lie outside the realm of this discussion). A generalized thermodynami-
cal treatment of Kirchoff’s law [44] enables the description of subsystems with different
temperatures—thus out of equilibrium—bridging the gap between the traditional thermal
point of view and more modern devices. Its applications are numerous and, in addition
to enabling more efficient, tailored coupling between emitters and space, offers one more
step in the description of the radiation field starting from the ideal spontaneous emission
(one single emitter in vacuum) all the way to the non-equilibrium situation, eventually
represented by the laser [45]. Potential interest for futuristic high-speed communications
rests on the development of these concepts [46].

A complete overview of spontaneous emission is outside the scope of the present
contribution; however, aspects which are important for our scopes include the filtering
action of a cavity [47] or the relation between spontaneous emission and gain in Quantum
Well semiconductor devices [48]. Fundamental features of the relationship between the so-
called “Dicke superradiance” and ASE are discussed in [49,50], and provide the foundations
of the transition between the spontaneous and the stimulated regimes. Finally, it is worth
pointing out recent investigations on the coherence properties of ASE and the possibility for
obtaining lasing action—through ASE—in a cavity-less system [51,52]. A good overview
of the physics of small-sized lasers and of many of their threshold features—including
discussions on noise properties and quantum-mechanical considerations—can be found
in [53] (and references therein).

In this contribution, we concentrate on pre-threshold photon bursts that have been ex-
perimentally observed in micro- and nanolasers, whose existence can be (mostly) predicted
by a stochastic modelling approach based on Einstein’s semiclassical theory of radiation [1].
At the present stage, no definite answers exist on their actual nature, aside from the fact that
they appear unusual from a traditional laser physics point of view. We compare observed
and predicted features, and comment on the technological limitations which constrain their
experimental detection. Topological considerations, based on standard laser models, pro-
vide guidance in interpreting the observations and in reconstructing their physical origin.
Second-order zero-delay autocorrelations are the most widespread means of characterizing
very weak signals, such as those emitted by nanolasers, and have been widely employed
also for thermal or quasi-thermal sources [38]. A simple analysis of the autocorrelation of a
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pulsed source complements the guidance provided by the topological analysis and helps
securing a grip onto some of the observed characteristics of pre-threshold photon bursts.

This paper is work in progress and aims at proposing more questions than it can
provide answers. As such, it is possible that several Readers may have diverging views
from the writer, but also that the latter may revise his position on some of the exposed
points in the near or far future. Thus Readers should take this contribution not so much as
a finished product, but, rather, as a stimulus to delve more deeply in the points that are
raised and in the much more numerous ones which are only hinted upon as related issues.

The paper touches on different aspects of photon bursts, directly and indirectly ob-
served in micro- and nanolaser experiments, predicted by fully stochastic models and
(mostly) missed by differential models. The presentation is divided into 6 main sections,
followed by conclusions (Section 8). The question of the nature of a laser threshold in
micro- and nanolaser is discussed in Section 2 starting from the proof of its equivalence to
a phase transition for macroscopic lasers and leading into the paradoxical case of the thresh-
oldless nanolaser. The experimental constraints, whose origin resides in the technological
limitations of current instrumentation, are highlighted together with the potentially crucial
role that models may play in directing the investigations on this topic. Since photon bursts
appear in the smooth transition region from incoherent to coherent emission, this point is
central to the discussion. The (scarce) collected evidence on photon bursts is summarized
in Section 3, with reference to the publications in which this is found, and a physical role in
the incoherent→coherent transition is proposed (Section 3.2). Since direct measurements
of the temporal evolution of laser emission are possible only with microdevices, most of
the information is gathered through the use of autocorrelation functions obtained through
photon counting. A simple model, Section 4, is used to show that the presence photon
bursts can be statistically identified through the appearance of superthermal statistics (of
course in the single-mode emission regime, as it is well-known that mode competition
leads to strong bunching). The model, based on a sequence of pulses of variable amplitude
sitting on an adjustable background, is used to show the limitations of this approach, where
superthermal bunching disappears when the background grows too large or when the
pulses become too frequent. A brief overview of the two main classes of models (Section 5),
differential and stochastic (Section 5.2), is given, summarizing their main characteristics
and their ability (Section 5.1) to include some of the crucial aspects for a thorough de-
scription of the physics of laser threshold in small devices. The predictions of different
implementations of stochastic models are summarized in Section 5.3 in relationship to
photon bursts. Up until here, the paper summarizes observations (both experimental and
numerical) and examines the characteristics of models or analysis tools in relationship to
their potential for describing photon bursts. Some clearer understanding, accompanied by
predictive power and insight into the dynamics, is offered by a topological analysis of the
phase space which underlies the description of laser physics is presented in Section 6. Here,
the eigenvalues emerging from the linear stability analysis are examined for nano-, micro-,
and macrolasers, together with their accompanying eigenvectors. This analysis enables a
clearer view of the stability of each kind of laser and of the possibility for adequate noise to
give rise to photon bursts. One last section examines the features of a phenomenological
modifications of the Rate Equations, very recently proposed, where photon bursts have
been observed: a first in the ability for a differential model in predicting the emission
of large photon bunches. Through the topological analysis (Section 7), we see how the
proposed modification may enable the more modest amount of noise which accompanies
the differential description to give rise to photon bursts.

The schematic representation of Figure 1 shows in graphical form the different topics
which are going to be addressed in the discussion. On a typical nanolaser response curve
(black line) which shows the photon number as a function of pump, we qualitatively
indicate the threshold region, in which photon bursts are observed (stochastically computed
dark green trace). A physical interpretation on their origin will be offered on the basis of the
phase space properties, showing that before continuous coherent emission any fluctuation
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(purple arrow) possesses a small likelihood of relaxing into the photon field, and thus easily
grows extremely large, with the consequent emission of a photon burst (in a qualitatively
similar way of what is achieved in laser Q-switching). Along the way, we examine the
experimental aspects of the problem on the basis of existing results, but also considering
the experimental limitations and offering some insight into the main analysis tool: the
second order autocorrelation. The current models’ predictive abilities in regard to photon
bursts are also reviewed, considering both differential and stochastic methods.

Figure 1. Graphical representation of the topics addressed in the manuscript. Nss and nss refer to the
steady-state operation values of the population inversion and photon number, respectively, around
which a fluctuations operates, for a given set of parameters.

In the following, we will refer to spontaneous emission in the traditional sense used in
laser physics, rather than in the thermal radiation sense partly discussed in this introduction.
The term laser threshold is used to denote the true threshold point, as defined in a phase
transition (but also in bifurcation theory), but also to identify the region in which the
electromagnetic field evolves from the emission of (mainly) incoherent photons to the
coherent regime. Threshold region is used when emphasizing the extent of the transition
in pump range.

2. Laser Threshold at the Micro- and Nanoscale

The question of laser threshold, a non-issue in the macroscopic devices used for
decades, has come to the forefront with the considerable cavity volume reduction intro-
duced by the Vertical Cavity Surface Emitting Laser (VCSEL) design [54], which led, in
less than two decades, to ultralow currents for coherent emission [55]. The impressive
reduction in cavity volume achieved by these devices brought a substantial increase in
the fraction of spontaneous emission coupled into the lasing mode (β factor) with the
consequent linear relationship between input and output for β = 1. As a result, based on
the traditional macroscopic laser point of view, threshold was extrapolated to a zero pump
value; the devices fitting this condition became therefore known as thresholdless lasers [56]
or zero-threshold lasers [57,58].

