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Abstract: Generation of few-cycle optical pulses in free-electron laser (FEL) oscillators has been
experimentally demonstrated in FEL facilities based on normal-conducting and superconducting
linear accelerators. Analytical and numerical studies have revealed that the few-cycle FEL lasing
can be explained in the frame of superradiance, cooperative emission from self-bunched systems. In
the present paper, we review historical remarks of superradiance FEL experiments in short-pulse
FEL oscillators with emphasis on the few-cycle pulse generation and discuss the application of
the few-cycle FEL pulses to the scheme of FEL-HHG, utilization of infrared FEL pulses to drive
high-harmonic generation (HHG) from gas and solid targets. The FEL-HHG enables one to explore
ultrafast science with attosecond ultraviolet and X-ray pulses with a MHz repetition rate, which is
difficult with HHG driven by solid-state lasers. A research program has been launched to develop
technologies for the FEL-HHG and to conduct a proof-of-concept experiment of FEL-HHG.

Keywords: free-electron laser; superradiance; few-cycle pulse; high-harmonic generation

1. Introduction

Bonifacio and his colleagues first suggested that free-electron laser (FEL) may be
operated in the superradiant regime, in which the radiated peak power is proportional to
the squared electron number, N2

e , from self-bunched systems [1]. The radiation intensities
scaling as the squared emitters number is similar to superradiance at two-level systems as
defined by Dicke [2]. Superradiance of a single electron bunch or a periodically bunched
beam may occur in any kind of free-electron radiation emission scheme including syn-
chrotron radiation, undulator radiation, and FEL [3]. In the superradiance FEL, a periodical
bunching structure is self-organized in the electron beam traversing an undulator and the
bunched beam emits cooperative radiation. Superradiance appears in both single-pass
FEL amplifiers and multi-pass FEL oscillators when the FEL is operated at an appropriate
condition.

The lasing behavior of FEL can be classified in terms of the characteristic lengths:
Lb, Ls, and Lc. The first parameter, Lb, is the bunch length. In FELs driven by RF linear
accelerators, the bunch length is typically 0.1–1 mm (0.3–3 ps). The slippage length,
Ls = λNu, is the product of the radiation wavelength, λ, and the number of undulator
periods, Nu. The last parameter, Lc, the cooperation length, is a function of the radiation
wavelength, λ, and the fundamental FEL parameter, ρ, as Lc = λ/(4πρ), which is equal to
the slippage length in an exponential gain length.

Superradiance in FEL amplifiers is classified into weak and strong superradiance
according to the relationship between the characteristic lengths [4]. The weak superradiance
occurs when an FEL is operated in the high-gain and strong-slippage regime, Ls/Lb �
(Lc/Lb)

3/2 > 1. The electron bunch is self-bunched due to the FEL interaction and the
self-bunched electrons emit cooperative radiation in the slippage region. The intensity
of the radiation at the slippage region scales as N2

e . Bonifacio called the radiation weak
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superradiance because the intensity at the slippage region is smaller than that of the
steady-state high-gain FEL lasing, where the slippage is negligible. Strong superradiance
appears in a long-pulse high-gain FEL amplifier, Lb > Lc and Ls ∼ Lb. In this case, the
trailing region of the FEL pulse exhibits a spiking behavior as a result of the emission of
self-bunched electrons in the slippage region. The intensities at the slippage region are
much larger than that of the steady-state FEL lasing.

Superradiance is also observed in short-pulse FEL oscillators, where a periodical
bunching structure is self-organized after the recursive interaction of the electron bunches
and the optical pulse to emit cooperative radiation in the slippage region. In the present
paper, we review historical remarks of superradiance FEL experiments in short-pulse FEL
oscillators with emphasis on few-cycle pulse generation and discuss the application of few-
cycle FEL pulses to attosecond ultraviolet and X-ray pulses via high-harmonic generation
from gas and solid targets.

Superradiance in short-pulse FEL oscillators exhibits unique features: (i) high extrac-
tion efficiency; (ii) isolated (or solitary) few-cycle pulse; (iii) the lasing maintained by shot
noise; and (iv) possible carrier-envelope phase stabilization by an external seed laser. In
the following sections, we see experimental results of superradiance in FEL oscillators and
outline the above unique features. Then, we discuss possible applications of such few-cycle
pulses to high-harmonic generation for attosecond ultraviolet and X-ray pulses, that is
FEL-HHG. Finally, the research program established for developing basic technologies and
conducting a proof-of-principle experiment for the FEL-HHG is presented.

2. Superradiance in Short-Pulse FEL Oscillators

Superradiance in short-pulse FEL oscillators has been studied experimentally and
theoretically. In this section, we review experimental results of superradiance in short-pulse
FEL oscillators at FELIX, JAERI, and Kyoto University.

2.1. Experiments at FELIX

FELIX is an FEL facility based on a 45-MeV S-band normal conducting linac [5]. In
the FEL oscillator at FELIX, intense pulses of six optical cycles were observed [6]. The
ultra-short pulses were generated when the FEL oscillator was operated at a small negative
detuning of the cavity length. This lasing behavior was analytically studied in the context
of supermode theory and recognized as a multi-supermode regime that occurs in the limit
where all the supermodes converge toward a unique degenerate supermode [7,8].

The lasing at FELIX was further examined by measuring the pulse energy and band-
width of the FEL radiation with varying the bunch charge. It was found that the FEL
extraction efficiency, η, and the FEL pulse energy, EL, scaled with the bunch charge, q, as
η ∝ q1/2 and EL ∝ q3/2. The spectral width was also broadened as increasing the bunch
charge, (∆λ/λ) ∝ η ∝ q1/2, which implied the duration of the optical pulse, τ, scales
as τ ∝ q−1/2 [9]. From these observations, they concluded that the lasing was similar to
superradiance in high-gain FEL amplifiers.

