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Abstract: Active clocks could provide better stabilities during initial stages of measurements over
passive clocks, in which stabilities become saturated only after long-term measurements. This unique
feature of an active clock has led to search for suitable candidates to construct such clocks. The other
challenging task of an atomic clock is to reduce its possible systematics. A major part of the optical
lattice atomic clocks based on neutral atoms are reduced by trapping atoms at the magic wavelengths
of the optical lattice lasers. Keeping this in mind, we find the magic wavelengths between all possible
hyperfine levels of the transitions in Rb and Cs atoms that were earlier considered to be suitable for
making optical active clocks. To validate the results, we give the static dipole polarizabilities of Rb
and Cs atoms using the electric dipole transition amplitudes that are used to evaluate the dynamic
dipole polarizabilities and compare them with the available literature values.

Keywords: active clocks; optical masers; dipole polarizability; magic wavelength; relativistic
all-order method

1. Introduction

The future definition of second in the International System of Units (SI) requires the realization of
ultraprecise, narrow and concise form of clocks. Active clocks are expected to achieve better short-term
stabilities [1] against the available optical clocks when a hybrid clock system consisting of the proposed
active clock and an appropriate passive clock are designed together. Such a hybrid system is expected
to cater both the short- and long-term stabilities to an indigenous frequency standard. Therefore,
active clocks can serve as conducive time keeping standard at the short-term time scale. The output
frequency of an active clock is determined by an atomic transition in perturbation-free environment.
Proposed more than a decade ago, active optical clocks thus offer a possible solution to the bottleneck
of accomplishing high stabilities in clocks [2–5].

In an active clock, the atomic system itself acts as an oscillator and generates the radiation with
the clock frequency, which is then simply received and converted into an output signal [6], whereas,
in passive clocks, which work in good-cavity regime, a local oscillator which is generally a laser
source whose output frequency is stabilized to the atomic signal, is attached to the atomic system.
The generated frequency is monitored after the system is prepared in certain quantum state. Once the
local oscillator is synchronized with the frequency of atomic transition, the frequency is measured
and converted into time. The active optical clocks follow the basic principle of construction of an
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intra-cavity weak feedback with phase coherence information through the stimulated emission inside
a bad cavity regime, i.e., the linewidth of cavity mode is much broader than the linewidth of laser

gain profile generating a =
Γcavity

Γgain
>> 1 [5], according to which the phase coherence can provide a

much confined ultra-narrow quantum-limited linewidth in comparison to an atomic transition [7,8].
This is the underlying concept of active masers which not only offers short-term stability, but also
long-term stability extending over period of years. In addition to this, the insensitivity of frequency of
active optical clocks to cavity-length noise [5] can provide optical frequencies with high stabilities [9].
The active optical clock can be constructed by using any “free medium”, i.e., neutral atoms, ions and
molecules [5], as long as they have the energy-level structures which follow the phenomenon of
stimulated emission for lasing action so that they can work as optical masers. Once realized, the active
clocks can overcome the challenges of attaining narrower local oscillators as intended for the passive
clocks and hence can serve as prospective candidate for the local oscillator of the next generation
passive optical clocks. The output signal of an active optical clock is nothing but a frequency reference
to an atomic transition, therefore they can serve as frequency standards with an excellent short-term
stability. Since proposed, several theoretical investigations have already been carried out to find the
most suitable candidate for the realization of active optical clocks [10–14]. On the basis of theoretical
appraisals, several experimental configurations are being commenced to establish active clocks among
two-level, three-level and four-level schemes using various atoms [1,9,15–20]. Recently, it was studied
how a four-level scheme can, in principle, help in realizing continuous output signals by avoiding
the pumping of induced light shift which is a common problem with the other two- and three-level
schemes [9,18–21], thereby providing an ultimate strategy for optimizing a more reliable active clock.
Such an active optical clock can provide a continuous signal with an excellent short-term stability.

Since alkali metal elements are laboratory friendly systems and possess simple energy level
structures, it is possible to find a suitable combination of four-levels in one of the alkali atoms
for preparing such configurations. Based on the mechanism of active optical clock, it has been
proposed that Cs and Rb are appropriate choices [9] because of the availability of relevant lasers
for cooling of these atomic systems. In this scheme, the pumping laser can be used to couple the
ground state with a relatively high-lying upper state from which an electron can decay to another
excited state consequently accomplishing the lasing clock state. Due to this, the pumping laser will
not be able to couple with the clock states directly and hence, a continuous lasing signal can be
produced. To reduce the systematic uncertainties further, one can trap the atoms in optical lattices.
A fundamental feature of a lattice clock is that it interrogates a transition with controlled atomic
motion. However, in this scheme, it is extremely important to make sure that the lattice light does not
cause the light frequency shift of the clock transition. The laser induced light shifts can be avoided by
trapping the atoms in optical lattice at the magic wavelength (λmagic) [22–24]. This is a well known
technique used in passive atomic clocks [25–28] where the magic wavelength trapping is constructed
for a ground state and an excited state. Theoretical determination of magic wavelengths in these
atoms involves calculation of frequency-dependent polarizabilities of the considered states to find the
magic wavelengths, where dynamic polarizability of both states participating in the transition is equal,
in other words, the differential Stark shift for the states involved in the transition is zero [24].