While in macroscopic lasers threshold is compatible with a phase transition defini-
tion [59–62], with nearly unmeasurable deviations from the thermodynamic limit, the
strong finite size effects typical of nanocavities introduce a smooth change from the non-
lasing to the lasing solution [56,63] and open questions about the nature of the transi-
tion [64]. The extended pump range over which the transition takes place demonstrates
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an unfolding of the thermodynamical discontinuity and the suggest the name of threshold
region for the corresponding pump interval. The practical consequence of the uncertainty
surrounding a clear definition of threshold in small devices has led to the call for more strin-
gent criteria to identify lasing [65], particularly in the technologically very active field of
organic devices [66]. From a quantum-statistical point of view, the definition of threshold is
legitimate only in the thermodynamic limit and for devices which approach such a regime
(thus macroscopic lasers, only), as clearly demonstrated in a seminal paper [67]. However,
the rigorous analysis does not provide any useful answers to the practical question of
whether and when does the emission of a small source become (sufficiently) coherent,
at least to be accepted as a laser. This question carries far reaching consequences, since
many of the applications for which lasers are selected require a (sufficiently) good level of
coherence, which has to be ensured for their usefulness. Luckily, statistical theories are not
the only tools to define a transition and a very recent contribution has shown that through
bifurcation analysis it is possible—in a suitably extended model (cf. Section 5.1)—to predict
the existence of a true laser threshold even in a thresholdless laser [68].

In spite of recent advances, a clear description of the physics of the radiation emitted
by a nanolaser in the transition from incoherent to coherent emission is still lacking. Two
concomitant reasons contribute to the uncertainty. On the one hand, measurements are
very difficult in the threshold region due to the extremely reduced photon flux which,
coupled to extremely short evolution timescales, imposes a currently unsurmountable
double constraint on instrumentation: high sensitivity and large bandwidth. Experimental
schemes to circumvent the limitations vary from devising alternative (somewhat larger)
sources with (hopefully) similar (enough) characteristics [69], to better detectors [70] or to
more advanced correlation techniques [38,71]. However, none can entirely compensate for
the required extreme performance, and the information that can be experimentally gathered
remains partial. On the other hand, models have so far failed to provide a clear picture
of the physics of radiation in the threshold region, leaving the more detailed predictions
to fully numerical, stochastic approaches. The compounded experimental and theoretical
difficulties have left the investigations in a state where progress is slow and difficult. A
brief discussion of the current state of modelling is offered in Section 5.

In this contribution we focus our attention onto the region which precedes coherent
emission (even a very noisy one, with a broadband radiofrequency spectrum [72]) where
we observe pulses whose features resemble those of ASE. So far the number of reports
concerning this kind of emission at the micro- and nanoscale is relatively small, nonetheless
it has been seen—directly or indirectly—in different kinds of devices and at different laser
scales. An interesting question, for future consideration, concerns the possible relationship
between this regime of emission and what can be expected from thermal sources in a
condensed photon phase. From a practical point of view, spontaneous photon bursts may
bring along alternative ways of encoding information in small devices at lower power
consumption, provided suitable schemes are employed [73].

3. Summary of Existing Evidence for Photon Bursts

We first summarize the observations of photon bursts (Section 3.1) which precede the
establishment of cw coherent emission, referring the Reader to the original publications for
details. Section 3.2 then offers an interpretation of the observations.

3.1. Experimental Observations

Direct and indirect experimental observations of photon burst emission can be sum-
marized as follows.

E.1 Finite width of g(2)(τ) and of g(2X)(τ) (the latter measured with a Michelson inter-
ferometer) obtained from a photonic crystal nanolaser and ascribed to amplitude
fluctuations of a coherent state (cf. Figures 2 and 3 in [71] and Figures 4 and 5 in [74]).
Observation compatible with the emission of photon bursts;
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E.2 Direct observation of photon bursts in a narrow, but well accessible interval of pump
values before the onset of (noisy) cw laser oscillation in a microlaser (cf. Figure 3
in [72]);

E.3 Narrow, structureless decay of the second-order time-delayed autocorrelation g(2)(τ)
with typical width O(10−9s) both in microlasers and metallo-dielectric nanolasers (cf.
Figure 5 in [72], Figure 3 in [75] and Figure 3 in [76]). Similar observation in lasing
devices built upon photonic crystal nanostructures (cf. Figure 4 in [77]);

E.4 Report of a peak superimposed on the second-order time-delayed autocorrelation,
g(2)(τ), for same-(pump)-pulse, attributed to ASE in a metallo-dielectric nanolaser (cf.
Figure 3 in [75]). This additional peak disappears as lasing is established;

E.5 Low-frequency broadband rf spectrum with cutoff compatible with the width of
g(2)(τ) (cf. Figure 8 in [78]) (micro-VCSEL). The lack of spectral structure (except a
gradual decay towards the cutoff) is compatible with irregularly occurring bursts;

E.6 Observation of a superthermal g(2)(0), compatible with sharp emission bursts in
micro-VCSELs (cf. Figure 6 in [76]). Superthermal autocorrelation values have also
been obtained in metallo-dielectric nanolasers (cf. Figure 4 in [79]).

Direct measurements of g(1)(τ) would be desirable, as the first-order autocorrelation
would offer a direct measurement of the photon burst’s coherence time. Although cum-
bersome, they have been performed in other nanolaser contexts [80], but so far not for
photon bursts. However, equivalent information has been gathered from the second-order
cross-correlation g(2X)(τ) [71], corroborating the temporal features observed by direct
means [72].

3.2. Interpretation

The traditional picture of laser threshold, developed for macroscopic devices, assimi-
lates it to a second-order phase transition where diverging fluctuations (infinite correlation
length) develop at the crossing point. The evolution from incoherent to coherent emission
is described as a statistical superposition of coherent and incoherent photons [81], as a
stepping stone between the two regimes. Although never explicitly stated, the statistical
superposition hypothesis is suggestive of a transient mixture (at equilibrium) of incoherent
and coherent photons which make up the emission.

This picture may now be revised in light of the observations summarized above.
Under the assumption that the photon bursts can be considered to be sufficiently coherent
(cf. later), we may think of the transition as constituted by coherent temporal islands bathed in
an incoherent sea of spontaneous emission. In macroscopic lasers, the transition could only
be observed as a (temporally) transient state [82] given the narrowness of the transition
region, which shrinks to a single pump value in the true thermodynamic limit. The
intrinsic stability constraints associated to the extremely narrow pump range, coupled to
the technical state of the instrumentation of the late 1960’s (or early 70’s) could only offer
a temporal glimpse into the averaged structure of the intermediate state. The information
could, in fact, be gathered only extracting the photon statistics at fixed delay times in an
experiment conducted by preparing the laser in a same state below threshold and suddenly
decreasing the cavity losses (at the reference 0 time) to bring it above threshold. This way,
the only time information was contained in the delay at which the convolution between
coherent and incoherent photon fraction was measured. The need for long term averaging
to collect the statistics washed out any detailed information on the temporal evolution
(cf. Figure 2 in [82]).

