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Abstract: The notion of a polaron, originally introduced in the context of electrons in ionic lattices,
helps us to understand how a quantum impurity behaves when being immersed in and interacting
with a many-body background. We discuss the impact of the impurities on the medium particles by
considering feedback effects from polarons that can be realized in ultracold quantum gas experiments.
In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose
polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach
operating at finite temperatures and discuss how mediated two- and three-body interactions are
implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral
function of Fermi polarons at finite temperature by varying impurity-medium interactions as well
as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the
medium atoms could be a useful quantity for analyzing the transition/crossover from attractive
polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the
background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations
would be important for future investigations regarding the quantification of interpolaron correlations
in Bose polaron problems.

Keywords: polaron; impurity; spectroscopy of quasiparticles; interpolaron correlations; quantum
depletion; ultracold atoms; Bose–Einstein condensate; Fermi degenerate gases

1. Introduction

The quantum many-body problem, which is one of the central issues of modern
physics, is encountered in various research fields such as condensed matter and nuclear
physics. The major obstacle that prevents their adequate description stems from the
presence of many degrees-of-freedom as well as strong correlations. The polaron concept,
which was originally proposed by S. I. Pekar and L. Landau [1,2] to characterize electron
properties in crystals, provides a useful playground for understanding related nontrivial
many-body aspects of quantum matter and interactions. For instance, a key advantage
of the polaron picture is that, under specific circumstances, it enables the reduction of a
complicated many-body problem to an effective single-particle or a few-body one with
renormalized parameters. In the last decade, the polaron concept has been intensively
studied for two-component ultracold mixtures, where a minority component is embedded
in a majority one (host) and becomes dressed by the low-energy excitations of the latter
forming a polaron. Indeed, ultracold atoms, owing to the excellent controllability of the
involved system parameters, are utilized to quantitatively determine polaron properties,
as has been demonstrated in a variety of relevant experimental efforts. These include,
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for instance, the measurement of the quasiparticle excitation spectra [3–12], monitoring the
quantum dynamics of impurities [13,14], the observation of a phononic Lamb shift [15],
the estimation of relevant thermodynamic quantities [16,17], the identification of medium
induced interactions [18,19], and polariton properties [20–22].

Polarons basically appear in two different types, namely, Fermi and Bose polarons
where the impurity atoms are immersed in a Fermi sea and a Bose-Einstein condensate
(BEC) respectively. Both cases are experimentally realizable by employing a mixture of
atoms residing in different hyperfine states or using distinct isotopes. The impurity-
medium interaction strength can be flexibly adjusted with the aid of Feshbach reso-
nances [23], and as such strong interactions between the impurity and the majority atoms
can be achieved. Due to this non-zero interaction, the impurities are subsequently dressed
by the elementary excitations of t heir background atoms, leading to a quasi-particle state
that is called the polaron. In that light, the polaron and more generally the quasiparticle
generation is inherently related to the build-up of strong entanglement among the impu-
rities and their background medium [24–26]. Moreover, since various situations such as
mass-imbalanced [5], low-dimensional [6], and multi-orbital [11] ultracold settings can
be realized, atomic polarons can also be expected to be quantum simulators of quasipar-
ticle states in nuclear physics [27–31]. Recently, a Rydberg Fermi polaron has also been
discussed theoretically [32].

The single-particle character of polarons has been intensively investigated theoretically
in the past few years by using different approaches [33–50] ranging from variational treat-
ments [33–36] to diagrammatic Monte-Carlo simulations [42–47]. Interestingly, a multitude
of experimental observations regarding polaronic excitations have been well described
based on theoretical frameworks relying on the single-polaron ansatz [3,4,10]. However,
it is still a challenging problem and highly unexplored topic how many polaron systems
behave, especially during their nonequilibrium dynamics. While the single-polaron anal-
ysis clarifies the mechanism of polaron formation via the dressing from the surrounding
majority cloud, the many-polaron study is dedicated to the question of how polarons
interact with each other through the exchange of the excitations of their host. Therefore,
the background medium plays a crucial role in understanding many-polaron physics. In
this sense, the concept of induced interpolaron interactions has attracted a tremendous
attention [51–61]. For instance, in recent experiments, the sizable shift of the effective scat-
tering length due to the fermion-mediated interaction has been observed in Fermi polaron
systems [18,19]. The corresponding impact on the medium atoms due to the presence of
strong impurity-bath correlations is under active investigation [55]. In the case of Bose
polarons [7–9,13–15,62–67], the influence of the impurities on their environment (BEC)
is more pronounced when compared to Fermi polarons due to the absence of the Pauli
blocking effect. Characteristic examples, here, constitute the self-localization [68–73] and
temporal orthogonality catastrophe [24] phenomena as well as complex tunneling [74–77]
and emergent relaxation processes [60,78]. They originate from the presence of the impurity
which imprints significant deformations to its environment when the interaction between
the subsystems is finite.

In this work, we first provide a discussion on the role of the background atoms in many-
polaron problems that are tractable in ultracold atom settings. Particularly, we present
diagrammatic approaches to Fermi polaron systems and elaborate on how mediated two-
and three-body interpolation interactions are consistently taken into account within these
frameworks [55,56]. Importantly, a comparison of the Fermi polaron excitation spectral
function in three dimensions (3D) and at finite temperatures is performed among different
variants of the diagrammatic T-matrix approach. Namely, the usual T-matrix approach
(TMA) which is based on the self-energy including the repeated particle-particle scattering
processes consisting of bare propagators [79,80], the extended T-matrix approach (ETMA)
where the bare propagator in the self-energy is partially replaced [81–83], and the self-
consistent T-matrix approach where all the propagators in the self-energy consist of dressed
ones [84,85] are employed. We reveal how medium-induced interactions are involved
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in these approaches and examine their effects in mass-balanced Fermi polaron settings
realized, e.g., in 6Li atomic mixtures. Subsequently, we discuss the polaron excitation
spectrum in two (2D) and one (1D) spatial dimensions. The behavior of the spectral function
of the host and the impurities at strong impurity-medium interactions is exemplified.
Finally, the real-space Bogoliubov approach to Bose polarons in 3D is reviewed. The
latter allows us to unveil the condensate deformation due to the presence of the impurity
and appreciate the resultant quantum fluctuations [86]. We argue that the degree of
the quantum depletion of the condensate decreases (increases) for repulsive (attractive)
impurity-medium interactions, a result that is associated with the deformation of its density
distribution. This is in contrast to homogeneous setups where the depletion increases
independently of the sign of the interaction.

This work is organized as follows. In Section 2, we present the model Hamiltonian
describing ultracold Fermi polarons in 3D. For the Fermi polaron, we consider uniform
systems and develop the concept of the diagrammatic T-matrix approximation. After
explaining the ingredients of the diagrammatic approaches in some detail, we clarify how
mediated two- and three-body interactions are incorporated in these approaches. The
behavior of the resultant polaron spectral function at finite temperatures and impurity
concentrations in three-, two-, and one-dimensions is discussed. In Section 3, we utilize the
real-space mean-field formulation for Bose polarons and expose the presence of quantum
depletion for the three-dimensional trapped Bose polaron at zero temperature. In Section 4,
we summarize our results and provide future perspectives. For convenience, in what
follows, we use kB = h̄ = 1.