The superradiance scaling law, τ ∝ q−1/2, conduced to the few-cycle optical pulse
generation at FELIX with a high-gain operation regime. The few-cycle pulse is, however,
only available at the transient regime before the saturation in the macropulse. After the
onset of saturation, the lasing shifts to a chaotic regime and an isolated few-cycle pulse is
no longer available [7].

2.2. Experiments at JAERI-FEL

An infrared FEL oscillator driven by a superconducting linac was developed at Japan
Atomic Energy Research Institute (JAERI). Superradiance FEL was also demonstrated in the
FEL oscillator at JAERI. The difference from the FELIX experiment was a long macropulse,
up to 1 ms, generated by the superconducting linac. A new finding from the experiment at
the JAERI-FEL was the lasing at the cavity-length detuning equal to zero (or the perfectly
synchronized optical cavity length) appearing in the high-gain regime.
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Figure 1 shows FEL efficiency as a function of the cavity length detuning measured
at the JAERI-FEL. In the experiment, the FEL efficiency was evaluated from the energy
spectrum of the spent electron beam. The absolute detuning length was measured by the
laser pulse stacking in the FEL cavity with a mode-locked Ti:sapphire laser synchronized
to the eighth harmonic of the electron bunch repetition rate. Since the intensity of the
stacked pulse becomes maximum when the cavity length detuning is zero, the absolute
cavity length can be determined from the stacked signal. From the detuning curve, we can
confirm that the high-efficiency FEL lasing occurred at δL = 0, the perfectly synchronized
optical cavity length.

In the experiment, the undulator parameter, aw, was varied to change the FEL gain.
Detuning curves for three different undulator parameters are plotted in Figure 2, which
shows that the high-efficiency lasing at δL = 0 only occurs at aw = 0.70 and aw = 0.49.
This result suggests the existence of the FEL gain threshold for the lasing at δL = 0. The
FEL gain threshold is discussed with numerical simulations in Section 3.

Figure 1. FEL efficiencies (open circles) and Ti:sapphire signals (solid circles) as a function of
detuning length at the JAERI-FEL experiment. The enlargement around δL = 0 is also shown.
The symbols without error bars have an error less than their size. The absolute vertical scale was
calibrated by an average energy loss of the electron beam over an entire macropulse (solid squares)
at several detuning lengths [10].

Figure 2. FEL power measured as a function of detuning length with different undulator parameters
at the JAERI-FEL experiment: aw = 0.70 (open circles), aw = 0.49 (open squares), and aw = 0.31
(crosses). The macropulse duration is 0.4 ms at a 10 Hz repetition rate. The enlargement around
δL = 0 for aw = 0.31 is also shown in the inset [10].

The lasing at negative cavity-length detuning (δL < 0) has been studied analytically
by supermode theory [7,8,11]. The analytical studies revealed that the lasing behavior of
short-pulse FELs, in which the bunch length is shorter than the slippage distance, shows
various aspects according to the gain, loss, and cavity length detuning: single supermode
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lasing with a smooth temporal profile, limit cycle lasing with a multi-peak pulse, and
chaotic lasing with many spikes in a pulse.

The lasing at the zero detuning length observed at the JAERI-FEL is distinguished
from the normal FEL lasing at δL < 0 by two unique features: high extraction efficiency
and generation of an isolated few-cycle optical pulse that survives even after the onset of
saturation. The high extraction efficiency is corresponding to the sharp peak in the detuning
curve in Figure 1. The other feature, the generation of an isolated few-cycle pulse, was first
suggested by numerical simulation [12,13] and later confirmed experimentally [14].

Figures 3 and 4 show results of the simulation to reproduce the JAERI-FEL lasing at the
zero detuning length [13]. The FEL pulse shows linear evolution rather than exponential
growth. The temporal shape of micropulses in Figure 4, an exponential lobe of the leading
edge and the main peak followed by ringing, is identical to Burnham–Chiao ringing
of superradiance from atomic systems [15] and consistent with the pulse shape at the
weak superradiance in the high-gain FEL amplifier [4,16] and the numerical result for
superradiance in a short-pulse FEL oscillator [17].

The simulation result shows that an isolated (or solitary) few-cycle optical pulse
evolves in an FEL oscillator at δL = 0 and the pulse survives after the onset of saturation in
marked contrast to the lasing at δL < 0, where a few-cycle pulse generated at the transient
regime turns into a chaotic lasing after the saturation.

It should be noted that Figure 4 suggests an evolution of a superluminal pulse, which
moves with a group velocity larger than the velocity of light in vacuum during the linear
growth at the early stage of the macropulse. Such superluminal FEL pulse also appears in
FEL amplifiers of superradiant regime [18,19].

It is known that the superluminal propagation may occur in short-distance tunneling
phenomena [20] and long-scale unstable systems of atoms under an inverted popula-
tion condition [21]. The superluminal propagation of neutrinos from supernovae is also
studied [22]. The superluminal propagation of an optical pulse observed in the FEL os-
cillator has an obvious similarity to the case of the atomic systems under an inverted
population condition. The peak of the FEL pulse, which has an interaction with a gain
media, propagates a long distance faster than the speed of light.

The superluminal pulse evolution shown in Figure 4 can be thought of as a pulse-
reshaping phenomenon in atomic systems with inverted populations [21] and the group
velocity larger than the vacuum speed of light does not imply any violation of causality.
The leading edge of the pulse grows dominantly at the early stage of the macropulse (the
left figure), while the trailing part behind the main peak attenuates due to the energy
transfer from the optical pulse to the electrons.