The magic trappings between two excited states are very rare since the excited states are generally
short lived. In the four-level active clocks, the clock transition occur between two excited states
and to the best of our knowledge, there is only one other proposal of magic trapping based on two
excited states [29]. In this work, we attempt to find magic wavelengths for the 6S→ 5P1/2,3/2 and
7S→ 6P1/2,3/2 atomic transitions of Rb and Cs atoms, respectively. These magic wavelengths are also
given for all possible hyperfine levels of these transition so that it helps experimentalists to select a
clock transition depending on the practical conditions. For this purpose, the dynamic electric dipole
(E1) polarizabilities of the 6S1/2, 5P1/2 and 5P3/2 states of Rb atom and the 7S1/2, 6P1/2 and 6P3/2
states of Cs atom are calculated by assuming linear polarization of the lattice laser light.
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2. Method of Evaluation

The shift in the nth energy level of an atom placed in an oscillating electric field with amplitude E
is given by [30–33]

∆E = −1
4

αFn
n (ω)E2, (1)

where αFn
n (ω) is the dynamic dipole polarizability for a hyperfine level Fn of state n, and is given by

αFn
n (ω) = − ∑

k 6=n
(p∗)nk(p)kn

[
1

δEnk + ω
+

1
δEnk −ω

]
. (2)

Here, δEnk = E0
n − E0

k with E0
i denoting the unperturbed energies of the corresponding states for

i = n, k and ks are intermediate states to which transitions from state n are possible in accordance to the
dipole selection rules. (p)kn = 〈Ψk|D|Ψn〉 is the E1 matrix element between the states |Ψn〉 and |Ψk〉.

For linearly polarized light, the above expression can be conveniently represented in terms of
rank 0 and 2 tensors as [26,28,32]

αFn(ω) = αFn
n0(ω) +

3M2
F − Fn(Fn + 1)
Fn(2Fn − 1)

αFn
n2(ω), (3)

where MF is the magnetic projection of total angular momentum Fn. αFn
n0 and αFn

n2 are known as the
scalar and tensor components, respectively, and are given by:

αFn
n0(ω) = αJn

n0(ω) (4)

and

αFn
n2(ω) = (−1)Jn+Fn+I

{
Fn Jn I
Jn Fn 2

}
αJn

n2(ω)

×

√
Fn(2Fn − 1)(2Fn + 1)(2Jn + 3)(2Jn + 1)(Jn + 1)

(2Fn + 3)(Fn + 1)(Jn)(2Jn − 1)
.

(5)

αJn
n0(ω) and αJn

n2(ω) in the above equations are the scalar and tensor components of atomic dipole
polarizability of state with angular momentum Jn and magnetic projection MJ and are of the
following forms

αJn
n0(ω) = − 1

3(2Jn + 1) ∑
Jk

|〈Jn||D||Jk〉|2

×
[

1
δEnk + ω

+
1

δEnk −ω

]
, (6)

and

αJn
n2(ω) = 2

√
5Jn(2Jn − 1)

6(Jn + 1)(2Jn + 3)(2Jn + 1)

×∑
Jk

(−1)Jk+Jn+1

{
Jn 2 Jn

1 Jk 1

}
|〈Jn||D||Jk〉|2

×
[

1
δEnk + ω

+
1

δEnk −ω

]
. (7)
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Here, |〈Jn||D||Jk〉| are reduced matrix elements (reduced using Wigner–Eckart theorem) with Jk being
angular momentum of intermediate state k. The term in curly bracket refers to 6-j symbols. The total
J-dependent dynamic polarizability for linearly polarized light is given as:

αJ
n(ω) = αJn

n0(ω) +
3M2

J − Jn(Jn + 1)

Jn(2Jn − 1)
αJn

n2(ω) (8)

For a suitable choice of the electric field polarization and level Fn or Jn, λmagic can be determined for
different magnetic sublevels MF or MJ in a transition.

The differential ac Stark shift of a transition is the difference between the ac Stark shifts of the
states involved in the transition and can be formulated as

δ(∆E)(ω) = ∆E(ω)− ∆E′(ω)

= −1
4

[
αK(ω)− αK′(ω)

]
E2. (9)

Here, ‘∆E’ and ‘∆E′’ represent the energy shift in two different states involved in the transition with
K = Fn or Jn. Our main aim is to find the values of ω and λ at which δ(∆E)(ω) will be zero.