2. Fermi Polarons
2.1. T-Matrix Approach to Fermi Polaron Problems

Here we explain the concept of many-body diagrammatic approaches to Fermi po-
larons, namely, settings referring to the situation where fermionic impurity atoms are
immersed in a uniform Fermi gas. Since such a two-component Fermi mixture mimics
spin-1/2 electrons, we denote the bath component as σ = B =↑ and the impurity one by
σ = I =↓. Note that these are standard conventions without loss of generality. The model
Hamiltonian describing this system reads

H = ∑
p,σ

ξp,σc†
p,σcp,σ + g ∑

p,p′ ,q
c†

p+q/2,↑c
†
−p+q/2,↓c−p′+q/2,↓cp′+q/2,↑, (1)

where ξp,σ = p2/(2mσ)− µσ is the kinetic energy minus the chemical potential µσ, and mσ

is the atomic mass of the σ component. The parameters cp,σ and c†
p,σ refer to the annihilation

and creation operators of a σ component fermion, respectively, possessing momentum p.
We measure the effective coupling constant g of the contact-type interaction between

two different component fermions by using the low-energy scattering parameter, namely,
the scattering length a. In 3D, it is known [87] that the coupling constant g3D and the
scattering length a are related via

mr

2πa
=

1
g3D

+
mrΛ
π2 , (2)

with m−1
r = m−1

↑ + m−1
↓ being the reduced mass. In this expression, the momentum

cutoff Λ is introduced to avoid an ultraviolet divergence in the momentum summation
of the Lippmann–Schwinger equation expressed in momentum space. This allows us to
achieve the effective short-range interaction of finite range re ∝ 1/Λ. Similarly, the relevant
relations in 2D and 1D read [88]

a2D =
1
Λ

e−
π

mrg2D , and a1D =
1

mrg1D
, (3)

respectively, where g2D and g1D are the coupling constants in 2D and 1D.
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First, we introduce a thermal single-particle Green’s function [89]

Gσ(p, iωn) =
1

iωn − ξp,σ − Σσ(p, iωn)
, (4)

where ωn = (2n + 1)πT is the fermion Matsubara frequency introduced within the finite-
temperature T formalism and n ∈ Z [89]. The effect of the impurity-medium interaction
is taken into account in the self-energy Σσ(p, iωn). The excitation spectrum A↓(p, ω) of a
Fermi polaron can be obtained via the retarded Green’s function GR

↓ (p, ω) = G↓(p, iωn →
ω + iδ) (where δ is a positive infinitesimal) through analytic continuation [89]. In particular,
it can be shown that

A↓(p, ω) = − 1
π

ImGR
↓ (p, ω). (5)

Experimentally, this quantity can be monitored by using a radio-frequency (rf) spectroscopy
scheme where the atoms are transferred from their thermal equilibrium state to a specific
spin state which interacts with the medium [90]. Indeed, the reverse rf response Ir(ω) [10]
and the ejection one Ie(ω) [16] are given by

Ir(ω) = 2πΩ2
Rabi ∑

p
f (ξp,i)A↓(p, ω + ξp,↓) (6)

and

Ie(ω) = 2πΩ2
Rabi ∑

p
f (ξp,↓ −ω)A↓(p, ξp,↓ −ω), (7)

respectively. Here, ξp,i represents the kinetic energy of the initial state in the reverse rf
scheme. In Equations (6) and (7), ΩRabi is the Rabi frequency.

Importantly, the self-energy Σ↑(p, iωn) of the background plays an important role in
describing the mediated interpolaron interactions. This fact will be evinced below and it is
achieved by expanding Σ↑(p, iωn) with respect to Gσ and G0

σ. The chemical potentials µσ

are kept fixed by imposing the particle number conservation condition obeying

Nσ = T ∑
p,iωn

Gσ(p, iωn). (8)

Moreover, in the remainder of this work, we define the impurity concentration as follows

x =
N↓
N↑

. (9)

Additionally, within the TMA [34,54] the self- energy Σσ(p, iωn) of the σ compo-
nent reads

Σσ(p, iωn) = T ∑
q,iν`

Γ(q, iν`)G0
−σ(q− p, iν` − iωn), (10)

where Γ(q, iν`) is the many-body T-matrix, as diagrammatically shown in Figure 1a,
with the boson Matsubara frequency iν` = 2`πT (` ∈ Z). Here, G0

σ(p, iωn) = (iωn −
ξp,σ)−1 is the bare thermal single-particle Green’s function. Furthermore, by adopting a
ladder approximation illustrated in Figure 1d, the T-matrix Γ(q, iν`) is given by

Γ(q, iν`) =
g

1 + gΠ(q, iν`)
, (11)
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where

Π(q, iν`) = T ∑
p,iωn

G0
↑(p + q, iωn + iν`)G0

↓(−p,−iωn) (12)

is the lowest-order particle-particle bubble. The latter describes a virtual particle-particle
scattering process associated with the impurity-medium interaction g which is replaced
by g3D, g2D, and g1D in 3D, 2D, and 1D, respectively. Note that in Equation (10) the
impurity-impurity interaction is not taken into account.

The extended T-matrix approach (ETMA) [55] constitutes an improved approxima-
tion that allows us to take the induced polaron-polaron interactions into account in a
self-consistent way. In this method, as depicted in Figure 1b we include higher-order
correlations by replacing the bare Green function G0 in Equation (10) with the dressed one
Gσ. Namely

ΣE
σ(p, iωn) = T ∑

q,iν`

Γ(q, iν`)G−σ(q− p, iν` − iωn). (13)=     +   +                     + ...(a) (b) (c) s=     +   +    + ...s(d)(e)
Figure 1. Feynman diagrams for (a) the T-matrix approach (TMA), (b) the extended T-matrix
approach (ETMA), and (c) the self-consistent T-matrix approach (SCTMA). Γ and ΓS are the many-
body T-matrices, whose perturbative expansions are shown schematically in (d,e), consisting of bare
and dressed propagators G0

σ and Gσ, respectively. While in TMA, all the lines in the self-energy
(a) consist of G0

σ, they are replaced with Gσ partially (upper loop of (b)) in ETMA and fully in SCTMA
(c) (see also (e) where G0

σ is replaced by Gσ compared to (d)), respectively.

Importantly, the TMA and ETMA approaches are equivalent to each other in the single-
polaron limit i.e., x → 0, where the self-energy of the fermionic medium ΣE

↑ (capturing
the difference between G0

↑ and G↑ in Equations (10) and (13), respectively) is negligible.
Additionally, at zero temperature, these two treatments coincide with the variational ansatz
proposed by F. Chevy [33]. Recall that µ↑ = EF and µ↓ = E(a)

P at T = 0 and x → 0, where

EF = p2
F/(2m↑) denotes the Fermi energy of the majority component atoms while E(a)

P
corresponds to the attractive polaron energy.