In small lasers, instead, the extended transition region transforms the sudden jump
into a progressive sequence of steps where, for each pump value, the ratio between the
(time) fraction occupied by the islands and the sea evolves in favour of the former, until
coherence is reached when the water dries out. However, the possibility of monitoring the
temporal evolution in these devices at fixed, stable pump values sheds further insight into
the internal dynamics of the radiation, showing an interplay between “coherent” bursts
and an incoherent background emission. Figure 2 gives a qualitative illustration of the
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concept: the red islands show the time interval in which the photon number overcomes a
set level (chosen here for best graphical illustration) for two different levels of pump, below
the one for which the emission ceases to fall to the spontaneous emission level. Adding
up the contributions to the upper and lower levels and considering them to correspond
to a spontaneous (as, lower) and coherent (ac, upper) contribution we can picture the
averaged state as being made up of a state mixture 〈ψ〉 = asψs + acψc, where ψs and ψc
represent the spontaneous and coherent component, respectively. The latter information is
the main one which could be accessed in macrolasers at the time of their photons statistical
characterization (mostly in the 1970s), due to instrumental limitations. The narrowness of
the region in such devices where photon bursts may appear, due to the sharpness of the
transition, may make direct measurements almost impossible even nowadays.

Figure 2. Schematic illustration of the evolution of the time intervals (red islands) in which the
photon number exceeds a predetermined threshold for two different values of pump, computed
from a Stochastic Laser Simulator [83] for β = 10−4. The black lines represent the photon number.
The pump in the two panels differs by about 2%. The relative time intervals are ac = 0.11 and
ac = 0.57 for the left and right panels, respectively. as = 1− ac. Graphical resolution makes it almost
impossible to detect the “holes” in the lower red set (left panel) which match the appearance of the
red upper regions—they are, nonetheless, present. Data courtesy of G.P. Puccioni.

The photon bursts observed in a microlaser [72,84] have an apparent duration of
the order of τb ≈ 0.4 ns. Although there may be bandwidth limitations which intervene
in the measurement, this value agrees with time-delayed second-order autocorrelation
measurements taken with a fast photocounting system (∼40 ps time jitter) [76]. Similar
values are obtained from the observation of the mixture of incoherent and coherent radi-
ation in a nanolaser [71]. Burst durations close to one nanosecond correspond to sub-Å
spectral widths, which are well below the selectivity of cavity mirrors (in terms of spectral
width). This strongly suggest a good degree of coherence in each burst (even though below
lasing standard), accompanied by a randomness in the choice of the emission wavelength
from one burst to the next, thereby leading to an average broad line (of the order of one
nanometer), at least in the microlaser observations [76]. This remark supports the previous
picture of independent “coherent” bursts interspersed by incoherent emission.

Before concluding this section, it is important to insist on the distinction between
coherence time and linewidth, which lays at the root of the previous conclusion. Indeed,
the coherence time is associated with the individual photon burst, while the linewidth is
the result of the ensemble of bursts, whose central optical frequency can take any value
within the amplification line. This not only illustrates the distinction between the two
pieces of information, but also highlights the reason why linewidth measurements are not
accepted as proof of coherent emission.

4. Relationship between Bursts and g(2)(0)—Experimental Considerations

Some simple mathematical considerations help highlighting some of the issues which
connect the (indirect) observations of photon bursts with the zero-delay second-order
autocorrelation. Since the basic properties that we intend to point out are general, we can
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base our observations on a simple model where we compute the autocorrelation of a single
rectangular pulse defined by

s(t) =

{
A , 0 ≤ t ≤ T · δ

αA , T · δ ≤ t ≤ T
, (1)

0 ≤ α ≤ 1 , (2)

where T represents the period, A is the amplitude of the signal and α represents the fraction
of the maximum A by which the bottom level (background) is raised. Its zero-delay
second-order autocorrelation, defined by [85]

g(2)(τ = 0) =
〈s(t)s(t + τ)〉τ=0

〈s〉2 (3)

where 〈·〉 stands for the temporal average, straightforwardly gives the following expression:

g(2)(0) =
A2δ + α2 A2(1− δ)

[Aδ + αA(1− δ)]2
. (4)

Two limits can be readily obtained: α = 0 and α = 1, which correspond to the
disappearance of background and disappearance of the peak, respectively. The former gives

g(2)(0)
∣∣∣
α=0

=
1
δ

, (5)

while from the latter it is immediate to see that

g(2)(0)
∣∣∣
α=1

= 1 . (6)

Thus, in the total absence of a background (unlikely in an experiment, where there is
at least some detection noise) the autocorrelation is inversely proportional to the width of
the pulse and can diverge as this quantity goes to zero. Although the limit does not hold in
a real system, it is easy to see how a single pulse can give rise to superthermal statistics,
which occurs every time δ < 0.5. When, instead, the pulse disappears (α = 1) the statistics
becomes that of Poisson, or coherent radiation.

From an experimental point of view, the intermediate cases are most interesting,
especially because the number of pulses may be variable and background is unavoidable.
First of all, the consideration of a single pulse in the period T (and consideration of a
periodic function itself) is not a restriction. In practice, the observation window is of finite
size, which can be assumed to be the duration T (periodicity is not a necessary hypothesis
in the computation we have performed). The presence of more than one pulse (as long as
we consider them to be all the same height) amounts to changing the fraction δT of the
time interval occupied by the pulses themselves. The computation is insensitive to the
presence of N pulses of duration δT or of a single pulse of duration NδT, as long as Nδ ≤ 1.
The pulses can even be different in duration, what matters is only the fraction of the time
interval T which they fill.

Figure 3 clearly shows the inverse relationship with the duty cycle in the absence of
an offset (baseline α = 0, black line) and the degradation of the expected value of g(2)(0) as
a function of the duty cycle δ. It is interesting to notice that g(2)(0) decreases rapidly as
the pulse width (or number of pulses) progressively fill the (measurement) time interval T
and fall below 2 (subthermal statistics) when δ ≥ 0.5, as already stated. More interesting is
the fact that the background (noise) rapidly reduces the autocorrelation, which becomes
subthermal for any value of δ when α & 0.2 (magenta line in Figure 3). While in itself
there is no particular reason for preferring g(2)(0) > 2, its practical usefulness is clear, since
it helps identifying a regime of photon bursts in experiments where g(2)(0) is the only
easily accessible quantity. Whenever the statistics becomes subthermal it is impossible to
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distinguish between a regime with burst emission and a dynamically different one (photon
bunched in a subthermal way, for instance, dynamical oscillations [72,86], or background
effects [84]). This simple example immediately shows the limitations of the autocorrelation
measurement in the identification of bursts and highlights the difficulties inherent in the
presence of too large a number of pulses (fractional filling of the measurement interval T)
and of the influence of background.

Figure 3. Zero-delay second-order autocorrelation, Equation (4), in double logarithmic scale, as a
function of the duty cycle δ, and for different values of the baseline’s amplitude α (fraction of the
peak amplitude A).