Dipole polarizability of any atom with closed core and one electron in outermost shell can be
estimated by evaluating the core, core-valence and valence correlation contributions. i.e., [27]

αn(ω) = α
(c)
0 (ω) + α

(cv)
n (ω) + α

(val)
n (ω), (10)

where α
(c)
0 (ω), α

(cv)
n (ω) and α

(val)
n (ω) are the core, core–valence and valence correlation contributions,

respectively. The subscript ‘0’ in α
(c)
0 (ω) refers to contributions from the inner core orbitals without

the valence orbital. Our valence contribution (α(val)
n (ω)) to the polarizability is divided into two

parts, Main and Tail, in which the first few dominant and the other less dominant transitions of
Equations (6) and (7) are included, respectively. The Main term is calculated by using single-double
(SD) all-order method, which is described in Refs. [34,35]. Briefly, in SD method, the wave function of
the valence electron n can be represented as an expansion:

|Ψv〉SD =

[
1 + ∑

ma
ρmaa†

maa +
1
2 ∑

mnab
ρmnaba†

ma†
nabaa

+ ∑
m 6=v

ρmva†
mav + ∑

mna
ρmnvaa†

ma†
naaav

]
|Φv〉, (11)

where |Φv〉 is the lowest-order wave function of the state which can be obtained as

|Φv〉 = a†
v|Φ0〉. (12)

Here, |Φ0〉 is the Dirac–Hartree–Fock (DHF) wave function for the closed core and the terms a†
i and ai

are the creation and annihilation operators. The indices m and n represent the excited states. a, and b
refer to the occupied states and index v designates the valence orbital. The terms ρma and ρmv are
ascribed as the single core and valence excitation coefficients, whereas ρmnab and ρmnva are the double
core and valence excitation coefficients. The partial triple excitations (SDpT) are also included for
obtaining SDpT matrix elements where triple excitations were expected to contribute significantly.
In all-order SDpT approximation, an additional term (linear triple excitation term) is added to the
calculated SD wave function and resulting wave function becomes

|Ψv〉SDpT = |Ψv〉SD +
1
6 ∑

mnrab
ρmnrvaba†

ma†
na†

r abaaav|Φv〉. (13)
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We solve the all-order equations using a finite basis set consisting of single-particle states which are
linear combinations of 70 B-splines set. The large and small components of Dirac wave function are
defined on a nonlinear grid and are constrained to a large cavity of radius R = 220 a.u. The cavity
radius is chosen in such a way that it can accommodate as many transitions as practically possible to
reduce the uncertainty. The E1 matrix element for the transition between states |Ψv〉 and |Ψw〉 can be
obtained as

Zvw =
〈Ψv|D|Ψw〉√
〈Ψv|Ψv〉〈Ψw|Ψw〉

. (14)

In the case of SD approximation, the resulting expression for the numerator of Equation (14) consists
of the sum of the DHF matrix element zwv and twenty other terms, which are linear or quadratic
functions of the excitation coefficients [36,37]. In the present work, only two terms have dominant
contributions to the transition matrix elements, and they are given as:

Z(a) = ∑
ma
(zamρ̃wmva + zmaρ̃∗vmwa), (15)

and

Z(c) = ∑
m
(zwmρmv + zmvρ∗mw). (16)

Here, ρ̃mnab = ρmnab − ρnmab and zwv are lowest order matrix elements of dipole operator. There are
obviously some missing correlations to this term. To estimate some of these omitted correlation
corrections and assess the uncertainties associated with these matrix elements, we carried out the
scaling of the single excitation coefficients. These missing correlations can be compensated by adjusting
the single valence excitation coefficients ρmv [38] to the known experimental value of valence correlation
energy as

ρ′mv = ρmv
δEexpt

v

δEtheory
v

. (17)

These modified ρ′mv coefficients can be utilized to recalculate the matrix elements. Here, δEexpt
v

refers to the difference between the experimental energy [39] and lowest order DF energy and δEtheory
v is

the correlation energy due to single double excitations. In SDpT approximation, this correlation energy
is due to single, double and partial triple excitations. Thus, one needs to calculate the scaling differently
for SD and SDpT correlations. These modified E1 matrix elements are referred to as SDsc and SDpTsc E1
matrix elements respectively. We utilize the value of ratio R = Z(c)/Z(a) to establish the recommended
set of E1 matrix elements and their uncertainties. If R > 1, then SDsc are regarded as ZFinal value,
otherwise SD results are used as ZFinal value. To evaluate uncertainties in the recommended values
of E1 matrix elements, we take the maximum difference between ZFinal recommended value and
other three all order values of SD, SDpT, SDsc and SDpTsc. The tail and core contribution and α

(cv)
n (ω)

are calculated by using DHF approximation. To improve the precision of results for polarizabilities,
these E1 matrix elements are combined with experimental energies from the National Institute of
Science and Technology Atomic Database (NIST AD) [39].