Proceeding one step further, it is possible to construct the so-called self-consistent T-
matrix approach (SCTMA) [56,91,92] which deploys the many-body T-matrix ΓS composed
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of dressed propagators as schematically shown in Figure 1e. In particular, the correspond-
ing T-matrix is given by

ΓS(q, iν`) =
g

1 + gΠS(q, iν`)
, (14)

where

ΠS(q, iν`) = T ∑
p,iωn

G↑(p + q, iωn + iν`)G↓(−p,−iωn), (15)

which describes a scattering process denoted by G↑ and G↓, of the dressed medium atoms
with the impurities and the dressed ones (polarons), respectively. This is in contrast to
Equation (12) obtained in ETMA and consisting of G0

σ which represents the impurity-
medium scattering process of only the bare atoms. Using this T-matrix, we can express the
SCTMA self-energy ΣS

σ (see also Figure 1c) as

ΣS
σ(p, iωn) = T ∑

q,iν`

ΓS(q, iν`)G−σ(q− p, iν` − iωn). (16)

We note that within the ETMA, the impurity self-energy ΣE
↓ (Equation (11)) can be

rewritten as

ΣE
↓(p, iωn) = T ∑

q,iν`

Γ(q, iν`)
[

G0
↑(q− p, iν` − iωn)

+ G0
↑(q− p, iν` − iωn)Σ↑(q− p, iν` − iωn)G↑(q− p, iν` − iωn)

]

≡ Σ↓(p, iωn) + δΣ↓(p, iωn), (17)

with the higher-order correction δΣ↓(p, iωn) beyond the TMA being

δΣ↓(p, iωn) = T2 ∑
q,q′ ,iν`,iν`′

Γ(q, iν`)Γ(q′, iν`′)G
0
↑(q− p, iν` − iωn)G↑(q− p, iν` − iωn)

× G↓(q′ − q + p, iν`′ − iν` + iωn)

≡ T ∑
p′ ,iωn′

V(2)
eff (p, iωn, p′, iωn′ ; p, iωn, p′, iωn′)G↓(p′, iωn′). (18)

In this expression, V(2)
eff (p1, iωn1 , p2, iωn2 ; p′1, iωn′1

, p′2, iωn′2
) represents the induced impurity-

impurity interaction (diagrammatically shown in Figure 2a) with incoming and outgoing
momenta and frequencies {pi, iωni} and {p′i, iωn′i

}, respectively, where i = 1, 2. It reads

V(2)
eff (p1, iωn1 , p2, iωn2 ; p′1, iωn′1

, p′2, iωn′2
) = δp1+p2,p′1+p′2

δn1+n2,n′1+n′2

× T ∑
q,iν`

Γ(q, iν`)Γ(q + p2 − p′1, iν` + iωn2 − iωn′1
)G0
↑(q− p1, iν` − iωn1)G

0
↑(q− p′1, iν` − iωn′1

). (19)

Here, δi,j is the Kronecker delta imposing the energy and momentum conservation in the
two-body scattering.
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Γ

Γ

(a) (b)

Γ

Γ

Γ
Figure 2. Feynman diagrams for induced (a) two- and (b) three-body interactions V(2,3)

eff among
polarons. The arrows represent the direction of momentum and energy transfer in each propagator.

The self-energy ΣS
↓ of the impurities within the SCTMA involves a contribution of

induced three-impurity correlations due to the dressed pair propagator ΣS
↓. The latter can

again be decomposed as

ΣS
↓(p, iωn) ≡ ΣE

↓(p, iωn) + δΣ′↓(p, iωn), (20)

where

δΣ′↓(p, iωn) = T ∑
q,iν`

[ΓS(q, iν`)− Γ(q, iν`)]G↑(q− p, iν` − iωn)

= T ∑
q,iν`

ΓS(q, iν`)Γ(q, iν`)Φ(q, iν`)G↑(q− p, iν` − iωn). (21)

Here we defined

Φ(q, iν`) = ΠS(q, iν`)−Π(q, iν`)

= T ∑
p,iωn

[
G↑(p + q, iωn + iν`)G↓(−p,−iωn)− G0

↑(p + q, iωn + iν`)G0
↓(−p,−iωn)

]

' T ∑
p,iωn

[
G0
↑(p + q, iωn + iν`)

]2
ΣS
↑(p + q, iωn + iν`)G0

↓(−p,−iωn), (22)

which represents the difference between the Π and ΠS, namely, the medium-impurity
and the medium-polaron propagators. In the last line of Equation (22), we assumed that
G↑ ' G0

↑ and ΣS
↓ ' 0. Thus, one can find a three-body correlation effect beyond the ETMA

as shown in Figure 2b and captured by

δΣ′↓(p, iωn) 'T ∑
p′ ,iωn′

V(3)
eff (p, iωn, p′, iωn′ , p′′, iωn′′ ; p′, iωn′ , p, iωn, p′′, iωn′′)

× G↓(p′, iωn′)G
0
↓(p′′, iωn′′), (23)

where V(3)
eff (p1, iωn1 , p2, iωn2 , p3, iωn3 ; p′1, iωn′1

, p′2, iωn′2
, p′3, iωn′3

) is the induced three-polaron
interaction term. Its explicit form reads
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V(3)
eff (p1, iωn1 , p2, iωn2 , p3, iωn3 ; p′1, iωn′1

, p′2, iωn′2
, p′3, iωn′3

) = δp1+p2+p3,p′1+p′2+p′3
δn1+n2+n3,n′1+n′2+n′3

× T ∑
q,iν`

Γ(q, iν`)Γ(q + p3 − p′1, iν` + iωn3 − iωn′1
)Γ(q + p′2 − p1, iν` + iωn′2

− iωn1)

× G0
↑(q− p′1, iν` − iωn′1

)G0
↑(q− p1, iν` − iωn1)G

0
↑(q− p′1 + p3 − p′3, iν` − iωn′1

+ iωn3 − iωn′3
). (24)

From the above discussion, it becomes evident how the medium-induced two-body and
three-body interpolaron interactions are included in the ETMA and the SCTMA treatments.
Recall that in the TMA the interpolaron interaction is not taken into account. Even so,
observables such as thermodynamic quantities (e.g., particle number density) and spectral
functions obtained via rf spectroscopy can in principle provide indications of the effect of
interpolaron interactions through Σσ(p, iωn).

2.2. Spectral Response of Fermi Polarons

In the following, we shall present and discuss the behavior of the spectral function
of Fermi polarons for temperatures ranging from zero to the Fermi temperature of the
majority component as well as for different spatial dimensions from three to one. For
simplicity, we consider a mass-balanced fermionic mixture i.e., m↑ = m↓ ≡ m. The
latter is experimentally relevant for instance by considering two different hyperfine states,
e.g., |F = 1/2, mF = +1/2〉 and |F = 3/2, mF = −3/2〉 of 6Li. In this notation, F and mF
are the total angular momentum and its projection, respectively, of the specific hyperfine
state [10] at thermal equilibrium.

2.2.1. Three-Dimensional Case

The resultant spectral function Aσ(p = 0, ω) of the fermionic medium (σ =↑) and
the impurities (σ =↓) is depicted in Figure 3 as a function of the single-particle energy ω.
Here, we consider a temperature T = 0.3TF, impurity concentration x = 0.1, and impurity-
medium interaction at unitarity, i.e., (pFa)−1 = 0. The Fermi temperature is TF = p2

F/(2m↑)
and the Fermi momentum pF. Evidently, the spectral function of the majority component
(Figure 3a) exhibits a peak around ω + µ↑ = 0 in all three diagrammatic approaches
introduced in Section 2. The sharp peak around ω + µ↑ = 0 corresponds to the spectrum
of the bare medium atoms given by A(p, ω) = δ(ω − ξp,↑) at p = 0. This indicates
that the imprint of the impurity-medium interaction on the fermionic host is negligible
for such small impurity concentrations x = 0.1; see also the discussion below. Indeed,
the renormalization of µ↑ (which essentially evinces the backaction on the majority atoms
from the impurities) in the ETMA at unitarity is proportional to x [55] and in particular

µ↑
EF

= 1− 0.526x. (25)

It can be shown that in the weak-coupling limit, this shift is given by the Hartree correction
ΣH
↑ = 4πa

m N↓ [89]. However, at the unitarity limit presented in Figure 3, such a weak-
coupling approximation cannot be applied and therefore the factor 0.526 in Equation (25)
originates from the existence of strong correlations between the majority and the minority
component atoms.
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SCTMA

(a) (b)T = 0.3TF
x = 0.1
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1

2 1 0 1 2 3 4

(ω + μσ)/EF
Figure 3. Zero -momentum spectral functions Aσ(p = 0, ω) of (a) the majority (medium) and (b) the
minority (impurities) fermions for varying energy ω at unitarity, (pFa)−1 = 0. We consider a temper-
ature T = 0.3TF and an impurity concentration x = 0.1. The solid, dashed, and dash-dotted lines
represent the results of the TMA, ETMA, and SCTMA approaches respectively. While A↑(p = 0, ω)

is almost the same among the three approaches, A↓(p = 0, ω) within the SCTMA experiences a
sizable difference compared to the response obtained in the TMA and the ETMA approaches.