Figure 3. Numerical result for the JAERI-FEL start up simulation. Evolution of an FEL macropulse
calculated with the JAERI-FEL parameters at δL = 0 lasing is plotted. Whole structure of macropulse
is also shown in the inset [13].
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In the quantum limit, the superluminal effects in the unstable atomic systems are
strongly suppressed due to the smallness of the wave packet’s tail containing only a few
photons [23]. In the FEL oscillators, the superluminal pulse contains a number of photons
and can be considered as a classical system rather than a quantum system.
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Figure 4. Evolution of an FEL pulse calculated with the JAERI-FEL parameters at δL = 0 lasing:
(Left) 100th to 200th round trips; and (Right) 4000th round trip [13].

Few-cycle pulse generation at the δL = 0 lasing was experimentally confirmed at the
JAERI-FEL [14]. Figure 5 shows the result of autocorrelation measurement with fringe-
resolved second-harmonic-generation (SHG) signals from a tellurium crystal at the JAERI-
FEL. The FEL pulse duration was evaluated as 3.4 optical cycles (FWHM) without taking
frequency chirp into account. Numerical simulations with the JAERI-FEL parameters
reproduced the experimental result of the pulse duration and suggested that the pulse
could be as short as 1.5 cycles after chirp compensation.

Another important subject revealed in the JAERI-FEL analysis is the role of shot noise
at the δL = 0 lasing. We discuss this subject later in Section 4.

Figure 5. Result of autocorrelation measurement with fringe-resolved SHG signal at the JAERI-FEL
(dots). The solid line is a fitted curve by the chirped-sech2 pulse [14].

2.3. Experiments at KU-FEL

KU-FEL is an FEL oscillator driven by a 40-MeV S-band normal conducting linac at
Kyoto University. The FEL is operated to provide FEL pulses from 3.4 to 26 µm for user
experiments [24]. Lasing with high-extraction efficiency at KU-FEL was recently achieved
by dynamic cavity desynchronization (DCD) [25], modulation of RF phase for the klystron
input signal to alter the electron bunch interval during a macropulse of a limited length,
6.5 µs. The parameters for the DCD, timing and depth of the modulation, were optimized
to maximize the extraction efficiency.

Extraction efficiencies of 5% and 9.4% were obtained with the thermionic emission
mode and the photoemission mode of the RF gun, respectively [26,27]. The experimental
parameters were as follows: electron beam energy 27.0 MeV, expected FWHM bunch
length 90–180 µm, FEL wavelength 11.6 µm, the number of undulator periods 52, cavity
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round trip loss 3%, and macropulse duration 6.5 µs. The bunch charge in the thermionic
emission mode altered from 25 to 55 pC in a macropulse due to the back-bombardment
effect. The bunch charge in the photoemission mode was 190 pC. These parameters satisfy
the condition for superradiance in a short-pulse FEL oscillator.

In the experiment, FEL extraction efficiency was evaluated from the energy spectrum
of the spent electron beam after the undulator. Figure 6a shows the evolutions of the
energy distribution of the electron beam obtained from the experiment in the thermionic
emission mode, in which we can see that a large part of electrons lose their energy with
the FEL interaction. The maximum average energy loss at the end of the macropulse is
approximately 1.5 MeV, which corresponds to a relative average energy loss of 5.5%.

The energy spectrum at the high-efficiency FEL lasing was well reproduced by a
one-dimensional simulation as shown in Figure 6b. In the simulation, the electron bunch
was assumed to have a rectangular temporal shape of 1 ps and 40 pC with no energy
spread. The FEL parameter, ρ, was 0.0034 and the cavity loss was 3%. To simulate the best
DCD condition in the experiment, the cavity detuning for the simulation was altered from
−9.4 to 0 µm at the 60th round trip, which is 2 µs in the macropulse.

We can see that the energy evolution maps obtained from the experiment and the
simulation have a common structure of three branches. The first branch is the component
for continuously decreasing energy (A in Figure 6b), which corresponds to electrons
trapped in the bucket to be efficiently decelerated. Figure 6 shows that a large part of
electrons belong to the first branch. This is the reason a high extraction efficiency was
realized in the experiment. The second branch is the component with constant energy (B in
Figure 6b), which shows the existence of electrons untrapped in the bucket, but the amount
is not very large. The third branch is the component whose energy is slightly increased
and soon disappears (C in Figure 6b). The third branch indicates that a small fraction of
the electron beam is slightly accelerated in the early stage of the energy extraction.

For the further examination of the three branches, Figure 7 plots the longitudinal
phase space distribution of the two-wavelength slices at the center of the electron bunch
and at different longitudinal positions in the undulator corresponding to the end of the
macropulse in Figure 6b. From the plot, we can confirm that the electrons are split into
three branches according to the initial phase.

Figure 6. Evolution of the energy distribution of the spent electron beam at KU-FEL. (a) Experimental
result with FEL lasing for the best DCD parameter. (b) Numerical result with the DCD parameter
of 9.4 µm. The arrow indicates the timing of the cavity detuning condition altering from −9.4 to
0 µm [26].
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Figure 7. Simulation results for KU-FEL. Evolution of the energy of electrons with different initial
phases in the undulator at the end of the macropulse is plotted: (a–d) phase space plots of the
two-wavelength slices of the electron beam at the center of the electron bunch and at the different
longitudinal positions in undulator. The longitudinal position in the undulator for (a–d) are 0, 0.6,
1.2, and 1.7 m, respectively. The horizontal axis is relative position in the electron bunch normalized
by the lasing wavelength λ = 11.6µm [26].