3. Results

Accurate determination of polarizability of a state plays a key role in predicting λmagic precisely.
Using the E1 matrix elements of the transitions involving the low-lying states up to 8P, 8S and 8D
calculated using the all-order SD method, we first evaluate the static polarizabilities of the 7S1/2 and
6P1/2,3/2 states of the Cs and 6S1/2 and 5P1/2,3/2 states of the Rb atoms and compare them with the
previously available experimental and theoretical results in Tables 1 and 2, respectively. We explicitly
list corresponding E1-matrix elements for the allowed transitions in both atoms. To provide the most
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precise set of known data for these transitions, we replace few all-order theoretical values of the E1
matrix elements by the experimental ones, where high-precision values are already available. Further,
we use excitation energies from the measurements as listed in NIST database for further improvement
of our results.

3.1. Static Polarizabilities

To demonstrate role of various contributions to αJ
n(0), we provide individual contributions from

different E1 matrix elements to “Main” (α(val)
n ), “Tail" (α(val)

n ), core–valence (α(cv)
n ) and core (α(c)n )

contributions explicitly along with the net results in the evaluation of static polarizabilities (ω = 0)
in atomic units (a.u.) for the 7S1/2, 6P1/2 and 6P3/2 states of Cs atom in Table 1. As shown in Table 1,
our calculated αJn

n0(0) value of 6257(41) a.u. for the 7S1/2 state of the Cs atom is comparable with
the αJn

n0(0) values of 6238(41) and 6140 a.u., which were calculated by Tchoukova et al. [30] and
Wijngaarden et al. [40], respectively. Tchoukova et al. [30] employed the relativistic all-order method
for calculating the results, whereas Wijngaarden et al. [40] used calculated oscillator strengths using
the method of Bates and Damgaard [41] to evaluate the results for polarizabilities. We also found
agreement of our calculated results with experimental results of αJn

n0(0) = 6238(6) measured by Bennett
et al. using laser spectroscopy. The value of scalar polarizability αJn

n0(0) for the 6P1/2 state is estimated
to be 1339(18) a.u., which agrees with the results given by Arora et al. [25] and Wijngaarden et al. [40]
as 1338 and 1290 a.u., respectively. This result also matches very well with experimental result of
1328.4(6) a.u. measured by Hunter et al. [42]. Both scalar and tensor contributions for the 6P3/2 state
along with the uncertainties are provided in the same table. The values for the static scalar and tensor
polarizabilities of the 6P3/2 state in Cs are obtained as 1648(35) and −262(9) a.u., which are again in
reasonable agreement with the values given by Arora et al. [25] and Wijngaarden et al. [40]. Further,
our calculated results for static scalar and tensor polarizabilities of the 6P3/2 state are very much
comparable with the results measured by Tanner et al. [43] calculated by employing crossed beam
laser spectroscopy.

In Table 2, we tabulate our calculated values for total static dipole polarizabilities for the
states 6S1/2, 5P1/2 and 5P3/2 of the Rb atom. It is observed that out of all the considered transitions,
contributions from 6S1/2 − 6P3/2, 5P1/2 − 4D3/2 and 5P3/2 − 4D5/2 transitions are maximum. As can
be seen in the table, the obtained αJn

n0(0) value 5124(59) a.u. of static polarizability for the 6S1/2
state for Rb atom is in close agreement with the other theoretical calculation, which is 5110 a.u. by
Wijngaarden [44] who employed Coulomb approximation to evaluate the results. The value of static
scalar polarizability of 5P1/2 is estimated to be 813(14) a.u., which is in agreement with the polarizability
results calculated by Arora et al. [25] and Zhu et al. [45]. Zhu et al. estimated polarizability using
many-body perturbation theory. Our calculated result of polarizability for 5P1/2 state matches very
well with the value of 810.6(6) measured by Miller et al. [46]. The calculated values for the static scalar
and tensor polarizabilities of 5P3/2 state in Rb are obtained as 875(14) and –168(4) a.u. These values
match very well with the values calculated by Arora et al. [25] and Zhu et al. [45]. The experimental
value of scalar and tensor polarizabilities for the 5P3/2 state of Rb atom was obtained by Krenn et al. [47]
and are in accord with our calculations. There is a reasonable agreement between our calculations
and the values reported by other theoretical calculations using a variety of many-body methods
and experimental measurement, ascertaining that our static values of polarizabilities are reliable.
Correspondingly, we expect that the dynamic polarizabilities evaluated in our calculations will also be
accurate enough to determine λmagic for the 7S1/2 − 6P1/2,3/2 transitions in Cs and 6S1/2 − 5P1/2,3/2
transitions in Rb.
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Table 1. Contributions from different E1 matrix elements (d) to the static polarizabilities (in a.u.) of the 7S1/2, 6P1/2 and 6P3/2 states of Cs atom. The final results are
compared with the previously estimated and available experimental results. Uncertainties are given in the parentheses.