The picture does not substantially change, up to numerical factors (e.g., in the value
of δ and α for which the statistics becomes subthermal), if the pulses are of unequal height.
In practice, experiments will also suffer from bandwidth limitations which are going to
broaden the pulses, an instrumental factor which contributes to reducing the actual value
of g(2)(0). Amplitude reduction, due to detector sensitivity, also contributes to a degrada-
tion of g(2)(0), especially since the background may not be affected (if due to electronics).
Overall, these factors compound and it is not uncommon to observe experimentally mea-
sured functional dependences in the autocorrelation where a growth from shot noise
(g(2)(0) = 1) towards thermal statistics is observed as the pump is increased, followed by
a decrease towards Poisson statistics (not necessarily reached, cf. e.g., Figure 2c in [87]).
The subthermal value of g(2)(0) at low pump is to be ascribed to the strong filtering of the
instrumentation (and insufficient sampling, also observed in some stochastic numerical
simulations, Section 5.2). Of course, such functional dependences cannot be univocally
interpreted: it is impossible to tell whether the failure to reach thermal statistics is simply
due to instrumental limitations or whether a burst regime remains undetected, due to
possible confusion with a noisy but coherent signal. Indeed, a subthermal, but superposso-
nian, regime on the decreasing slope of g(2)(0) may be due to statistical properties of the
radiation, to dynamics, to frequent photon bursts which fill the observation window, or
to instrumental background: the multiplicity of causes prevents a univocal interpretation
of the observation. It is, however, interesting to notice that this simple picture may help
interpret the observation of g(2)(0) < 2 in a regime of ASE with decreasing values as the
power supplied to the superluminescent diode is increased [38]: frequent, short ASE pulses
may very well produce autocorrelation values compatible with the observations.

Table 1 summarizes the main results of this section, by identifying the main conse-
quence of each feature and explaining the influence that it has on the measurement. These
constraints are crucial in experiments, even though they control the computation of the
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autocorrelation even from signals obtained from a numerical integration. In the latter case,
however, most of the constraints can be lifted (up to the difficulty of obtaining sufficient
statistics below threshold), thus we focus on the experimental side.

As already explained, photon bursts can occur with a subthermal g(2)(0) (cf. e.g.,
Figure 4b in [76]), but similar autocorrelation values can also be obtained with strong
oscillations (Figure 4c in [76]). The lack of bijectivity prevents all conclusions. Frequent
bursts increase δ (Figure 3), while a degradation in the signal-to-noise ratio (or signal-
to-background ratio), represented by increasing values of α (e.g., along a vertical cut
in Figure 3), reduces again g(2)(0). Not surprisingly, in the detection system high sensi-
tivity and low noise are therefore crucial, a difficult set of requirements to match for any
kind of micro- or nanolaser. For simplicity, the table has been prepared with a detection
scheme in mind where a linear detector samples the full temporal signal with sufficient
resolution. In photon counting the requirements are the same; there, the signal-to-noise
ratio is represented by the dark count rate and the integration window (number of samples
required to obtain a good signal on top of noise). The latter can often be large (overcoming
very easily hundreds of thousands of measurements) and require long measurement times,
with the consequent stability issues for the experiment. The longer the time windows,
the stronger the perturbations, thus the difficulties are equivalent to those outlined in the
table, even though they may appear in a different form. The same holds for measurements
carried out far below threshold, where the occurrence of a burst is extremely unlikely: the
accumulated background noise takes over and the autocorrelation is governed by the shot
noise (cf. e.g., Figure 2c in [87]). Finally, in photon counting the detection bandwidth is
replaced by the finite detector averaging time.

Table 1. Summary of the influence of different factors in the (experimental) identification of photon bursts through g(2)(0).

Feature Consequence Comment

g(2)(0) >2 Allows for a univocal identification of the presence of photon
bursts (superthermal bunching) in the temporal laser emission

g(2)(0) 1 ≤ g(2)(0) ≤ 2

Does not exclude the presence of photon bursts, but does not
allow the certain identification, since other kinds of signals,

such as strongly oscillating photon numbers, may give the same
value of g(2)(0) (cf. e.g., Figure 4c in [76]).

Frequent bursts Filling of the measurement
window

Frequent bursts increase the fraction of the temporal window in
which the photon bursts are measured, reducing the value of
g(2)(0). This is not a parasitic effect and signals convergence

towards cw laser emission

Detection bandwidth Smaller and broader pulses
Controls the measured value of the autocorrelation signal

reducing its value relative to the real one; reduces the range of
pump values for the observation of photon bursts

Detection background Lower contrast Reduces the estimated value of g(2)(0); reduces the range of
pump values for the observation of photon bursts

Signal contrast Ratio between photon bursts
and background

Directly affects the estimate of g(2)(0). Improvements in height
detection or reduction in background lead towards a more

realistic evaluation of g(2)(0)

Far below threshold Very infrequent bursts
Likelihood of detecting an actual burst very low compared to

the accumulation of background shot noise; results in
often-observed drop in g(2)(0)→ 1 at very low pump

5. Theoretical Models

The above-mentioned technological limitations which strongly limit the experimental
characterization of nanodevices lend a prominent role to the theoretical description of
nanolasers. Here, models take a particular importance for their predictive power, since
crucial features can be actively sought with complex experimental techniques only if there
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is valid proof motivating the investment. In addition, numerical predictions provide
information on how to search for interesting features. Below, we briefly outline two
main classes of theoretical approaches, without offering a complete overview, but, rather,
highlighting their main features. By necessity, only a few of the relevant papers are cited,
just as examples and sources of additional references.

5.1. Differential Models

As for most physical phenomena, the traditional and most successful way of modeling
laser emission is based on a differential approach where an infinitesimal description of
the physical interactions predicts the evolution of the electromagnetic field (thus, of the
photon number). While various approaches have been used in the past six decades, the
most widespread rests on the so-called Maxwell-Bloch equations (proposed by Arecchi
and Bonifacio [88,89]), for the electromagnetic field (simplified Maxwell equations [90]) in
interaction with the material (Bloch equations [91]). Two features distinguish this powerful
technique, successfully used to describe temporal, spatio-temporal and nonlinear phe-
nomena [92]: the absence of spontaneous emission in its formulation and the assumption
that the photon number is very large (justifying the differential description). Both hold
excellently well above the laser threshold, particularly for the macroscopic lasers for which
the model was derived. Of course, neither of these hypotheses can hold at the nanoscale.

A class of models which avoid these pitfalls has been based on a quantum-mechanical
derivation of equations, specific to semiconductor-based devices, where equivalent vari-
ables are used for the description: a photon-assisted polarization, the photon field and
the population [93,94]. While solving the two previous shortcomings, and allowing for a
self-consistent derivation of fluctuations, these models still do not predict the occurrence
of superthermal emission which can only be obtained, in this framework, from purely
probabilistic considerations [95].

Laser Rate Equations (REs) are derived on the basis of phenomenological consider-
ations [50,96] and have been modified early on to include finite-size effects through the
average contribution of the spontaneous emission to the laser field [56,63]. The REs, which
can be retraced to the semiclassical Einstein’s theory of radiation [1], are often preferred for
their simplicity and direct physical interpretation. Furthermore, the addition of the average
spontaneous emission in the photon number provides a degree of statistical information
on the fluctuations.

The following list highlights some aspects of the physics of (micro- and) nanolasers
which emerge at the modelling stage but which cannot always be described by (at least
some of) the previous approaches:

D.1 The addition of spontaneous emission, for instance as a constant contribution (cf.
Equation (7)), breaks the transcritical bifurcation [97–99] which characterizes the
standard REs written for macroscopic lasers [50,96]. This is a consequence of the
finite cavity volume (expressed by the fraction of spontaneous emission coupled into
the lasing mode, β) and is related to the disappearance of the thermodynamic limit,
recovered when β→ 0 (cf. [67] for details). Its immediate, and partly counterintuitive,
consequence is a progressive stabilization of the laser operation as β increases (cf.
Section 6): nanodevices are more stable than their macroscopic counterparts. For an
interesting physical application of imperfect bifurcations, cf. [100].