The corresponding polaronic excitation spectrum is captured by A↓(p = 0, ω)

(Figure 3b) having a dominant peak at ω + µ↓ = −E(a)
P where E(a)

P is the attractive
polaron energy. Notice here that since this peak is located at negative energies it in-
dicates the formation of an attractive Fermi polaron. This observation can be under-
stood from the fact that in the absence of impurity-medium interactions, the bare-particle
pole, namely, the position of the pole of the bare retarded single-particle Green’s func-
tion G0,R

↓ (p = 0, ω) = (ω + iδ + µ↓)
−1, occurs at ω + µ↓ = 0. Moreover, the attrac-

tive polaron energy E(a)
P (being of course negative) is defined by the self-energy en-

ergy shift as E(a)
P = Σ↓(0, E(a)

P ). Thus, one can regard the deviation of the position of

the peak from ω + µ↓ = 0 as the attractive polaron energy E(a)
P , since it is given by

A↓(p = 0, ω) ∼ δ(ω + µ↓ − E(a)
P ). Recall that, in general, for finite temperatures T and im-

purity concentrations x, µ↓ 6= E(a)
P holds in contrast to the single-polaron limit at T = 0 [55].

Additionally, a weak amplitude peak appears in A↓(p = 0, ω) at positive energies ω ' EF.
It stems from the metastable upper branch of the impurities, where excited atoms repul-
sively interact with each other. This peak becomes sharper at positive scattering lengths
away from unitarity. Indeed, for positive scattering lengths, the quasi-particle excitation
called a repulsive Fermi polaron emerges [25].

Figure 4a presents the polaron spectral function A↓(p = 0, ω) with respect to the
interaction parameter (pFa)−1 obtained within the ETMA method at T = 0.03TF and
x = O(10−4). From the position of the poles of GR

↓ (p = 0, ω), one can extract two

kinds of polaron energies, namely, E(a)
P and E(r)

P corresponding to the attractive and the
repulsive polaron energies, respectively. The interaction dependence of these energies
is provided in Figure 4b. E(r)

P approaches the Hartree shift ΣH
↓ = 4πa

m N↑ without the
imaginary part of the self-energy (being responsible for the width of the spectra) and
finally becomes zero [25]. Indeed, the spectrum in Figure 4a shows that the peak of the
repulsive polaron at ω + µ↓ > 0 becomes sharper when increasing (pFa)−1, indicating

the vanishing imaginary part of the self-energy. On the other hand, E(a)
P decreases with

increasing (pFa)−1 as depicted by the position of the low-energy peak (where ω + µ↓ < 0)
in Figure 4a. Eventually, the attractive polaron undergoes the molecule transition as we
discuss below. Another important issue here is that in the strong-coupling regime the
attractive polaron undergoes the transition to the molecular state with increasing impurity-
bath attraction [93]. Although this transition was originally predicted to be of first-order,
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recent experimental and theoretical studies showed an underlying crossover behavior and
coexistence between polaronic and molecular states [17]. We note that in the case of finite
impurity concentrations, a BEC of molecules can appear at low temperatures; see also
Equations (26) and (27) below. It is also a fact that the interplay among a molecular BEC,
thermally excited molecules, and polarons may occur at finite temperatures [94]. In the
calculation of the attractive polaron energy E(a)

P for different coupling strengths (Figure 4b),
however, we do not encounter the molecular BEC transition identified by the Thouless
criterion [95]

1 + gΠ(q = 0, iν` = 0) = 0. (26)

In particular, in the strong-coupling limit, from Equation (26) combined with the particle
number conservation (Equation (8)) the BEC temperature TBEC of molecules satisfies [96]

TBEC ' 2π

(
x

12π2ζ(3/2)

) 2
3
TF, (27)

where ζ(3/2) ' 2.612 is the zeta function. Since we consider a small impurity concentration
x = O(10−4) here, T = 0.03TF is far above TBEC ∝ x

2
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Figure 4. (a) Polaron spectral function A↓(p = 0, ω) for several coupling strengths (pFa)−1. The
spectrum is calculated within the ETMA at temperature T = 0.03TF and impurity concentration

x = O(10−4) [55]. Panel (b) represents the attractive and repulsive polaron energies, namely, E(a)
P

and E(r)
P , respectively, as a function of (pFa)−1. The polaron energies have been extracted from the

peak position of A↓(p = 0, ω), that is, the pole of GR
↓ (p = 0, ω). The experimental data of Ref. [10]

are plotted in black circles for direct comparison with the theoretical predictions.

According to the above-description, induced polaron-polaron interactions are medi-
ated by the host atoms, which are taken into account within the ETMA and the SCTMA
methods as explicated in Section 2, are weak in the present mass-balanced fermionic mix-
ture. These finite temperature findings are consistent with previous theoretical works [51–53]
predicting a spectral shift of the polaron energy ∆E = FEFGx with F = 0.1∼0.2 at T = 0
(where EFG is the ground-state energy of a non-interacting single-component Fermi gas at
T = 0) as well as the experimental observations of Ref. [4]. On the other hand, the pres-
ence of induced polaron–polaron interactions in the repulsive polaron scenario cannot be
observed experimentally [10], a result that is further supported by recent studies based on
diagrammatic approaches [55].

Furthermore, the spectral deviations between the TMA and the ETMA treatments
represent the effect of induced two-body interpolaron interactions in the attractive polaron
case. However, in our case there is no sizable shift between the spectral lines predicted
in these approaches (Figure 3b). Indeed, the induced two-body energy is estimated to
be of the order of 10−3EFG at x = 0.1. The induced three-body interpolaron interaction,
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which is responsible for the difference among the ETMA and the SCTMA results, exhibits a
sizable effect on the width of the polaron spectra. We remark that at T = 0.3TF and x = 0.1
(Figure 3b) although the minority atoms basically obey the Boltzmann statistic, since their

temperature is higher than the Fermi degenerate temperature TF,↓ =
(6π2 N↓)

2
3

2m [55] namely
T = 0.3TF ' 1.39TF,↓, effects of the strong medium-impurity interaction on the polaron
spectra are present manifesting for instance as a corresponding broadening. Although
the SCTMA treatment tends to overestimate the polaron energy, the observed full-width-
at-half maximum (FWHM) of the rf spectrum given by 2.71(T/TF)

2 [16] can be well
reproduced by this approach. The latter gives 2.95(T/TF)

2 whereas the FWHM in ETMA is
1.61(T/TF)

2 [56]. We should also note that the decay rate related to the FWHM for repulsive
polarons as extracted using TMA (and simultaneously ETMA) agree quantitatively with
the experimental result of Ref. [10]. For the attractive polaron, the quantitative agreement
between the experiment and these diagrammatic approaches is broken at high temperatures.
For instance, the recent experiment of Ref. [16] showed that the transition from polarons
to the Boltzmann gas occurs at T ' 0.75TF [16], while the prediction of the diagrammatic
approaches is above TF [56]. Besides the fact that such polaron decay properties may
be related to multi-polaron scattering events leading to many-body dephasing [12], they
are necessary for further detailed polaron investigations at various temperatures and
interaction strengths that facilitate the understanding of the underlying physics of the
observed polaron-to-Boltzmann-gas transition.