7S1/2 State 6P1/2 State 6P3/2 State

Transition d α
Jn
n0(0) Transition d α

Jn
n0(0) Transition d α

Jn
n0(0) α

Jn
n2(0)

7S1/2 − 6P1/2 4.25(9) −179(8) 6P1/2 − 6S1/2 4.489(7) −131.9(4) 6P3/2 − 6S1/2 6.324(7) −124.7(3) 124.7(3)
7S1/2 − 7P1/2 10.33(5) 2415(23) 6P1/2 − 7S1/2 4.25(9) 180(8) 6P3/2 − 7S1/2 6.49(8) 226(5) −226(5)
7S1/2 − 8P1/2 0.929(9) 8.8(2) 6P1/2 − 8S1/2 1.0(1) 6(1) 6P3/2 − 8S1/2 1.5(1) 6(1) −6(1)
7S1/2 − 9P1/2 0.356(7) 1.02(4) 6P1/2 − 9S1/2 0.55(6) 1.4(3) 6P3/2 − 9S1/2 0.77(8) 1.4(3) −1.4(3)

7S1/2 − 10P1/2 0.185(5) 0.25(1) 6P1/2 − 10S1/2 0.36(4) 0.57(9) 6P3/2 − 10S1/2 0.51(5) 0.6(1) −0.6(1)
7S1/2 − 6P3/2 6.49(8) −453(11) 6P1/2 − 5D3/2 7.02(2) 1084(7) 6P3/2 − 5D3/2 3.17(2) 133(1) 106(1)
7S1/2 − 7P3/2 14.34(5) 4413(31) 6P1/2 − 6D3/2 4.3(4) 121(2) 6P3/2 − 6D3/2 2.1(2) 15(3) 12(3)
7S1/2 − 8P3/2 1.64(1) 27.3(5) 6P1/2 − 7D3/2 2.1(2) 21(4) 6P3/2 − 7D3/2 1.0(1) 2.5(5) 2.0(4)
7S1/2 − 9P3/2 0.70(1) 3.9(1) 6P1/2 − 8D3/2 1.3(1) 7(1) 6P3/2 − 8D3/2 0.61(6) 0.8(2) 0.7(1)

7S1/2 − 10P3/2 0.388(8) 1.08(4) 6P1/2 − 9D3/2 0.93(9) 3.6(7) 6P3/2 − 9D3/2 0.43(4) 0.40(8) 0.32(6)
6P1/2 − 10D3/2 0.71(7) 2.0(4) 6P3/2 − 10D3/2 0.33(3) 0.22(4) 0.18(4)

6P3/2 − 5D5/2 9.59(8) 1174(20) −235(4)
6P3/2 − 6D5/2 6.3(6) 132(26) −26(5)
6P3/2 − 7D5/2 2.9(3) 22(4) −4.3(9)
6P3/2 − 8D5/2 1.8(2) 7(1) −1.5(3)
6P3/2 − 9D5/2 1.3(1) 3.5(7) −0.7(1)
6P3/2 − 10D5/2 1.0(1) 2.0(4) −0.40(8)

Main(ff(val)
n ) 6238(41) Main(ff(val)

n ) 1295(12) Main(ff(val)
n ) 1602(33) −256(9)

Tail(ff(val)
n ) 4(2) Tail(ff(val)

n ) 28(14) Tail(ff(val)
n ) 30(9) −6(2)

ff(cv)
n −0.47 ff(cv)

n ∼0 ff(cv)
n ∼0 ∼0

ff(c)0 15.8(3) ff(c)0 15.8(3) ff(c)0 15.8(3)
Total 6257(41) Total 1339(18) Total 1648(35) −262(9)

Others 6238(41) [30] Others 1338 [25] Others 1650 [25] −261 [25]
6140 [40] 1290 [40] 1600 [40] −233 [40]

Experiment 6238(6) [48] Experiment 1328.4(6) [42] Experiment 1641(2) [43] −262(2) [43]
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Table 2. Contributions from different E1 matrix elements (d) to the static polarizabilities (in a.u.) of the 6S1/2, 5P1/2 and 5P3/2 states of Rb atom. The final results are
compared with the previously estimated and available experimental results. Uncertainties are given in the parentheses.

6S1/2 State 5P1/2 State 5P3/2 State

Transition d α
Jn
n0(0) Transition d α

Jn
n0(0) Transition d α

Jn
n0(0) α

Jn
n2(0)