D.2 Differential models have so far considered only the coherent part of the electromag-
netic field, without introducing an independent random field for the description
of spontaneous emission. The latter is added onto the coherent part (as a coherent
contribution from the spontaneous relaxation processes, e.g., in REs) but does not
exist as a variable in itself. This is an important conceptual point which prevents a
correct description of the below-threshold region. Some stochastic models (Section 5.2)
introduce the incoherent field as an independent variable, albeit without the concept
of random phase, since they are based on a photon number concept.



Atoms 2021, 9, 6 12 of 27

D.3 As noted in [101] through a numerical integration of discretized REs, the integer
nature of photons and emitters makes itself felt at the nanoscale (and even at the
mesoscale [102]). This introduces an intrinsic noise, entirely missed by the differential
models, and leads to a background granularity which cannot be replaced by other
means. In this sense, discrete models (cf. Sections 5.2 and 5.3) hold superior predictive
power for small devices.

D.4 The introduction of Langevin terms in differential models to simulate fluctuations
has two shortcomings: it may lead to negative photon numbers (thus numerical
instabilities) when the latter is very small (thus close to threshold, especially in
nanolasers) and to an incorrect approximation of the noise distribution. The former
problem could be solved by abandoning the photon number representation, but the
latter reposes on the approximation of Poissonian processes (true physical statistics of
light-matter interaction) with Gaussian ones; such replacement holds only for large
arguments, a condition violated at small photon numbers [103].

Two very recent modelling ideas attract the attention, as they do not directly fit in the
previous summary. They are based on hypotheses which haven’t been considered so far
and therefore do not match the literature outline offered above. We therefore highlight
these new ideas which are proposed for the description of nanolasers.

A modification of the REs introduces a new element in the class of discrete models,
allowing for the observation of photon bursts [104]. Its central point lies in the introduction,
in a rate equation description, of correlations among emitters, recently predicted and
observed in different contexts, as we now outline.

Searching for ultranarrow linewidths, superradiant states have been exploited to
obtain extreme phase locking, thus extreme phase coherence, in samples of cooled alka-
line atoms [105–107]. Using a Maxwell-Bloch model for nanolasers, a splitting in the
field and polarization operators’ spectrum is predicted in presence of sufficiently strong
coupling—needed to pass lasing threshold [108]; for insufficient coupling (nanoleds) only
one spectral component appears: the collective oscillations are thus attributed inter-emitter
correlations [108]. Sub- and superradiant coupling between Quantum Dots in nanolasers
is investigated using a quantum mechanical description of nanolasers, thus including
correlations which are expanded to sufficiently high order to retain pairwise emitter inter-
actions [109]. Radiative coupling is thus predicted and correlated to the statistical properties
of the photon field. A similar approach predicts the appearance of superradiant pulses
identifiable by the temporal evolution of the second-order autocorrelation function [110].
Finally, experimental observations of sub- and superradiant emission are reported in [111]
for Quantum Dot based microcavities.

Based on this bulk of evidence, ref. [104] makes the hypothesis that a phenomenologi-
cal asymmetry between the relaxation rates of spontaneous and stimulated emission, in a
RE model with Pauli blocking [112], may qualitatively provide an acceptable description of
correlations at the semiclassical level. The resulting modified REs predict the appearance
of photon bursts in the presence of subradiant coupling. Without entering into a discussion
on the underlying assumptions, it is worth noting the strong novelty which [104] brings
to the class of differential models, as it is the only one capable of predicting any form
of bursts with Langevin noise. Since below and near threshold the latter is quite small
(proportional to the photon number), it is in general not surprising that bursts should
be excluded from the dynamical predictions obtained from the integration of stochastic
differential equations for nanolasers. Thus, it is worth trying to gain some topological
understanding of the reasons why photon bunching should appear in [104]. This point will
be examined in Section 7, after the topological investigation (Section 6) of the phase space
properties of the radiation-matter interaction and of its relation with the photon bursts
numerically predicted by fully Stochastic, discrete models (Sections 5.2 and 5.3).

A new quantum-mechanical model, instead, derived without limitation in the number
of emitters or cavity size, computes from first principles the interaction between a semi-
conductor and the electromagnetic field [68]. Its main novelty consists in the inclusion of
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an independent incoherent field, in addition to the coherent one, thus enabling a proper
description of laser operation over the entire range of pump values, from below to above
threshold. A bifurcation analysis univocally identifies the threshold position as a function
of emitters and β, and the existence of a minimum number of emitters experimentally
found [111] and forecasted by REs [112]. The use of bifurcation theory circumvents the
limitations coming from the definitions based on statistically-defined phase transitions [67]
and enables the clear and univocal identification of a finite threshold [68]—as the pump rate
for which a coherent field emerges from 0—even for β = 1, the so-called thresholdless laser.

5.2. Stochastic Simulators

The shortcomings of the differential approach can be solved by approaching nanolaser
modelling as a fully stochastic problem. Here, not much can be done analytically, but the
agreement between experimental measurements and numerical predictions is excellent [72],
as proven not only by the numerical existence of photon bursts, but also by the reproduction
of details in the functional dependence of g(2)(0) on pump, without any adjustment
parameters (cf. Figures 4 and 6 in [72]). In addition, good qualitative agreement is obtained
in the comparison between experiments with pump modulation to identify the laser
threshold (cf. Figures 5 and 6 in [86]), or to study the response of a modulation through the
threshold region (cf. Figures 3 and 6 in [73]), as well in the microlaser response to feedback
(Figures 3 and 8, and Figures 6 and 9 in [113]).

The gold standard for a stochastic model is the Master Equation, but its prohibitive
dimensionality renders its numerical simulation impossible for any realistic situation. The
usual way of solving the problem is to follow individual trajectories and repeat the process
starting from different initial conditions to obtain statistically significant results. Two
different approaches have been explored in the last decade, the first one based on Monte
Carlo realizations of a random walk on the lattice of the allowed states (thus including
the intrinsic discreteness of the variables and of the transitions) [114,115], according to
a scheme proposed in [67], but not numerically implemented there. Following previous
developments, a sophisticated Monte Carlo method has been applied to the stochastic
simulation of a Quantum Well semiconductor laser, including the electron population in
the bands [116] for a laser whose dynamics is included between the classes A and B [117].

A parallel approach, preceded by a discretization of the Rate Equations implemented
in stochastic terms [101], directly implements the physical processes as a sequence of
probabilistic events, either computed at fixed steps [83], or by (probabilistically) computing
the time at which an event takes place [104] (using a Gillespie-like algorithm [118] also used
in [116]). The two approaches are equivalent [118] provided that conditions on additivity
are fulfilled [83], with the Gillespie-like strategy leading to much shorter computing
times [104,116].

5.3. Stochastic Predictions

Stochastic numerical predictions of photon bursts have been independently obtained
with the different schemes previously cited. A brief summary of the results is the following:

N.1 Photon bursts are observed in the laser output for a semiconductor laser model
derived from the Master Equation (cf. Figure 4 in [114] and Figure 5 in [115]);

N.2 Photon bursts appear in the laser output for Class B lasers both at the micro- and
nanoscale (cf. Figure 5 in the Supplementary Material of [72] and Figure 3a in [84]);

N.3 Prediction of photon bursts in the laser output for semiconductor nanolaser in dynam-
ical regimes between Classes A and B (cf. Figure 7 in [116]);

N.4 Prediction of superthermal statistics (free-running, Quantum Well laser, Figure 7
in [119]);

N.5 Prediction of superthermal statistics using a Gillespie algorithm in a model with pump
blocking, suited to Quantum Dot modelling (cf. Figure 5 in [104]).