The dependence of the polaron spectra A↓(p, ω) on the energy and the momentum of
the impurities is illustrated in Figure 5 for T = 0.2TF, x = 0, and (pFa)−1 = 0. To infer the
impact of the multi-polaron correlations on the spectrum we explicitly compare A↓(p, ω)
between the ETMA and the SCTMA methods. As it can be seen, A↓(p, ω) exhibits a sharp
peak which is associated with the attractive polaron state and shows an almost quadratic
behavior for increasing momentum of the impurities. It is also apparent that the SCTMA
spectrum (Figure 5b) at low momenta is broadened when compared to the ETMA one
(Figure 5a) due to the induced beyond two-body interpolation correlations, e.g., three-body
ones. At small impurity momenta, the spectral peak of the attractive Fermi polaron within
the present model as described by Equation (1), is generally given by

A↓(p, ω) ' Zaδ

(
ω + µ↓ −

p2

2m∗a
− E(a)

P

)
, (28)

where Za and m∗a are the quasiparticle residue [25] and the effective mass of the attractive
polaron, respectively. At unitarity it holds that Za ' 0.8, m∗a ' 1.2m, and E(a)

P ' −0.6EF
within the zero-temperature and single-polaron limits [34]. The behavior of these quantities
has been intensively studied in current experiments [3,4,10] and an adequate agreement
has been reported using various theories. For instance, Chevy’s variational ansatz (be-
ing equivalent to the TMA at T = 0 and x → 0) [33,34] gives Za = 0.78, m∗a = 1.17m,
and E(a)

P = −0.6066EF. More recently, the functional renormalization group [39] pre-

dicts Za = 0.796 and E(a)
P = −0.57EF, while according to the diagrammatic Monte Carlo

method [47] E(a)
P = −0.6157EF. In this sense, nowadays, the corresponding values of

these quantities can be regarded as important benchmarks, especially for theoretical ap-
proaches. It is also worth mentioning that higher-order diagrammatic approximations
such as the SCTMA do not necessarily lead to improved accuracy in terms of the values
of relevant observables. In particular, a detailed comparison between the predictions of
the TMA and the SCTMA has been discussed in Ref. [54] demonstrating that the former
adequately estimates the experimentally observed polaron energy whereas the SCTMA
overestimates its magnitude in the strong-coupling regime. Moreover, the diagrammatic
Monte Carlo method based on bare Green’s functions in self-energies exhibits a better
convergence behavior compared to the ones employing dressed Green’s functions due to
the approximate cancellation of higher-order diagrams [44]. As such, the partial inclusion
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of higher-order diagrams by replacing the bare Green’s functions with the dressed ones
may lead to overestimating the molecule-molecule and the polaron-molecule scattering
lengths in the strong-coupling regime [56].

As we demonstrated previously (see Figure 3), besides the fact that the spectral
response within the SCTMA method is broader compared to the one obtained in the
ETMA, the two spectra feature a qualitatively similar behavior. Indeed, both approaches
evince that the spectra beyond p = pF are strongly broadened. Recall that in this region
of momenta the atoms of the majority component, which form the Fermi sphere, cannot
follow the impurity atoms. This indicates that the dressed polaron state ceases to exist
due to the phenomenon of the Cherenkov instability [97,98], where the polaron moves
faster than the speed of sound of the medium and consequently it becomes unstable
against the spontaneous emission of elementary excitations of the medium. Such a spectral
broadening can also be observed in mesoscopic spin transport measurements [99] and
may also be related to the underlying polaron-Boltzmann gas transition [16] since the
contribution of high-momentum polarons can be captured in rf spectroscopy due to the
thermal broadening of the Fermi distribution function in Equation (7) at high temperatures.
Moreover, the momentum-resolved photoemission spectra would reveal these effects across
this transition.
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A (p,ω)EF
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T = 0.2TF
x = 0.1
(pFa)−1 = 0
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Figure 5. Polaron spectral function A↓(p, ω) as a function of the momentum p and the energy ω of the impurities at
temperature T = 0.2TF, impurity concentration x = 0.1, and interaction (pFa)−1 = 0. A↓(p, ω) is calculated within (a) the
ETMA and (b) the SCTMA approaches. The vertical dashed line marks the Fermi momentum p = pF of the medium. While
the two approaches predict qualitatively similar spectra with a sharp peak at low momenta and broadening above p = pF,
the SCTMA result (b) shows a relatively broadened peak at low momenta compared to the ETMA one (a).

We remark that the medium spectral function A↑(p, ω) is also useful to reveal the prop-
erties of strong-coupling polarons in the case of finite temperature and impurity concentra-
tion. Figure 6 presents A↑(p, ω) for various impurity-medium couplings ((pFa)−1 = −0.4,
0, 0.4, 0.7, and 1.0) at T = 0.4TF and x = 0.1. At (pFa)−1 = −0.4 and (pFa)−1 = 0,
A↑(p = 0, ω) features a single peak at ω + µ↑ = 0. On the other hand, at intermediate
couplings (pFa)−1 = 0.4 and (pFa)−1 = 0.7, besides a dominant spectral maximum a
second peak appears around ω + µ↑ = EF. The latter evinces the backaction from the
repulsive polaron because the inset of Figure 6 shows that the repulsive polaron is located
around ω + µ↑ ' EF. Moreover, at (pFa)−1 = 1, another peak emerges in the low-energy
region (ω + µ↑ ' −3EF). This low-energy peak elucidates the emergence of two-body
molecules with the binding energy given by Eb = 1/(ma2) due to the strong impurity-
medium attraction. Concluding, the spectral function of the medium atoms can provide
us with useful information for the recently observed smooth crossover from polarons to
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molecules [17]. Notice also that spectral and thermodynamic signatures of the polaron-
molecule transition have been recently reported within a variational approach [100], while
the associated molecule-hole continuum can be captured using the TMA method [101].

In the following, we shall elaborate on the behavior of the spectral function of lower
dimensional Fermi polarons solely within the TMA approach. The latter provides an
adequate description of the polaron formation in our case since the induced interpolaron
interaction [59,60] is weak in the considered mass-balanced system.
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Figure 6. Spectral function of the medium A↑(p = 0, ω) within the ETMA approach at zero momen-
tum of the impurity and for different impurity-medium couplings (pFa)−1 = −0.4, 0, 0.4, 0.7, and 1.0.
The temperature and the impurity concentration are given by T = 0.4TF and x = 0.1, respectively.
The inset shows the corresponding impurity spectral functions A↓(p = 0, ω). While the sharp peak
at ω + µ↑ ' 0 in A↑(p = 0, ω) is associated with the bare state, the small amplitude side peaks
at positive (ω + µ↑ ' EF) and negative energies (ω + µ↓ ' −3EF for the case with (pFa)−1 = 1)
originate from the backaction due to the impurities.