6S1/2 − 5P1/2 4.15(3) −167(2) 5P1/2 − 5S1/2 4.231(3) −104.1(1) 5P3/2 − 5S1/2 5.977(4) −102.0(1) 102.0(1)
6S1/2 − 6P1/2 9.68(6) 1915(24) 5P1/2 − 6S1/2 4.15(3) 167(2) 5P3/2 − 6S1/2 6.05(3) 183(2) −183(2)
6S1/2 − 7P1/2 0.999(6) 9.5(1) 5P1/2 − 7S1/2 0.953(2) 4.83(1) 5P3/2 − 7S1/2 1.350(2) 4.94(2) −4.94(2)
6S1/2 − 8P1/2 0.393(4) 1.2(2) 5P1/2 − 8S1/2 0.502(2) 1.120(7) 5P3/2 − 8S1/2 0.708(2) 1.129(7) −1.129(7)
6S1/2 − 5P3/2 6.05(3) −366(4) 5P1/2 − 4D3/2 8.05(7) 700(12) 5P3/2 − 4D3/2 3.63(3) 74(1) 59(1)
6S1/2 − 6P3/2 13.6(1) 3693(54) 5P1/2 − 5D3/2 1.35(6) 10(1) 5P3/2 − 5D3/2 0.66(3) 1.3(1) 1.01(9)
6S1/2 − 7P3/2 1.54(1) 22.4(3) 5P1/2 − 6D3/2 1.1(1) 5(1) 5P3/2 − 6D3/2 0.51(5) 0.6(1) 0.5(1)
6S1/2 − 8P3/2 0.628(7) 2.967(7) 5P1/2 − 7D3/2 0.79(6) 2.6(4) 5P3/2 − 7D3/2 0.37(3) 0.29(4) 0.23(3)

5P1/2 − 8D3/2 0.61(4) 1.4(2) 5P3/2 − 8D3/2 0.28(2) 0.16(2) 0.13(2)
5P3/2 − 4D5/2 10.90(9) 665(11) −133(2)
5P3/2 − 5D3/2 1.98(9) 11(1) −2.2(2)
5P3/2 − 6D5/2 1.5(1) 5(1) −1.1(2)
5P3/2 − 7D5/2 1.10(8) 2.5(4) −0.51(7)
5P3/2 − 8D5/2 0.8(5) 1.4(2) −0.28(3)

Main(ff(val)
n ) 5112(59) Main(ff(val)

n ) 788(12) Main(ff(val)
n ) 849(11) −163(2)

Tail(ff(val)
n ) 3(2) Tail(ff(val)

n ) 16(8) Tail(ff(val)
n ) 17(9) −5(3)

ff(cv)
n −0.26 ff(cv)

n ∼0 ff(cv)
n ∼0 ∼0

ff(c)0 9.08(45) ff(c)0 9.08(45) ff(c)0 9.08(45)
Total 5124(59) Total 813(14) Total 875(14) −168(4)

Others 5110 [44] Others 805 [25] Others 867 [25] −167 [25]
807 [45] 870 [45] −171 [45]

Experiment 810.6(6) [46] Experiment 857(10) [47] −163(3) [47]
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3.2. Magic Wavelengths

Having evaluated the static dipole polarizability of Cs and Rb atoms, we adopt a similar procedure
for calculation of dynamic polarizabilities of these atoms. We anticipate similar accuracies in the
dynamic polarizability values as their corresponding static values except at wavelength values in close
vicinity of any resonant transition for the considered S1/2 or P1/2,3/2 states We determine the λmagic

values of the (m + 1)S1/2 − mP1/2 and (m + 1)S1/2 − mP3/2 transitions in Cs (m = 6) and Rb (m = 5)
atoms using these dynamic polarizabilities. Before we proceed, we would like to clarify that λmagic

for both (Jn,MJ ) and (Fn, MF) levels of the considered transition for Cs and Rb have been calculated.
Since αJn = αFn for S1/2 and P1/2 states, the magic wavelengths among (Jn,MJ ) and (Fn, MF) levels
for (m + 1)S1/2 –mP1/2 transition are the same and are shown by the intersection of αJ polarizability
curves for (m + 1)S1/2 and nP1/2 states of Cs and Rb atom in Figures 1 and 2, respectively. To acquire
magic wavelength among the (Jn,MJ) levels of the (m + 1)S1/2 → mP3/2 transitions, we plot total
dynamic dipolar polarizabilities for the (m + 1)S1/2 and mP1/2,3/2 states for Cs and Rb atoms in
Figures 3 and 4, respectively. Similar plots for (Fn, MF) levels of (m + 1)S1/2 → mP3/2 transitions are
shown in Figures 5 and 6 for Cs and Rb atom, respectively. The results for the (Jn,MJ) and (Fn,MF)
levels are tabulated separately in Tables 3 and 4 for Cs atom and Tables 5 and 6 for Rb atom for the
ease of pulling out exact values of the magic wavelengths. The resonant wavelengths which are crucial
in locating the magic wavelengths are also tabulated.
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Figure 1. Dynamic polarizabilities (in a.u.) of 7S1/2 and 6P1/2 states of Cs in the wavelength range
900–1500 nm for linearly polarized light.
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Figure 2. Dynamic polarizabilities (in a.u.) of the 6S1/2 and 5P1/2 states of Rb in the wavelength range
900–1500 nm for the linearly polarized light.
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Figure 3. J-dependent dynamic polarizabilities (in a.u.) of the 7S1/2 and 6P3/2|MJ | = 1/2, 3/2 states of
Cs in the wavelength range 900–1500 nm for linearly polarized light.
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Figure 4. J-dependent dynamic polarizabilities (in a.u.) of the 6S1/2 and 5P3/2, |MJ | = 1/2, 3/2 states
of Rb in the wavelength range 900–1500 nm for linearly polarized light.
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Figure 5. F-dependent dynamic polarizabilities (in a.u.) of the 7S1/2|Fn, MF = 0 > (Fn = 3, 4) and
6P3/2|Fn, M′F = 0 > (F′n = 2, 3, 4, 5) states of Cs in the wavelength range 900–1500 nm for linearly
polarized light.
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Figure 6. F-dependent dynamic polarizabilities (in a.u.) of the 6S1/2|Fn, MF = 0 > (Fn = 2, 3) and
5P3/2|F′n, MF′ = 0 > (F′n = 1, 2, 3, 4) states of Rb in the wavelength range 900–1500 nm for linearly
polarized light.