With the notable exception of the phenomenologically modified REs discussed in [104],
only stochastic models [83,104,114–116] are presently capable of predicting photon bursts.
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While for the moment there is no clear understanding of the failure of differential models
in this respect, we can speculate that: (1) it may originate from the continuous action of the
noise perturbation, which is added at each step in the Langevin scheme of the REs—this
contrasts with the random times at which (larger) fluctuations spontaneously appear in the
stochastic approach; and (2) that the Gaussian statistics, as opposed to the more physical
Poissonian one, may modify the fluctuations in a way that suppresses large deviations.
The discussion on the phase space features, Section 6, helps understanding the dynamical
behaviour of the photon bursts, whose stochastically predicted statistical properties almost
invariably match a superpoissonian statistics.

6. Phase Space Information

While only a proper stochastic simulation is currently capable of reproducing the
observed dynamics [84], a topological investigation of the phase space properties of the
rate equations, with the added contribution of the average spontaneous emission, provides
useful information. This is not surprising, given that the underlying topological structure
on which the random walk takes place (e.g., [67,114]) is the same as the one of the stochastic
laser simulators [83] (both derive from the semiclassical description of radiation [1]).

The traditional rate equations with the spontaneous emission contribution to the lasing
mode read for a Quantum Well system [96] (equivalent to a “four-level” laser model):

ṅ = −Γcn + βγN(n + 1) , (7)

Ṅ = P− βγNn− γN , (8)

where n and N represent the photon and carrier number (or population inversion), respec-
tively, Γc and γ are the relaxation rates for the intra-cavity photons and for the population
inversion, respectively, P is the pump rate and β is the previously defined fraction of
spontaneous emission coupled into the lasing mode. This set of REs includes the
average contribution of the spontaneous emission to the number of coherent photons
in the cavity mode through the term βγN (Equation (7)). The steady state (equilibrium)
values for the photon number and the population inversion, as directly obtained from
Equations (7) and (8), are:

n =


(

C− 1
2

)
+

√(
C− 1

2

)2
+ βC

β−1 , (9)

N =
Γc

βγ

C
1 + βn

, (10)

C =
P

Pth
, Pth =

Γc

β
, (11)

where the over-strike represents equilibrium.
The linear stability analysis (lsa) [97] of Equations (7) and (8), performed around the

steady-state values for the two variables, is readily obtained from:

d
dt

(
ν
µ

)
= S

(
ν
µ

)
, (12)

S =

(
βγN − Γc − λ βγ(n + 1)
−βγN −γ− βγn− λ

)
, (13)

where we have defined the perturbations

n(t) = n + νeλt , (14)

N(t) = N + µeλt . (15)
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The full analysis is performed here for Γc = 1011s−1 and γ = 109s−1. The “threshold”,
Equation (11), is the one defined in [67].

6.1. Eigenvalue Analysis

The lsa provides information on the laser’s return (or lack thereof) to its stationary
emission state when a perturbation is applied to its two variables. The eigenvalues give a
measure of the state’s robustness and are shown in Figure 4 for different values of β.

Figure 4. Real part of the eigenvalues derived from the stability analysis of the rate equations model,
Equations (12) and (13). The different curves belong to different values of the fraction of spontaneous
emission coupled into the lasing mode (cf. figure legend).

For ease of comparison, the horizontal scale plots the pump rate relative to the thresh-
old value (Equation (11)) for the matching laser (i.e., normalized to β). The first observation
is that below a critical pump rate, there are two distinct real eigenvalues; however, they
collapse into a pair of complex conjugate eigenvalues for instance at P

Pthr
≈ 2.1 for β = 1

(black curve). From this point on, the real parts of the two eigenvalues coincide, since
they distinguish themselves only for their imaginary parts (not shown). There are two
important remarks which arise from this figure: (1) as the fraction of spontaneous emission
coupled into the lasing mode decreases, the eigenvalues become complex conjugate at
an earlier (normalized) pump rate; (2) as β decreases, the eigenvalue closer to the real
axis becomes progressively less negative, thus indicating that the corresponding laser is
less stable. Notice that the traditional rate equations model devoid of the spontaneous
emission contribution predicts one zero eigenvalue at threshold, matching the indifferent
stability responsible for the divergence of fluctuations and for the presence of a phase
transition [59–62]. This corresponds to a device where β → 0. Here, the finiteness of β
stabilizes the solution, giving rise to a so-called imperfect bifurcation [99] whose features
have a certain resemblance to those of an avoided level crossing in quantum mechanics [120].
Figure 4 clearly shows that the stabilization effect is much stronger at the nanoscopic than
at the microscopic scale, since a more negative eigenvalue represents a faster convergence
to 0 of the corresponding perturbation (Equations (14) and (15)).

As an aside, it is interesting to notice the displacement of the threshold, compared to
the standard predicted value [67], which corresponds to 1 on the (normalized) pump axis
(Figure 4, from Equation (11)). For β ≥ 10−2 the eigenvalues become complex conjugate at
P > Pth, i.e., in the upper region of the characteristic S-curve of laser emission (cf. Figure 5).
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The new quantum-mechanical model [68] also predicts the appearance of the coherent field
bifurcation close to the upper branch, signalling a displacement of the threshold towards
larger pump values. This strengthens the case for a strong role of photon bursts in the
transition between spontaneous and coherent emission. Extensions based on the statistical
theory of phase transitions, instead, fail, as they predict a threshold at the mid-point of the
steeper region of growth (i.e., P

Pth
= 1) [67]).

Figure 5. Laser characteristic response in double-logarithmic scale as a function of normalized pump,
for different values of β (cf. legend).

Figure 6 shows the equivalent eigenvalues for a borderline microlaser (β = 10−4) and
for a macroscopic laser (β = 10−6), even though not a very large one (a large semiconductor,
for instance, or a solid state microdevice). The difference is striking, as in the macrosopic
laser one eigenvalue comes much closer to zero than in all other devices, proving the
progressive convergence towards the thermodynamic limit. As in Figure 4, the microlaser
displays a (small) dip at pump values close to “threshold”, while the macroscopic one
reduces its stability in this region, inverting the trend observed at the micro- and nanoscale
and approaching the thermodynamic limit.

While the lessening of the stability with decreasing β is not surprising when seen
from the perspective of the thermodynamic limit, intuitive considerations could have also
justified the opposite conclusion. Based on the fact that the relative amount of spontaneous
emission coupled into the lasing mode increases with β (i.e., going towards the nanoscale)
one could have argued for a nanolaser’s accrued sensitivity to noise and, with that, for a
decrease in stability. The lsa belies this conclusion and advances potentially interesting
consequences in applications, for instance in telecommunications [121]. This consideration
has the merit of clarifying an important difference: noise and intrinsic stability are not
equivalent. We can therefore conclude that nanolasers are intrinsically noisier devices, due to
their low photon number, but they are structurally more dynamically robust than their micro- and
macroscopic counterparts.
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Figure 6. Real part of the eigenvalues derived from the stability analysis of the rate equations
model, Equations (12) and (13) for a borderline microlaser (β = 10−4) and for a macroscopic laser
β = 10−6)—cf. figure legend.