3. Scaling Law of the Superradiance in FEL Oscillators

In the superradiance at two-level systems, the number of emitted photons (Np) and
the pulse duration (τ) scale as the number of two-level emitters (N): Np ∝ N2 and τ ∝
N−1. Analytical studies revealed that the same superradiance scaling appears in FEL
oscillators operated at small negative detuning length [7,8] and perfectly synchronized
cavity length [17].

In short-pulse FEL oscillators operated at small negative detuning length, it was ana-
lytically derived that the peak power, Ps, efficiency, η, and the number of optical cycles, Ns,
follow the scaling law given by a function of the fundamental FEL parameter, ρ, bunch length,
Lb, cooperation length, Lc = λ/(4πρ), and round-trip loss of the optical cavity, α0: [7]

Ps ∼ ρPe

(
Lb

α0Lc

)2
, (1)

η ∼ 1
8πNs

= ρ

√
Lb

α0Lc
, (2)

and the maximum efficiency occurs approximately for the cavity length shortening
δL ∼ 0.1815Lb(α0Lc/Lb)

3/2. The above scaling law is valid for an FEL oscillator driven
by an electron bunch shorter than the slippage length, where the lasing behavior can
be described by eigenmode (supermode) analysis. The scaling law was experimentally
confirmed at the FEL oscillator, FELIX, in which the peak power, extraction efficiency, pulse
energy were measured with changing the bunch charge [9].

For the further discussion in the present paper, we convert the fundamental FEL
parameter ρ into the Colson’s dimensionless current j0, which is commonly used for
analyzing small-gain FEL oscillators [28]. Following the relation j0 = 2(4πNuρ)3, we can
rewrite Equation (2) as

4πNuη ∼ 1√
2

(
j0Lb
α0Ls

)1/2
(3)
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The left-hand side, 4πNuη, is the extraction efficiency normalized by the number of
undulator periods. The dimensionless current, j0, is proportional to the peak current and
the above equation is valid for a square-shaped bunch with a constant peak current. For an
electron bunch with an arbitrary temporal profile, the above equation should read

4πNuη ∼ 1√
2

(∫
j0(s)ds
α0Ls

)1/2

. (4)

Since the dimensionless current is proportional to the beam current j0 ∝ Ib, we can
again confirm the efficiency scales to the number of electrons as η ∝ N1/2

e .
In the JAERI-FEL experiment, we observed an FEL efficiency exceeding the above

scaling law of superradiant FEL oscillator [29]. This is because high efficiency lasing
obtained at the perfect synchronization of the optical cavity cannot be covered by the
supermode analysis.

As we can see from the simulation result in Figure 4, an isolated pulse evolves in
an FEL oscillator operated at the perfect synchronization. Generation of such isolated
pulse in superradiant FEL oscillators was discussed in a previous paper to derive a set of
equations, which have the approximate solution of a hyperbolic secant pulse [30]. In the
study, however, a handy scaling formula of the FEL efficiency for arbitrary experimental
parameters was not explicitly given. Thus, we conducted a series of numerical simulations
to obtain the scaling of the FEL efficiency for arbitrary FEL operation parameters.

The simulations were carried out by a one-dimensional time-dependent FEL code
same as our previous study [14]. We chose the number of undulator periods at Nu = 40, 60,
and the bunch length normalized to the slippage length at Lb/Ls = 0.25, 0.33, 0.5, and
varied the normalized cavity loss, α = α0/j0, in the range of 5 < 1/

√
α < 50. Figure 8 plots

the simulation results of the normalized FEL efficiency at the perfectly synchronized cavity
length, δL = 0, as a function of 1/

√
α, the inverse square root of the normalized cavity

loss. In the simulations, a rectangular-shaped bunch was assumed and the shot noise was
introduced according to the standard algorithm [31]. The results of the JAERI experiment
are also plotted.
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Figure 8. Simulation results of FEL efficiency for the lasing at δL = 0 varying the number of
undulator periods, Nu, the bunch length and slippage distance, Lb/Ls, and the normalized cavity
loss α. The normalized extraction efficiency, 4πNuη, is plotted as a function of the normalized cavity
loss α. Experimental results at the JAERI-FEL are also plotted.

We can confirm from the simulation results that the FEL efficiency at the perfectly
synchronized cavity length is given by a function of a single variable α, the normalized
cavity loss. The simulation results also suggest that there is a threshold, 1/

√
α ∼ 14,

for the lasing at δL = 0. The threshold for the evolution of a hyperbolic secant pulse
and the extraction efficiency in superradiance FEL are analytically discussed in previous
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papers [17,30]. Derivation of a mathematical expression to fit the simulation results and
comparison with the analytical studies remain future works.

4. Role of Shot Noise

In FEL oscillators, as in single-pass SASE-FELs, the evolution of optical pulse starts
from shot noise resulting from the random distribution of electrons in the bunch. In general,
the shot noise has little effect on the FEL lasing after the onset of saturation because the
intensity of the shot noise within the FEL bandwidth is negligibly small. In Section 2.2, we
note that the role of shot noise in FEL oscillators with the perfectly synchronized cavity is
different from the normal FEL lasing. The shot noise plays an intrinsic role in maintaining
the FEL lasing at δL = 0 even after the onset of saturation.

In a short pulse FEL oscillator, the trailing part of the optical pulse is amplified as a
result of coherent emission from the electron bunch at the slippage region. With a negative
cavity-detuning length, the amplified part is pushed forward to the leading edge of the
pulse. This intra-pulse feedback of the optical field is the source of the exponential growth
of an optical pulse in FEL oscillators.