Table 3. Magic wavelengths (λmagics) (in nm) with corresponding polarizabilities (αJ(ω)s) (in a. u.) for
the 7S1/2 − 6P1/2 and 7S1/2 − 6P3/2 transitions in the Cs atom with the linearly polarized lights along
with the resonant wavelengths (λress) (in nm).

7S1/2− 6P1/2 |Mj| = 1/2 7S1/2− 6P3/2 |Mj| = 1/2 |Mj| = 3/2

Resonance λres λmagic αJ(ω) Resonance λres λmagic αJ(ω) λmagic αJ(ω)

6P1/2 − 6S1/2 894.59 6P3/2 − 6D5/2 917.48
918.46(2) −1335

7S1/2 − 11P3/2 918.671 7S1/2 − 11P3/2 918.671
920.101(4) −1225 918.677(3) 35,277

7S1/2 − 11P1/2 920.141 7S1/2 − 11P1/2 920.141
973(3) −393 921.0(9) −147 920.3(3) 56

7S1/2 − 10P3/2 978.651 6P3/2 − 6D3/2 921.11
980.86(5) −376 7S1/2 − 10P3/2 978.651

7S1/2 − 10P1/2 981.231 980.1(7) −14 979.01(8) 1126
1081(5) −415 7S1/2 − 10P1/2 981.231

7S1/2 − 9P3/2 1093.356 982(2) −46 981.33(3) 1088
1097.92(6) −444 1005(5) −269

7S1/2 − 9P1/2 1098.723 1088(3) −625
7S1/2 − 6P1/2 1359.201 7S1/2 − 9P3/2 1093.356
7S1/2 − 8P3/2 1378.173 1098.09(9) −661 1095.9(3) 424

1379.9(1) 5830 7S1/2 − 9P1/2 1098.723
7S1/2 − 8P1/2 1394.057 1100.6(8) 413

1395.8(2) 3248 1213(6) 249
1413(2) 2145 7S1/2 − 6P1/2 1359.201

7S1/2 − 6P3/2 1469.892 7S1/2 − 8P3/2 1378.173
1392.4(1) −4207 1382.4(5) 113

7S1/2 − 8P1/2 1394.057
7S1/2 − 6P3/2 1469.892
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Table 4. λmagics (in nm) and their corresponding polarizabilities (in a.u.) in Cs (I = 7/2) of the transitional
states involved in 7S1/2 | Fn, MF〉 → 6P3/2 | F′n, MF′ 〉 transition are listed.

| Fn = 3, MF = 0〉 →| F′n = 2, MF′ = 0〉 | Fn = 3, 4, MF = 0〉 →| F′n = 3, MF′ = 0〉

λmagic αF(λmagic) λmagic αF(λmagic)
920.8(1) −119 920.5(3) −35
979.3(3) 398 979.1(1) 938
981.5(2) 366 981.35(4) 901

1097.7(2) −274 1096.5(4) 243
1102(3) 229
1181(8) 73

1391.2(5) −2623 1383.5(9) −533

| Fn = 3, 4MF = 0〉 →| F′n = 4, MF′ = 0〉 | Fn = 4, MF = 0〉 →| F′n = 5, MF′ = 0〉
λmagic α(λmagic) λmagic α(λmagic)