2.2.2. Spectral Response of Fermi Polarons in Two-Dimensions

In two spatial dimensions, the attractive impurity-medium effective interaction g2D < 0
is always accompanied by the existence of a two-body bound state whose energy scales as
−1/(ma2

2D) [102]. Simultaneously, the repulsive polaron branch appears at positive ener-
gies [25] in addition to the attractive one located at negative energies. This phenomenology
is similar to the case of a positive impurity-bath scattering length in 3D [101]. To elaborate
on the typical spectrum of 2D Fermi polarons below we employ a homogeneous Fermi
mixture characterized by an impurity concentration x = 0.1, temperature T = 0.3TF, and a
typically weak dimensionless coupling parameter ln(pFa2D) = 0.4 where a2D is the 2D
scattering length introduced in Equation (3). The spectral response of both the fermionic
background (A↑(p, ω)) and the impurities (A↓(p, ω)) for varying momenta and energies
of the impurities within the TMA approach is depicted in Figure 7. We observe that the
small impurity concentration, i.e., x = 0.1, leads to the non-interacting dispersion of the
spectrum of the majority component given by A↑(p, ω) ' δ(ω − ξp,↑); see Figure 7a. In
this case, therefore, the medium does not experience any backaction from the impurities.
Importantly, one can indeed identify a sizable backaction on the medium in the case of a
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larger impurity concentration and smaller impurity-medium 2D scattering length as shown
in Figure 7(b1,b2) where T = 0.3TF, x = 0.3, and ln(pFa2D) = 0. Moreover, since the repul-
sive interaction in the excited branch of the impurities (ω + µ↓ ' EF) is relatively strong,
the impurity excitation spectrum at positive energies (ω + µ↓ > 0) is largely broadened.
We note that the stable repulsive polaron branch can be found in the case of small a2D. It
also becomes evident that the impurity spectrum in 2D is largely broadened beyond p = pF
as compared to the 3D spectral response (Figure 5). Simultaneously, the intensity of the
metastable impurity excitation in the repulsive branch becomes relatively strong in both the
2D and 3D cases. This result implies that fast-moving impurities do not dress the medium
atoms and occupy the non-interacting excited states in such high-momentum regions.
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Figure 7. Spectral function Aσ(p, ω) of the Fermi (a1) medium and (a2) impurities in two-dimensions
for different momenta and energies of the impurities. We consider a temperature T = 0.3TF, impurity
concentration x = 0.1, and dimensionless coupling parameter ln(pFa2D) = 0.4. The vertical dashed
line indicates the Fermi momentum p = pF of the majority component atoms. While the majority
component (a) exhibits a sharp peak with quadratic dispersion ω + µ↑ = p2/(2m), the minority
atoms (b) form the attractive polaron at negative energies (ω + µ↓ < 0) and a broadened peak
associated with the repulsive impurity branch at positive energies (ω + µ↓ > 0). For comparison, we
provide the spectral functions of the medium (b1) and the impurities (b2) in the case of T = 0.3TF,
x = 0.3 and ln(pFa2D) = 0. Evidently, the feedback on the medium from the impurities is enhanced
in the low-momentum region (p ' 0).

2.2.3. Fermi Polarons in One-Dimension

In one spatial dimension the quasiparticle notion is somewhat more complicated as
compared to the higher-dimensional case. Interestingly, various experiments are nowadays
possible to realize 1D ensembles and thus probe the properties of the emergent quasi-
particles. Below, we provide spectral evidences of 1D Fermi polarons and in particular
calculate the respective Aσ(p, ω) (Figure 8) for the background fermionic medium and the
minority atoms within the T-matrix approach including the Hartree correction. The system
has an impurity concentration x = 0.326, it lies at temperature T = 0.157TF, and the 1D
dimensionless coupling parameter for the impurity-medium attraction is (pFa1D)

−1 = 0.28
in Figure 8(a1,a2). For comparison, we also provide Aσ(p, ω) in Figure 8(b1,b2) for the
repulsive interaction case (pFa1D)

−1 = −0.55 with system parameters x = 0.264 and
T = 0.598TF. We remark that the impurity-medium attraction is considered weak herein
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such that the induced interpolaron interactions are negligible. In this sense, we do not
expect significant deviations when considering the ETMA or even the SCTMA approaches.
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Figure 8. Spectral function Aσ(p, ω) of the fermionic (a1) background and (a2) impurity atoms
of concentration x = 0.326 with an attractive medium-impurity interaction for varying momenta
and energies of the impurities in one-dimension. The system is at temperature T = 0.157TF and
dimensionless coupling parameter (pFa1D)

−1 = 0.28. PT =
√

2mT is the momentum scale associated
with the temperature T. The vertical dashed line marks the Fermi momentum p = pF of the
background atoms. The majority component (a1) is largely broadened due to the backaction from
the impurities in the low-momentum region (p <∼ pT). On the other hand, the minority component
(a2) exhibits a sharp peak in the low-momentum region below p = pF and it is broadened above
p = pF. For comparison, we show the (b1) medium and (b2) impurity spectral functions in the case of
repulsive medium-impurity interaction characterized by (pFa1D)

−1 = −0.55, where the temperature
and the impurity concentraion are given by T = 0.598TF and x = 0.264. Although the impurity
quasiparticle peak in the low-energy region (ω + µ↓ ' 0) is shifted upward, the tendency of a spectral
broadening is similar to the attractive case.

It is also important to note here that in sharp contrast to higher spatial dimensions,
the coupling constant g1D does not vanish when Λ → ∞ in the renormalization pro-
cedure; see Section 2.1. Thus, we take the Hartree shift ΣH

σ = g1D N−σ into account in
the building block of the self-energy diagrams [103]. This treatment is not necessary in
the single-polaron limit since ΣH

↑ → 0 and ΣH
↓ → g1DT ∑p,iωn G0

↑(p, iωn) (which is in-
cluded in the TMA self-energy) when x → 0. The non-vanishing coupling constant in
1D plays an important role in the emergence of induced interpolaron interactions as it
has been recently demonstrated, e.g., in Refs. [61,104,105]. The polaronic excitation prop-
erties obtained within the TMA approach show an excellent agreement with the results
of the thermodynamic Bethe ansatz [106]. The latter provides an exact solution in 1D
and in the single-polaron limit at T = 0 [102,107]. From these results, it is found that
there is no transition but rather a crossover behavior between polarons and molecules.
As it can be seen by inspecting Figure 8(a1) the spectrum of the majority component is
affected by the scattering with the impurities. This is attributed to the relatively large
impurity concentration x considered here. In particular, A↑(p, ω) is broadened at low
momenta below p = pF. On the other hand, the spectral response of the impurities in
Figure 8(a2) exhibits a sharp peak associated with the attractive polaron below p = pF
and it becomes broadened above p = pF. Apparently, the curvature of the position
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of the polaron peak corresponding to the effective mass (curvature of the dispersion)
is changed around this value of the momentum. Similar broadening effects of sharp
peaks can be found even in the case of repulsive impurity-medium interaction shown in
Figure 8(b1,b2). However, the low-energy sharp peak (corresponding to the repulsive po-
laron) in the impurity spectrum (Figure 8(b2)) is shifted to larger energies as a consequence
of the impurity-medium repulsion.

3. Bose Polarons

In this section, we shall discuss the Bogoliubov theory of trapped Bose polaron sys-
tems in real space [86,108,109]. The reason for focusing on a real-space Bogoliubov theory
is to elaborate on the deformation of the BEC medium in the presence of an impurity.
Indeed, the interaction between the impurity and the medium bosons leads to significant
inhomogeneities of the density distribution of the background which cannot be described
within a simple Thomas–Fermi approximation. Such a modification of the boson distri-
bution causes, for instance, enhanced phonon emission [61,78]. Moreover, in cold atom
experiments the background bosons and the impurity are generally trapped. Considering
the impact of inhomogeneity that naturally arises in trapped systems, therefore, we treat
the Bose polaron in real space without plane wave expansion because the momentum
is not a good quantum number. Below, we review the description of a Bose polaron in
trapped 3D systems at zero temperature using the Bogoliubov theory and elaborate on the
ground state properties. We remark that our analysis, to be presented below, is applicable
independently of the shape of the external potential while for simplicity herein we consider
the case of a harmonic trap.