In FEL oscillators with the perfectly synchronized cavity, there is no intra-pulse
feedback and the pulse evolution obeys linear growth instead of exponential growth [17].
The leading part of the optical pulse at the δL = 0 lasing contains incoherent shot noise
with random amplitude and phase even after the onset of saturation. The amplitude and
phase in the entire FEL pulse are governed by the interaction between the electrons and
the radiation initiated by the shot noise in the leading part. As a result of random shot
noise, the FEL pulse intensity exhibits slowly evolving fluctuation during a macropulse, as
shown in Figure 3. We see, in the next section, that the shot noise introduces fluctuation in
the carrier frequency and phase of an optical pulse evolving in an FEL oscillator operated
at δL = 0.

The role of shot noise at the δL = 0 lasing can be confirmed by a numerical simulation.
We conducted two simulations with parameters for the JAERI-FEL experiment: one with
shot noise determined by the standard formula [31] and the other with shot noise 10−12 of
that. Detuning curves for two cases are plotted in Figure 9, in which we can see that the
simulation with the standard shot noise gives FEL lasing with large extraction efficiency
around zero-detuning length, but FEL lasing does not occur with a detuning range of
δL ≥ 0 for the smaller shot noise.
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Figure 9. Cavity-length detuning curve calculated for the JAERI-FEL experiment with two different
noise-factor: shot noise determined by the standard formula (solid line) and 10−12 of that (dashed
line) [12].

5. Stabilization of Carrier-Envelope Phase

Generation of a few-cycle laser pulse and its application for studying ultrafast physics in
laser–matter interaction is one of the topical research subjects in advanced laser science [32–35].
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In laser-matter interaction at the strong field regime, the laser oscillating electric field sways
electrons of a target atom and causes tunneling ionization when the laser intensity is compara-
ble with the atomic nucleus potential. The laser–matter interaction in the strong field regime
must be studied in terms of the oscillating electric field rather than the instantaneous intensity.
Carrier-envelope phase (CEP) is, therefore, important for characterizing a few-cycle laser pulse
for the strong-field regime. Carrier-envelope phase of a laser pulse is also indispensable for the
application of a mode-locked laser to optical frequency combs, in which the pulse-to-pulse
carrier-envelope offset is stabilized for a broadband optical frequency comb to determine all
line frequencies [36]. In solid-state lasers, stabilization and control of the CEP of few-cycle
laser pulses can be realized with either passive or active manner [33,37]. As discussed in the
previous sections, a short-pulse FEL oscillator operated at the perfectly synchronized cavity
length can generate an isolated few-cycle FEL pulse, which can be utilized for exploring
ultrafast science. Since FEL oscillators have unique features of wavelength tunability and
high-repetition-rate availability, FEL will be an attractive photon source complimentary to
solid-state femtosecond lasers.

Such few-cycle pulses from FEL oscillators would be more attractive, if the carrier-
envelope phase of the pulse were stabilized. However, CEP stabilization in FEL oscillators
has never been demonstrated because the evolution of FEL pulses is initiated by the
uncontrollable shot noise. In the few-cycle lasing at the perfectly synchronized cavity, the
leading part of the optical pulse contains incoherent shot noise with random amplitude and
phase. The amplitude and phase in the entire FEL pulse are governed by the interaction
between the electrons and the radiation initiated by the shot noise in the leading part.
Consequently, the carrier frequency and phase of the FEL pulses are not stabilized.

A numerical simulation suggested possible stabilization of a few-cycle superradiant
FEL pulse by utilizing Michelson resonator, but the stabilization of CEP was not dis-
cussed [38]. Another method was proposed for full stabilization of carrier-envelope phase
of the few-cycle FEL pulse generated in an FEL oscillator [39]. The method is based on a
CEP-stable external seed laser to fix the phase and amplitude of the leading part of the FEL
pulse.

Simulation results to demonstrate the CEP stabilization are presented in Figures 10
and 11. The simulation parameters are listed in Table 1, in which the parameters for the
JAERI experiments are shown for comparison. Figure 10 shows the temporal profiles of
FEL pulses after 1500, 2000, and 2500 round trips in a perfectly synchronized FEL oscillator.
In this plot, the longitudinal coordinate is defined such that the leading edge of the electron
bunch is located at the undulator entrance, z = 0, at the reference time, t = 0. The pulse
intensity is expressed as a dimensionless value normalized by the high-gain FEL parameter
ρ such that ρ|A|2 determines the ratio between the energy densities of the FEL radiation
and the resonant electron beam [4]. The position and profile of the electron bunch at the
entrance and exit of the undulator are also depicted to demonstrate that the FEL lasing is
in the strong-slippage regime.

Figure 10 illustrates the characteristics of FEL pulses evolving in a high-gain and
strong-slippage FEL oscillator with a perfectly synchronized optical cavity. The optical
pulse consists of an exponential lobe of the leading edge and the main peak followed by
ringing. The duration of the main peak, 4.4 cycles (FWHM) after 2500 round trips, is much
shorter than that of the electron bunch. The pulse height and peak position are not fixed
and exhibit continuous variation along with the pulse energy changes. The main peak
followed by ringing is common to superradiance observed in two-level systems [15] and
identical to previous results for the analysis of a high-gain FEL amplifier [4] and a perfectly
synchronized FEL oscillator in the transient regime [17], both of which indicated the FEL
lasing to be superradiance. The electron bunch slips backward inside the optical pulse
during the motion in the undulator. In this motion, the electron bunch forms microbunch
through interaction with the optical field and then emits strong radiation in the slippage
region. The emission in the slippage region is accompanied by frequency down chirp to
keep emission along electron energy decreasing [14]. This down chirp contributes to a
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large FEL conversion efficiency, but introduces a large energy spread in the spent electron
beam as well. In a conventional FEL oscillator, the optical cavity length is shortened so
that the optical pulse is pushed forward every round trip to enlarge a single-pass gain
by introducing strong electron bunching with a high-intensity optical field at an early
section of the undulator. The cavity-length shortening achieves feedback of radiation
power from the tail to the head of optical pulse, which also communicate optical phase and
frequency from the tail to the head. As a result, the cavity length shortening constrains
phase correlation inside the optical pulse, which prohibits the strong down chirp observed
in the lasing at the perfectly synchronized cavity.