6.2. Eigenvector Analysis

The origin of spontaneous spiking (photon bursts) in the transition from a purely
spontaneous emission regime to the coherent one can be better understood from the analysis
of the eigenvector [84]. Figure 7 shows the normalized component of the eigenvector which
matches the photon number n (i.e., the ν component in Equation (12)) for the least stable of
the two eigenvalues (Figure 4) for different values of β ranging from nano- to microlasers.
As can be easily evinced from the curves, the other component (µ) has an amplitude close
to 1 (except for β = 1 and P

Pthr
> 1), given that the eigenvector is normalized. The second

eigenvector (not shown), matching the more negative eigenvalue, is (also) almost entirely
aligned with the population variable (N) [121], thus the two eigenvectors are nearly parallel
below threshold. This observation has far-reaching implications, since it proves that, in
spite of their origin (ν or µ) fluctuations are strongly decoupled from the photon number
variable: noise affects the population inversion and can make it deviate strongly from its
equilibrium position, with only a weak transfer onto the photon field. This implies that
the population inversion can grow quite far from its stationary value with a practically
negligible consequence on the photon number. In other words, the transfer of a fluctuation
onto the photon number is an unlikely process which takes place only occasionally, thus
hindering the stimulated emission process.

The (near) absence of coupling to the photon field allows for the growth of population
fluctuations of considerable amplitude. Thus, when a “transfer” towards the photon field
takes place, the accumulated excess population enables the violent growth of the photon
number through stimulated emission, and a photon burst ensues, in a way similar to a
laser Q-switch [50]. This is the origin of the observed pulses.

Physical considerations on the spontaneous emission can be used to give an alternative
interpretation of this same picture. It is well-known that the spontaneous coupling of
emitting dipoles to the radiation field is very weak, due to their extremely small size
compared to the wavelength (O(10−3)), which renders them extremely inefficient antennas.
The well-known consequence is the weak population’s relaxation rate (also known as
fluorescence rate) which, for the systems we consider here, is about five to six orders of
magnitude smaller than the absorption (and stimulated emission [1]) rate. This is the
reason why below threshold—i.e., in a regime where stimulated emission is disfavoured—
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the population can grow to excessively large amounts. It is this built-up population
excess which enables the transient ignition of stimulated emission (cf. bilinear term in
Equations (7) and (8)) responsible for the photon bursts.

Figure 7. Photon component vn of the least stable eigenvector (matching the least stable eigenvalue in
Figure 4) for differently-sized lasers. Each curve stops at the point where the eigenvector becomes com-
plex, simultaneously with the appearance of an imaginary component in the corresponding eigenvalue.

Comparison of the photon component of the least stable eigenvector for different
laser sizes is also illuminating. For the extreme nanolaser (β = 1), where all spontaneous
emission is channeled into the lasing mode (black curve in Figure 7) the relative weight
of the photon eigendirection is stronger. This can be understood in terms of the transfer
efficiency between population inversion and photon number, given that all spontaneous
emission ends up into the lasing mode. From a more mathematical point of view, this
remark matches the fact that the coupling coefficient in Equations (7) and (8) is larger
thanks to β = 1. As β decreases there is a rapid reduction in coupling between the
two variables, represented by the ever smaller component of the eigenvector projection
along the photon axis. This holds true even close to the transition—identified by the end
of the line traced in each figure—which corresponds to the transformation from a real
into a complex eigenvector, or to the appearance of an imaginary part in the eigenvalue.
In microlasers (e.g., β = 10−3) the amplitude of the photon number component of the
eigenvector is only 1% even at threshold (Figure 7).

The weak stability, which leads to the true phase transition in the thermodynamic
limit, can be visualized by the transformation of a very large amount of stored energy into
the field, giving rise to the (nearly) discontinuous transition. This is the picture that we
normally use to describe threshold crossing by macroscopic lasers.

Figure 8 compares the photon component of the least stable eigenvector, as in
Figure 7, for a microlaser (β = 10−4) and a macrolaser (β = 10−6). The emerging feature is
that the photon component remains zero until very close to threshold for the macroscopic
laser (it is always very small for the microlaser) and that its value remains quite small
(well below 1%) even at the transition. In addition, a rapid rotation of the eigenvector in
its plane appears through a sign switch in the components for the microlaser (Figure 9,
green line—the diagonal lines join consecutive points). The macroscopic device shows a
double rotation (dashed orange line), where the first signals the threshold crossing, and the
second the end of the region where the eigenvalue is real (even above threshold). The fact
that class B lasers [117] possess a narrow region with real eigenvalues (i.e., no relaxation
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oscillations) above threshold has been known for a long time [122], but can be observed
only in devices where the relative time constants (Γc and γ) are sufficiently close to permit
it (i.e., not the CO2 lasers considered in [122]).

Figure 8. Comparison of the photon component vn of the least stable eigenvector (matching the least
stable eigenvalue in Figure 4) for a micro- (β = 10−4) and a macroscopic laser (β = 10−6). As in
Figure 7, each curve stops at the point where the eigenvector becomes complex, simultaneously with
the appearance of an imaginary component in the corresponding eigenvalue.

Figure 9. Comparison of the population inversion component vN (matching the µ component of
the perturbation in the lsa, Equations (14) and (15)) of the least stable eigenvector (matching the
least stable eigenvalue in Figure 4) for a micro- (β = 10−4) and a macroscopic laser (β = 10−6). The
closeness of the modulus of this component to 1 (i.e., nearly the entire normalized eigenvector’s
amplitude) is clearly visible over the whole pump range. As in Figure 7, each curve stops at the
point where the eigenvector becomes complex, simultaneously with the appearance of an imaginary
component in the corresponding eigenvalue. The sudden switches between negative and positive
unity represent a sudden rotation in the eigendirection.
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6.3. Topological Conclusions

The combined information coming from the eigenvalues and the eigenvector analysis
prove that the origin of the sudden photon spikes is dynamical and resides in the overall
weak coupling between photons and population inversion below threshold—something
which is to be expected, since the laser does not operate in that regime. The transition,
however, is more or less sharp and sudden depending on the laser parameters: a nanolaser,
more subject to intrinsic noise, is nonetheless less unstable and is expected therefore to
display smaller and more frequent photon spikes in the so-called ASE region.

An interesting consequence of this analysis is that relaxation oscillations, believed
not to exist in the thresholdless laser [56] actually do occur even in these limiting devices,
albeit only at large relative pump values

(
P

Pthr
& 2.1

)
, as shown by the eigenvalues

(Figure 4). The physical argument advanced in favour of the lack of oscillations [56]—
absence of energy storing and immediate transformation of all the population inversion
into photons—does not hold and is only a misinterpretation of the insufficient amount
of coupling to initiate steady lasing at P

Pthr
= 1 (Figure 4). We also see, through the very

small coupling at low pump rate (P � Pthr) that the zero-threshold connotation for β = 1
devices [64] does not make any sense. This name originally came from the belief that
the straight line relationship between input and output originated from the position of
threshold at virtually zero pump. Although this is no longer considered to be true, the lsa
gives clear evidence for a presence of threshold at P

Pthr
> 2.1.