In particular, we consider a 3D setting where a single atomic impurity is trapped in an
external harmonic potential denoted by VI(r) and is embedded in a BEC medium that is
also trapped in an another harmonic potential VB(r) whose center coincides with that of
VI(r). Hereafter, we use units in which h̄ = 1. This system is described by the following
model Hamiltonian

Ĥ =
∫

ddr ψ̂†(r)
[
− ∇

2

2mI
+ VI(r)

]
ψ̂(r) + gIB

∫
ddr φ̂†(r)φ̂(r)ψ̂†(r)ψ̂(r)

+
∫

ddr φ̂†(r)
[
− ∇

2

2mB
+ VB(r) + gBBφ̂†(r)φ̂(r)

]
φ̂(r).

(29)

Here, φ̂ and ψ̂ are the field operators of the bosonic medium and the impurity, respectively.
mI(B) is the mass of the impurity atom (the medium bosons) and µ is the chemical potential
of the medium bosons. The effective couplings gIB and gBB refer to the impurity-boson and
boson-boson interaction strengths, respectively.

3.1. Bogoliubov Theory for Bose Polaron Problems

First, we calculate the expectation value of the Hamiltonian in terms of the single-
impurity state |imp〉 = â†

imp|0〉imp in order to integrate out the impurity’s degree-of-freedom

ĤB =
∫

ddr ψ∗(r)
[
− ∇

2

2mI
+ VI(r)

]
ψ(r)

+
∫

ddr φ̂†(r)
[
− ∇

2

2mB
+ VB(r) + gIB|ψ(r)|2 + gBBφ̂†(r)φ̂(r)

]
φ̂(r),

(30)

where âimp denotes the annihilation operator of an impurity in the ground state; ψ(r) is
the corresponding wave function that can be determined self-consistently by Equation (35).
In this way, we have obtained the effective Hamiltonian for the medium bosons, in which
the bosons experience an effective potential constructed by the external trap and the
density of the impurity gIB|ψ(r)|2. Since we have set the temperature to zero in the
present study, we have to assume that the medium bosons possess a condensed part,
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the so-called order parameter or the macroscopic wavefunction, when using perturbation
theory. It is known [87,110,111] that when BEC occurs, the vacuum expectation value of
the field operator φ̂ leads to a non-zero function which is used as an order parameter,
i.e., 〈φ̂(r)〉b = φ(r), where 〈· · · 〉b means b〈0| · · · |0〉b. The vacuum |0〉b is determined
from the effective Hamiltonian (30) within the Bogoliubov theory to the second order of
fluctuations. This is equivalent to splitting the operator as φ̂ = φ + ϕ̂, where 〈ϕ̂〉b = 0.
Substituting this into the Hamiltonian of Equation (30) and expressing it in terms of
the different orders of ϕ̂, we can readily obtain the expansion ĤB ' H(0) +H(1) +H(2)

because the number of the non-condensed bosons is significantly smaller than that of the
condensed ones at zero temperature and weak couplings. In this expression, the individual
contributions correspond to

H(0) =
∫

ddr ψ∗
[
− ∇

2

2mI
+ VI

]
ψ +

∫
ddr φ∗

[
− ∇

2

2mB
+ VB + gIB|ψ|2 +

gBB

2
|φ|2 − µ

]
φ, (31)

H(1) =
∫

ddr ϕ̂†
[
− ∇

2

2mB
+ VB + gIB|ψ|2 + gBB|φ|2 − µ

]
φ + h.c., (32)

H(2) =
1
2

∫
ddr

(
ϕ̂† ϕ̂

)( L M
M∗ L∗

)(
ϕ̂

ϕ̂†

)
, (33)

where L(r) = − ∇2

2mB
+ VB(r) + gIB|ψ(r)|2 + 2gBB|φ(r)|2 − µ, and M(r) = gBBφ2(r). Note

that we assume the weakly interacting limit of the medium to ensure the BEC dominating
condition and thus gBB is adequately small such that the perturbation theory is valid. In the
above expansion we ignore the contributions stemming from the third- and fourth-order
terms in the field operator assuming that they are negligible for the same reason.

Subsequently, let us derive the corresponding equations of motion that describe the
Bose-polaron system. From the Heisenberg equation, the bosonic field operator ϕ̂ satisfies
i∂t〈ϕ̂〉b = 〈[ϕ̂, Ĥ(1) + Ĥ(2)]〉b = 0 in the interaction picture. Accordingly, it is possible to
retrieve the celebrated Gross-Pitaevskii equation describing the BEC background

[
− ∇

2

2mB
+ VB(r) + gIB|ψ(r)|2 + gBB|φ(r)|2 − µ

]
φ(r) = 0. (34)

We remark that here, for simplicity, we consider the stationary case where the conden-
sate is time-independent. Next, by following the variational principle for ψ namely
δ〈HB〉b/δψ∗ = 0, we arrive at the Schrödinger equation for the impurity wavefunction

[
− ∇

2

2mI
+ VI(r) + gIB|φ(r)|2 + gIBnex(r)

]
ψ(r) = 0, (35)

where nex(r) = 〈ϕ̂†(r)ϕ̂(r)〉b is the density of the non-condensed bosons in vacuum, the so-
called quantum depletion.

To evaluate this expectation value, we need the ground state |0〉b of the Hamiltonian
that can be obtained by the diagonalization of Equation (33). Namely, H(2) = ∑n En b̂†

n b̂n

is achieved using the following field expansion ϕ̂(r) = ∑n

[
b̂nun(r) + b̂†

nv∗n(r)
]
. Here the

complete set {ui, vi} satisfies the following system of linear equations being the so-called
Bogoliubov-de-Gennes (BdG) equations [112,113]

(
L(r) M(r)
−M∗(r) −L(r)

)(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (36)

We remark that the BdG equations are commonly used in mode analysis of condensates.
In this context, the real eigenvalues constitute the spectrum, while the complex eigenvalues
unveil the dynamically unstable modes of the condensate [114,115]. More precisely, if com-
plex eigenvalues exist then the Hamiltonian can not be expressed in the above-mentioned
diagonal form in terms of the annihilation/creation operators. As such, the dynamically
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unstable situation is beyond the scope of the present description. By using this expansion,
we can calculate the vacuum expectation, e.g., nex(r) = ∑n |vn(r)|2. For the numerical
calculations, to be presented below, the total number of bosons NB is conserved, i.e.,

NB = N0 + Nex, with N0 =
∫

ddr |φ(r)|2 and Nex =
∫

ddr nex(r). (37)

This condition is achieved by tuning the chemical potential µ of the bosonic medium. Notice
that Nex becomes non-zero due to thermal fluctuations at finite temperature, while in the
ultracold regime it can be finite due to the presence of quantum fluctuations, otherwise
termed quantum depletion [116]. We also remark that all of the above Equations (34)–(36)
need to be solved simultaneously. The above-described treatment will be referred to in the
following as the real-space formulation of the Bose-polaron problem.

3.2. Quantum Depletion around a Bose Polaron

Since NB is fixed (Equation (37)), the number of condensed particles N0 changes due
to the existence of Nex. This is a quantum effect that occurs even at zero temperature, and it
is called quantum depletion [111]. We need to clarify that the term quantum depletion
refers to the beyond mean-field corrections for the description of the bosonic ensemble. In
the following, we shall investigate the effect of an impurity on the quantum depletion of
the medium bosons at zero temperature. Indeed, the quantum depletion is a measurable
quantum effect that is included in Equation (35) and its quantification makes it possible to
evaluate the backaction of the impurity on the medium condensate.