−60 −50 −40 −30 −20 −10 0 10
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bunch at z = 0bunch at z = Lu

n = 1500

n = 2000

n = 2500

−60 −30
0

1000

Figure 10. Temporal shapes of FEL pulses in a perfectly synchronized optical cavity simulated by
one-dimensional code. Profile of the electron bunch at the entrance, z = 0, and the exit, z = Lw, of
the undulator is also plotted. The inset is the same FEL pulses plotted with a linear scale [39].
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Figure 11. Temporal shapes of FEL pulses in a perfectly synchronized optical cavity with an external
seed laser after 1500, 2000, and 2500 round trips simulated by one-dimensional code [39].
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Table 1. Parameters for the JAERI-FEL experiment and simulation presented in Figures 10 and 11.

JAERI-FEL This Study

Electron beam
energy (MeV) 16.5 50
bunch charge (pC) 510 100
norm. emittance (x/y) 40/22 12/12

(mm-mrad)
bunch length (*) (ps) 5 0.4
peak current (A) 200 250
bunch repetition (MHz) 10 10

undulator
undulator parameter (rms) 0.7 1.25
pitch (cm) 3.3 4.5
number of periods 52 40

FEL
wavelength (µm) 22.3 6
Rayleigh length (m) 1.0 0.52
FEL parameter, ρ 0.0044 0.0052
cavity loss 6% 4%

(*) The bunch length is FWHM of a triangular bunch for the JAERI-FEL and full width of a rectangular bunch for
the simulations in the present study

The logarithmic plot of the FEL pulse in Figure 10 shows that the dynamic range of
laser pulse intensity from the leading edge to the peak is greater than 1011. The leading
part of the optical pulse contains incoherent shot noise with random amplitude and phase.
The amplitude and phase of the field in the exponential envelope, the main peak and the
ringing are all governed by the interaction between the electrons and the radiation initiated
by the shot noise in the leading part. Consequently, the carrier frequency and phase of the
FEL pulses are not stabilized and vary over round trips.

Figure 11 shows FEL pulses obtained in a simulated FEL oscillator with injection
seeding, where all the parameters are the same as in Figure 10. The seed laser pulse is
assumed to have the resonant wavelength, an intra-cavity intensity of |Aseed|2 = 1.3× 10−5,
and temporal duration of 20λ with stable CEP. The seed pulse timing is chosen such that a
half of the seed pulse overlaps with the FEL pulse and the rest is out of the FEL pulse to
indicate the seed laser intensity not affected by the FEL interaction. In Figure 11, we can
see that the seed laser efficiently stabilizes the FEL oscillator with a perfectly synchronized
cavity. The FEL pulse after the saturation retains an almost identical temporal shape: the
main pulse of 3.8 cycles (FWHM) followed by periodic ringing. The small fluctuations
observed in the ringing are attributed to the effect of shot noise, whose intensity is three
orders of magnitude smaller than that of the seed pulse.

The effects of the CEP stabilization can be clearly confirmed in Figure 12, which shows
instantaneous intensity and phase of FEL pulses evolving in the perfectly synchronized
cavity for the two cases without and with a seed laser. The instantaneous phase, φL, is
defined such that the complex field is expressed as |A| exp i(ωr(z/c− t) + φL), where ωr is
the FEL resonance frequency. The simulation parameters are the same as Figures 10 and 11,
respectively. A few-cycle FEL pulse is established after a start-up period, ∼500 round trips.
In the few-cycle FEL pulse, the carrier phase is continuous whole through the pulse except
for the leading edge. Since the pulse leading edge is a free boundary governed by shot noise,
the pulse always suffers from fluctuation introduced by the shot noise. As a result, the pulse
has a chance to lose the memory of the original carrier phase or to be replaced by another
pulse. These variations of FEL pulse occur in the time scale of the FEL pulse evolution from
the shot noise to the saturation, ∼500 round trips in the case. In the lasing without a seed
laser, the phase of the leading part has fluctuation due to the shot noise, which makes pulse



Atoms 2021, 9, 15 13 of 19

shape and CEP unstable over many round trips. The FEL pulse evolution with an external
seed laser exhibits a quite different aspect, in which the pulse shape and CEP after the onset
of saturation are stabilized. The nonlinear phase advance from the head to the tail of pulses
in Figure 12a,b corresponds to the frequency down chirp [14].

(a) (b) (c) (d)

Figure 12. Contour plots of instantaneous phase of simulated FEL pulses in units of π rad for: (a)
without injection seeding; and (b) with injection seeding. Contour plots of instantaneous intensity
of FEL pulses normalized to the maximum intensity for: (c) without injection seeding; and (d) with
injection seeding [39].

6. Proposal of FEL-HHG

High-harmonic generation (HHG) is a nonlinear process to realize the emission of the
high harmonics of the incident beam from a target illuminated by an intense laser pulse.
Recent development of solid-state laser technologies has realized a generation of isolated
attosecond pulses in ultraviolet and X-ray wavelengths via HHG in gas and solid-state
targets [32,34,40]. As such attosecond photon sources are routinely available in laboratories,
attosecond science is becoming an active research field, in which ultrafast dynamics in
atoms and molecules is investigated in detail. In addition, the HHG is an interesting
research subject as an interaction of strong laser field with atoms and molecules.