7. Symmetry Break between Spontaneous and Stimulated Processes

As already mentioned in Section 5, differential models with Langevin noise do not
predict the existence of photon bursts. Yet, the introduction of a phenomenological asym-
metry in the relaxation constants, intended to model the aforementioned correlations in
Quantum Dot devices, appears to show (small) bursts (Figure 5 in [104]). Given the unusual
nature of this result, it is worth trying to understand its origin, at least from a topological
point of view. For this purpose, we transpose it onto the Quantum Well REs, such as
Equations (7) and (8) studied in Section 6, so as to compare the changes introduced by the
phenomenological assumption to the standard case we have examined in detail:

ṅ = −Γcn + βγNn + βγsN , (16)

Ṅ = P− βγNn− γN , (17)

where γ now corresponds to the stimulated process and γs to the spontaneous one. The
symmetry is now (artificially) broken in the equation for the photon balance, since the
stimulated and spontaneous rates are phenomenologically chosen to be different (the total
rate in the equation for the population stays the same). We outline the changes, relative
to Section 6, by giving the equivalent expressions, which can be easily deduced from
Equations (16) and (17):

n =
1
β

C− 1
2

+

√(
C− 1

2

)2
+ βCξ

 , (18)

N =
P
γ

1 + βn
, (19)

C =
β

Γc
P , Pth =

Γc

β
, (20)

where ξ = γs
γ [104] introduces the symmetry break (ξ > 1: superradiance; ξ < 1: subradi-

ance). In the presence of the rate asymmetry the stability matrix becomes:

S =

(
βγN − λ− Γc βγ(n + ξ)
−βγN −γ(βn + 1)− λ

)
. (21)
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Concentrating on the case β = 10−1, for concreteness, we look at the influence of ξ on
the eigenvalues and on the “photon number component” of the least stable eigenvector, as
in Section 6. Figure 10 shows the real part of the eigenvalue pair, which possess the same
characteristic features as the standard REs, for different values of asymmetry ξ. The red
curve matches the corresponding one in Figure 4 since ξ = 1 corresponds to the symmetric
rate configuration studied in Section 6. Superradiance (ξ > 1) stabilizes somewhat the
nanolaser by rendering more negative the eigenvalue closer to 0 (green curve), while
subradiance (ξ < 1) renders it a little more susceptible to noise by bringing it closer to 0
(black curve).

Figure 10. Real part of the eigenvalues derived from the stability analysis of the modified rate
equations model, Equations (16) and (17). The different curves belong to different kinds of asymmetry
(cf. figure legend). β = 10−1. The chosen values of ξ, here and in the following figure, are those
of [104].

The eigenvector analysis confirms the destabilizing quality of subradiance (Figure 11) as
opposed to the superradiance-induced stabilization. The amplitude of the normalized
photon component of the least stable eigenvector (matching the upper eigenvalue in
Figure 10) becomes progressively smaller as the symmetry break proceeds from super-
to subradiant interactions (colour coding as in Figure 10). As already discussed in
Section 6 this amounts to saying that the component of this eigenvector aligned
with the photon number variable n is small (extremely small in the subradiant case)
over a broad range of pump values. Hence, this eigenvector is nearly aligned with
the population variable N (the other eigenvector—not shown—is also aligned with N).
Thus, the fluctuations which occur in this eigendirection—due to the closeness to 0 of
the eigenvalue (Figure 10)—influence almost exclusively the population N, which may
undergo large excursions, since the only relaxation channel is the spontaneous relaxation
(partially inhibited by subradiance). As discussed at length in Section 6, if the weak
coupling to the photon variable takes place in the presence of a large excess in N, then a
photon burst takes place; more readily in the case of subradiant interaction.
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Figure 11. Normalized photon component vn of the least stable eigenvector (matching the least stable
eigenvalue in Figure 10) for different kinds of asymmetry in the emission rates. Each curve stops
at the point where the eigenvector becomes complex, simultaneously with the appearance of an
imaginary component in the corresponding eigenvalue. β = 10−1.

The analysis shows that the symmetry break quantitatively affects the phase space
structure and the photon burst appearance; no qualitative—e.g., structural—changes are
introduced into the modified phase space. For the standard REs (for Quantum Wells) this
would amount to larger photon bursts (more frequent depending on the parameter details).
However, since photon bursts and superthermal statistics were already predicted under
these conditions [72,84,114–116,119], the symmetry break does not seem to bring anything
new. On the other hand, it is possible that for a sufficiently large asymmetry the integration
of the REs model may also produce bursts, thanks to the laser’s closeness to the instability
threshold which may be reached even with perturbations of Langevin type [123].

For completeness, it is important to remark that in Equations (16) and (17) we have
attributed the asymmetry only to the decay into the lasing mode (no specific indication is
given in [104] as to the choice made). The extension of the asymmetry (in particular the
subradiant case, ξ < 1 for our purposes) to the whole relaxation from the excited state
(i.e., also to the last term of Equation (17)), would have lowered even more strongly the
stability of the device, both in the eigenvalue and in the eigenvector components (results
not shown). This way, the small amount of Langevin noise—proportional to the photon
number (very small below threshold), could even more easily produce photon bursts.

8. Conclusions

The objective of this contribution has been the presentation of a summary of the
current observations of photon bursts and their comparison with the properties of ASE.
No conclusion is drawn about the true nature of these bursts, whence the quotes around
Amplified Spontaneous Emission in the title, which undoubtedly require further evidence
and investigation.

Photon bursts are seen to precede the establishment of coherence in micro- and
nanolaser and therefore take a significance which is not necessarily present in their
macroscopic counterparts. Even though their role is not fully characterised, they appear
as an instance of a nascent instability, as shown through the analysis of the phase space
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properties of the most basic physical model. An interesting question, not yet fully
answered, is the inability of differential models of predicting the appearance of photon
bursts—up to the recent exception [104] which probably benefits from the destabilization
found in Section 7—while the intrinsic granularity and randomness arising from numerical
stochastic approaches give an excellent match to the observations, independently of the
model details. The different aspects of the stochastic predictions are summarized and
compared to the main conclusions which can be drawn from the current experimental
knowledge of photon spikes. The experimentally relevant question of the identification of
photon bursts through the second-order autocorrelation—the most widespread detection
tool—is addressed with the help of a simple model, which explains the role of the various
parameters (burst duration, relative height of background to peak, filling factor in the
observation time interval) on the actual identification of a superthermal statistics.

Devices with very few QDs are now consistently built, with good control of their
numbers and properties [124] and limitations exist on the minimum number of emitters
necessary for lasing [111,112]. Interesting questions arise in the dynamical interaction
among photons and emitters in the below-threshold region, given the very restricted
number of QDs actually interacting (as matter) with the thermal or pseudo-thermal radiation
inside the cavity. In other words, it would be interesting to understand whether the
thermodynamic limits taken in macroscopic out-of-equilibrium systems hold [44]. This
question is certainly one that will need to be addressed in a near future in order to shed
further light on the physics of radiation in interaction with matter.

On the list of forthcoming work on this topic the following items ought to appear: a
better characterization of photon bursts, including their coherence time and their statistical
properties (such as repetition rate, amplitude statistics to probe for possible systematic
or deterministic aspects); the evolution of the photon bursts into the cw (noisy) coherent
emission; the possible relationship between burst features and cavity parameters, currently
hinted to by stochastic modelling; the possible role that these bursts may play as a connec-
tion between the radiation statistics in thermodynamic equilibrium below and above the
transparency threshold and the coherent, lasing regime.
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