A commonly used external confinement in cold atom experiments is the harmonic
potential. As such, here, we consider that the traps of the impurity and the bosonic medium
are spherically symmetric, namely,

VB(r) =
1
2

mBω2
Br2 and VI(r) =

1
2

mIω
2
I r2. (38)

Accordingly, the order parameter of the BEC and the impuritys’ wave function have spher-
ically symmetric forms, and therefore the underlying BdG eigenfunctions are separable
with the help of spherical harmonics as

φ(r) = φ(r), ψ(r) = ψ(r),
{

unr`m(r)
vnr`m(r)

}
=

{
Unr`(r)
Vnr`(r)

}
Y`m(θ1, θ2) , (39)

where r = |r|. Here, (nr, `, m) denote the radial, azimuthal, and magnetic quantum
numbers, respectively.

As a further simplification, we consider the situation where ωI is sufficiently larger
than ωB, namely, the impurity is more tightly confined than the medium bosons. As such,
the order parameter φ of the condensate changes much more gradually with respect to
the spatial change of the impurity’s wave function ψ. Since the impurity’s wave function
is relatively narrow compared to the condensate and the impurity-medium interaction is
weak, the impurity essentially experiences to a good approximation an almost flat (homo-
geneous) environment. This also means that trap effects are not very pronounced in this
case. In this sense, φ can be regarded as being constant and the impurity’s wave function

can be well approximated by a Gaussian function i.e., ψ(r) '
(

π
mIωI

)− 3
4 exp

(
−mIωI

2 r2). We
remark that in the presence of another external potential, e.g., a double-well, one naturally
needs to employ another appropriate initial wavefunction ansatz for the impurity. To
experimentally realize such a setting it is possible to consider a 40K Fermi impurity im-
mersed in a 87Rb BEC, where mI/mB ' 0.460. For the medium we employ a total number
of bosons NB = 105 and the ratio of the strength of the trapping potentials ωI/ωB = 10
with ωB = 20× 2π Hz [9]. Moreover, for the boson-boson and impurity-boson interactions,
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we utilize the values 1/(aBBn1/3
B ) = 100 and 1/(aIBn1/3

B ) = ±1 with nB = NB

/(
4π
3 d3

B

)

and dB =
√

mBωB.
To reveal the backaction of the impurity on the bosonic environment we provide the

corresponding ground state density profiles of the condensed and the depleted part of the
bath in Figure 9a,c, respectively. In the case of gIB > 0 ( gIB < 0), the condensate experiences
an additional potential hump (dip) at the location of the impurity and eventually it seems
to be slightly repelled from (pulled towards) the impurity as shown in Figure 9b, where
the deformation of the radial profile of the condensate from the case of zero impurity-
medium interactions is provided. Moreover, in order to appreciate the role of the quantum
depletion of the BEC environment we illustrate its depletion density in the absence and
in the presence of the impurity in Figure 9b,d, respectively. Apparently, the degree of the
quantum depletion decreases (increases) (Figure 9d) for gIB > 0 (gIB < 0), a phenomenon
that is accompanied by the deformation of the condensate density. The effect of the impurity
on the quantum depletion of the condensate is summarized in the Table 1. Inspecting the
latter we can deduce that the quantum depletion decreases (increases) when the interaction
is repulsive (attractive). This is a non-trivial result caused by the presence of the trap since
in a uniform system [117–119] the depletion always increases irrespectively of whether the
interaction is positive or negative.
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Figure 9. Radial profiles of (a) the order parameter φ̄(r) = φ(r; gIB = 0)/
√

N0/4π and (c) the density of depletion
n̄ex(r) = nex(r; gIB = 0) in the absence of an impurity. Differences of the radial profiles of (b) the order parameter
δΦ(r) = (φ(r; gIB)− φ(r; gIB = 0))/

√
N0/4π and (d) the density of depletion δnex(r) = nex(r; gIB)− nex(r; gIB = 0) in the

presence of an impurity from the result depicted in (a) and (c), respectively.
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Table 1. The number of depletion Nex and its deviation δNex = 4π
∫

dr r2δnex(r) from the case of
zero impurity-medium interaction. It is evident that degree of depletion increases (decreases) for
attractive (repulsive) interactions.

1/(aIBn1/3
B ) ∞ +1 −1

Nex 24.244 24.220 24.270
δNex 0 −2.361× 10−2 2.584× 10−2

4. Conclusions

In this work, we have discussed the existence and behavior of Fermi and Bose po-
larons that can be realized in ultracold quantum gases focusing on their backaction on
the background medium. We have explicated three different diagrammatic approaches
applicable to Fermi polarons in the homogeneous case. These include the TMA, the ETMA,
and the SCTMA frameworks, where the ETMA considers induced two-body interpolaron
interactions and the SCTMA includes two- and three-body ones. Importantly, we have
explicitly derived the mediated two- and three-body interpolaron correlation effects as
captured within the different diagrammatic approaches. Although these induced interac-
tions are weak in the considered mass-balanced Fermi polaron systems, our framework
can be applied to various settings such as mass-imbalanced Fermi polaron systems. Using
this strong-coupling approach, we analyze the spectral response of the Fermi polaron in
one-, two-, and three- spatial dimensions at finite temperature. It has been shown that the
spectral function of the minority component exhibits a sharp polaron dispersion in the low-
momentum region but it is broadened for higher momenta. Moreover, we argue that the
spectral response reflects the character of majority atoms forming a Fermi sphere while a
strong interaction between the majority and the minority atoms induces a two-body bound
state between a medium atom and an impurity particle. The presence of this two-body
bound state becomes more important in lower dimensions.

Next, we present the mean-field treatment of trapped Bose polarons in three-dimensions
and analyze the role of quantum depletion identified by the deformation of the background
density within the framework of Bogoliubov theory of excitations. A systematic investi-
gation of the latter enables us to deduce that the repulsive (attractive) impurity-medium
interaction, giving rise to repulsive (attractive) Bose polarons, induces a decreasing (in-
creasing) condensate depletion captured by the deformation of the density distribution of
the host. This effect is a consequence of the presence of the external confinement since for
a homogeneous background the quantum depletion increases independently of the sign
of the impurity-medium interaction. Therefore, this result is considered as a particular
feature of the trapped system.

Our investigation opens up the possibility for further studies on various polaron
aspects. In particular, the effect of finite temperatures and the impurity concentration on
the 2D Fermi polaron spectral response is expected to play a significant role close to the
Berezinskii-Kosterlitz-Thouless transition of molecules [120]. Moreover, systems charac-
terized by highly mass-imbalanced components, e.g., heavy polarons, provide promising
candidates for the realization of more pronounced polaron-polaron induced interactions.
However, the treatment of these settings will most probably require a more sophisticated
approach including for instance three-body correlations between the atoms of the medium.
Additionally, the investigation of finite sized systems at non-zero temperatures in the
dimensional crossover from 3D to 2D as it has been reported e.g., in Ref. [121] but in
the ultracold and single-polaron limits offers an interesting perspective for forthcoming
endeavors. Furthermore, the comparison of the predictions of our methodology to treat
the effect of quantum fluctuations in Bose polaron settings with other approaches based
also on the mean-field framework [118,119] is certainly of interest. Finally, the backac-
tion of the impurities on the medium when considering dipolar interactions between the
medium atoms may affect the density collapse of the medium at strong impurity-medium
attractions [122] and thus provides another intriguing prospect.
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