Combination of HHG and an FEL was first examined at a SASE FEL, where an
ultraviolet pulse from HHG was used as a seed laser to stabilize the shot-to-shot variation
in spectrum and energy of the SASE-FEL pulses [41]. The experiment can be called HHG-
seeded FEL or HHG-FEL. To the contrary, an optical pulse generated from an infrared FEL
can be used, in principle, to drive HHG, that is FEL-HHG [42].

There are several trends in the development of HHG photon sources. One of the major
trends is increasing the photon energy (or decreasing the photon wavelength) available
in HHG photon sources. The highest photon energy so far demonstrated is a generation
of a bright supercontinuum that spans from the ultraviolet to more than 1.6 keV [43]. The
experiment adopted a mid-infrared laser pulse at a wavelength of λ = 3.9 µm as a driver of
HHG. Theoretical and experimental studies revealed that the HHG cut-off energy scales as
(hν)cut−o f f ∝ λ1.7 in the phase-matched condition [43,44]. The scaling law implies possible
extension of the HHG photon energy beyond 1.6 keV by utilizing a mid-infrared laser pulse,
λ ≥ 4 µm. However, pushing the cut-off energy above 1.6 keV has not been realized mainly
due to the lack of mid-infrared laser pulses satisfying conditions for HHG, wavelength,
pulse energy, pulse duration, and repetition. Thanks to the wavelength tunability and
the high-repetition-rate availability, an FEL oscillator is a potential driver of HHG photon
sources complementary to conventional solid-state femtosecond lasers.
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We proposed a concept of FEL-HHG based on superradiant FEL at a perfectly syn-
chronized FEL oscillator. Figure 13 shows a schematic view of the proposed FEL-HHG.
The FEL wavelength should be determined from the requirements of attosecond pulse
generation in HHG. For a generation of attosecond pulses whose wavelength covers from
ultraviolet to X-ray above 1 keV, we assume the FEL wavelength of 2–6 µm from the scaling
law of HHG cut-off energy. A superconducting linac is adopted to deliver a CW pulse train
to the FEL-HHG.

Example sets of FEL-HHG parameters are listed in Table 2, where the FEL wavelength
is 2–6 µm and the parameters are chosen so that FEL pulse energy is 0.5 mJ. We consider
such FEL oscillators can be constructed with existing technologies: a photo-cathode electron
gun [45] and superconducting RF cavities [46].

Figure 13. Schematic view of high-harmonics generation driven by an infrared FEL oscillator (FEL-HHG).

Table 2. Example parameters of FEL oscillators for FEL-HHG.

(A) (B)

Electron beam
energy (MeV) 85 50
bunch charge (pC) 60 100
norm. emittance (x/y) 12/12 12/12

(mm-mrad)
bunch length (ps) 0.27 0.4
peak current (A) 220 250
bunch repetition (MHz) 10 10

undulator
undulator parameter (rms) 1.34 1.25
pitch (cm) 4.0 4.5
number of periods 80 40

FEL
wavelength (µm) 2 6
Rayleigh length (m) 0.92 0.52
FEL parameter, ρ 0.0030 0.0052
cavity loss 6% 4%

7. Research Program for FEL-HHG

A 10-year research program (2018–2027) has been funded to develop basic technologies
for the FEL-HHG [47]. In the program, we are conducting research and development
towards the FEL-HHG at two FEL facilities, KU-FEL at Kyoto University and LEBRA-
FEL at Nihon University, both of which are infrared FEL oscillators driven by normal
conducting linear accelerators. These facilities of infrared FELs can be exploited for basic
technologies development and a following proof-of-concept experiment of FEL-HHG,
whereas FEL-HHG for a full-scale application of attosecond ultraviolet and X-ray pulses
should be realized by a superconducting linac FEL oscillator.

The research subjects to be conducted are: (1) generation and characterization of few-
cycle mid-infrared pulses from the FEL oscillators; (2) enhancement of FEL pulse energy
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by an external optical cavity; and (3) scheme for CEP stabilization of FEL pulses including
the development of a mid-infrared seed laser. We plan to explore these subjects in the first
six years, 2018–2023, and proceed to a proof-of-concept experiment of the FEL-HHG at two
facilities.

In the following sections, we describe the plan and the current status of our research
program.

7.1. Pursuing the Ultimate Extraction Efficiency

As described in Section 2.3, the FEL lasing of 5.5% extraction efficiency was realized in
KU-FEL with 25–55-pC electron bunches from the 4.5-cell RF gun operated at the thermionic
emission mode [26]. After the upgrade of the gun drive laser system, we demonstrated the
FEL extraction efficiency of 9.4% with 190-pC electron bunches generated by the same RF
gun operated at the photoemission mode [27]. For the further increase of FEL pulse energy,
a new 1.6-cell RF gun is under fabrication to provide a train of 1-nC bunches.

The FEL cavity of KU-FEL is equipped with two gold-coated copper mirrors, one of
which has an on-axis small hole for outcoupling. The hole-coupled gold-coated copper
mirror can be utilized in a wide range of FEL wavelength, but introduces a large diffraction
loss. The total round-trip loss of the FEL cavity is expressed as

α0 = αout + αre f + αdi f f , (5)

where αout is a fraction of outcoupling from the cavity and αre f and αdi f f are cavity loss
due to the imperfect reflectivity of the mirror and the diffraction, respectively. In a cavity
with a hole-coupled mirror, the diffraction loss is always larger than the outcoupling,
αdi f f ≥ αout, due to the Babinet principle [48]. Therefore, a dielectric mirror with partial
transmittance is preferable for the efficient outcoupling with keeping a small total loss.
After the replacement of the mirror, we expect the total loss can be reduced from 3% with
the hole-coupled mirror to 1% with a dielectric mirror without changing the outcoupling
fraction.

We reviewed in Section 3 that the extraction efficiency and the pulse duration for
the FEL lasing at δL = 0 scale as a single parameter, α, the normalized cavity loss. In
the research program, we plan to conduct FEL experiments at KU-FEL with changing
the bunch charge and the optical cavity configuration to confirm the scaling law beyond
the JAERI-FEL parameter, the extraction efficiency of 9% at the experimental parameter
corresponding to 1/

√
α = 27 [29]. Experiments for FEL pulse measurements are also

planned for characterizing few-cycle lasing at the high-efficiency parameters.

7.2. Stacking FEL Pulses in an External Cavity

The FEL oscillator at LEBRA covers 0.827–6.1 µm with a macro-pulse of 20 µs [49].
We plan to explore FEL pulse stacking in an external optical cavity utilizing the advantage
of the relatively long macropulse. Stacking laser pulses in an external cavity is a common
technology to enhance the energy of pulses from a mode-locked laser for HHG [50] and
other applications [51]. Generation of high-harmonics from a gas target is possible either
using stored pulses in an external cavity or using a laser pulse dumped from a cavity. Such
cavity dump can be performed with semiconductor photo-switches [52].

An experiment of FEL pulse stacking was conducted at the superconducting linac FEL
at Stanford University. They demonstrated the accumulation of micropulses with more
than 75 times the energy of the incident FEL pulses [53]. The Stanford FEL was operated
at a quasi-CW mode and the external cavity worked in the steady-state mode, in which
the injected pulse energy was balanced with the cavity loss. In normal-conducting-linac
FELs, pulse stacking in the transient mode is suitable for maximizing the stored pulse
energy [54]. In LEBRA-FEL, we will optimize the external cavity to realize FEL pulses for
HHG experiments.

For the pulse stacking experiment, we installed an external cavity at an experimental
room of LEBRA-FEL. The cavity is a bow-tie shape and the frequency of the cavity is
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chosen at 44 MHz, double of the FEL cavity frequency. The cavity length must be controlled
precisely to stack successive pulses coherently. The FEL pulse train of 20 µs is, however,
not long enough to tune the cavity length. Thus, we use a fiber laser oscillator for the
cavity tuning. As a preliminary tuning of the cavity, we injected laser pulses from the fiber
oscillator and confirmed multiple recirculation of injected laser pulses in the cavity. Further
tuning of the external cavity is in progress.

In parallel with the experimental work, we are conducting simulation studies to pre-
dict the performance of the pulse stacking with optimized cavity parameters, transmittance
of the input coupler, and recirculation path length. In the simulations, we use a three-
dimensional FEL code, GENESIS [55], coupled with a wave propagation code to calculate
the iterative interaction of an FEL pulse and electron bunches [56].

7.3. CEP-Stable Laser for Seeding FEL Oscillators

A seed laser for the CEP-stabilization in an FEL oscillator must provide CEP-stable
laser pulses with moderate pulse energy, ∼1 nJ. In addition, the laser pulse should be
synchronized to the electron bunch repetition. Since the generation of such laser pulses
below 3 µm is well-established, we focus our efforts on the development of seed lasers at
wavelengths longer than 3 µm. We designed a laser system comprising a mode-locked
fiber oscillator and a fiber amplifier followed by a difference frequency generation between
the light pulse of the fiber laser and its wavelength shifting. The laser system is under
development [57].

Apparatuses for the HHG experiment such as a gas cell, a vacuum chamber with
a differential pumping system, and a spectrometer for ultraviolet and X-ray are to be
designed and fabricated at QST and shipped to Kyoto University and Nihon University for
the proof-of-concept experiments of FEL-HHG.

8. Summary

Evolution of few-cycle FEL pulses was experimentally confirmed in FELIX, JAERI-FEL,
and other short-pulse FEL oscillators. From analytical and numerical studies, it was found
that the few-cycle FEL lasing in the short-pulse FEL oscillators is explained in the frame
of superradiance, cooperative emission from self-bunched systems, and superradiance in
high-gain FEL amplifiers.

The few-cycle lasing appears in a high-gain short-pulse FEL oscillator, whose cavity
length has a small negative or zero detuning length from the perfectly synchronized
condition to the electron bunch repetition. In the small negative detuning, a few-cycle
pulse evolving in the transient regime turns into chaotic lasing after the onset of saturation.
In the lasing at zero detuning length, an isolated (or solitary) few-cycle pulse survives
even after the onset of saturation, but has slow fluctuation in the peak position and the
intensity due to the shot noise of the electron beam. The fluctuation also results in a random
drift of the carrier-envelope phase of the few-cycle FEL pulse. A numerical simulation
suggested that the carrier-envelope phase of the few-cycle FEL can be stabilized by utilizing
a CEP-stable external seed laser.

Thanks to the wavelength tunability and the high-repetition-rate availability, the
few-cycle optical pulses from FEL oscillators have unique applications. High-harmonic
generation (HHG) from gas and solid targets is a promising application of the few-cycle FEL
pulse. High-harmonic generation driven by FEL, FEL-HHG, enables one to explore ultrafast
science with attosecond ultraviolet and X-ray pulses with a MHz repetition rate, which is
difficult with HHG driven by solid-state lasers. A research program has been launched
to develop technologies for the FEL-HHG and to conduct a proof-of-concept experiment
of FEL-HHG. The research program encompasses generation and characterization of few-
cycle mid-infrared pulses in FEL oscillators, stacking of FEL pulses in an external cavity,
and a seed laser for stabilization of carrier-envelope phase of the FEL pulses.

Funding: This research was supported in part by MEXT Quantum Leap Flagship Program (MEXT
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