920.6(1) -81 920.9(1) −136
979.1(1) 722 979.6(6) 180

981.38(7) 687 982(1) 150
1043(9) −290
1082(3) −430

1097.1(4) 36 1097.9(1) −480
1112(5) −1
1130(7) −47
1386(2) −1320 1392.0(2) −3469

3.2.1. Cs Atom

As shown in Figure 1 and Table 3, we were able to locate nine λmagics for the 7S1/2 − 6P1/2
transition in Cs within 900–1500 nm. Out of these, six magic wavelengths were located within
900–1100 nm and support blue detuned traps as indicated by negative polarizability values at
these wavelengths. The other three located towards higher wavelength range offer red-detuned traps.
One would have expected magic wavelengths within 1098–1378 nm where 7S1/2− 9P1/2, 7S1/2− 6P1/2
and 7S1/2 − 8P3/2 resonant transitions occur; however, the opposite nature of 7S1/2 and 6P1/2
polarizabilities around 7S1/2 − 6P1/2 resonance at 1359 nm prohibits crossing of the 7S1/2 and 6P1/2
polarizability curves. On the other hand, in Table 3 and Figure 3, we identify seven λmagics for
the 7S1/2 − 6P3/2 (MJ = ±1/2) transition placed between six different resonances all supporting
blue detuned traps. The polarizability of the 6P3/2 state has two important resonant transitions
(6P3/2 − 6D3/2 and 6P3/2 − 6D5/2) in the wavelength range considered in this work. In contrast,
the polarizability of the 7S1/2 state can have significant contributions from several resonant transitions
in the considered wavelength range. Thus, they are expected to cross with the polarizability of the
6P3/2 states in between these resonant transitions. We find this trend in locating magic wavelengths
in between two resonances, except for a few cases where the λmagics are missing. We also find that
three λmagics were located between 7S1/2 − 10P1/2 and 7S1/2 − 9P3/2 resonant transitions. Similarly,
eight magic wavelengths were found for 7S1/2 − 6P3/2 (MJ = ±3/2) transition in the considered
wavelength range. It can be noticed from the results in Table 3 that all the magic wavelengths favor
red-detuned traps.

We also investigate λmagic between the transitions involving the |7S1/2Fn, MF = 0〉 and
|6P1/2,3/2F′n, MF′ = 0〉 states. The value of J-dependent polarizability for 7S1/2 − 6P1/2 transition
is exactly equal to the F-dependent polarizability value due to the absence of tensor part of the
polarizability [49]; hence, we have not tabulated F-dependent values for this transition. The magic
wavelengths for the allowed transitions between |7S1/2Fn, MF = 0〉 and |6P3/2F′n, MF′ = 0〉 states are
shown in Figure 5 and listed in Table 4. We choose MF = 0 sublevels in the hyperfine transitions, since,
for this particular magnetic sublevel, the first-order Zeeman shift vanishes.

For experimental purposes, it is imperative to choose a magic wavelength which has a low
sensitivity towards laser frequency fluctuations and minimum photon scattering. We studied the
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sensitivity of the magic wavelengths for a 1 nm change in laser wavelength for the 7S1/2 − 6P1/2
and 7S1/2 − 6P3/2 transitions. We noticed that for the 7S1/2 − 6P1/2 transition, magic wavelengths
at 973 nm and 1081 nm offer minimum shift in differential stark shifts for a 1 nm change in laser
wavelength and are suitable as compared to magic wavelengths at 918.46, 920.101 and 1379.9 nm,
which are very sensitive to even a very small change in laser wavelength. The magic wavelengths
at 918.46, 920.101 and 1379.9 nm are also very close to the resonance and are expected to have a
large photon scattering rate. We recommend the magic wavelength at 1413(2) nm for this transition
since it is far detuned and a large value of polarizability value at this wavelength indicates a deep
trapping potential. It also offers low sensitivity to laser wavelength fluctuations and small photon
scattering rate. For the 7S1/2 − 6P3/2 (MJ = ±1/2) transition none of the magic wavelengths support
a red-tuned trap. λmagic at 1392.4 nm supports a strong blue detuned trap but is very close to the
7S1/2 − 8P1/2,3/2 resonances, thus its sensitivity towards the laser fluctuations and photon scattering
rate is expected to be very large. On the one hand, the magic wavelength for the 7S1/2 − 6P3/2
(MJ = ±3/2) transition at 918.677 supports a very strong red detuned trap but at the same time is
extremely sensitive to even small laser wavelength fluctuations. Therefore, we recommend use of
λmagic at 1213 nm which is far detuned. The recommended magic wavelengths for the F-dependent
transitions were investigated in detail by Pan et al. [21] and it was identified that λmagic at 1181 nm for
the 7S1/2; F = 4, MF = 0〉 → |6P3/2; F = 3, MF = 0〉 is most suitable for experimental purposes since it
offers a strong trapping potential not only for the clock states but also for the other two levels involved
in the active clock lasing. Moreover, it was found to provide very low sensitivity against variation in
the trapping laser wavelength along with a very low photon scattering rate.

3.2.2. Rb Atom

At least nine λmagics are located for the 6S1/2 − 5P1/2 transition lying systematically between
twelve resonant transitions in the considered wavelength range. The magic wavelengths are pictorially
presented in Figure 2 and listed in Table 5. Comparing with the results published by Xiao-Run et al. [50],
we ascertain that our results are in reasonable agreement with them; however, we have not considered
magic wavelengths below 900 nm as we encountered a large number of resonances for the 6S1/2 state
in this wavelength range. Xiao-Run et al. [50] quoted magic wavelengths at 1342 and 1421 nm for the
6S− 5P1/2 transition, which agree well with our results at 1342.4(2) and 1421.8(7) nm. According to
the evaluations, it is analyzed that Rb favors the formation of blue detuned traps for most of the magic
wavelengths except for magic wavelengths near 1342 and 2771 nm for the 6S1/2 − 5P1/2 transition.
Similarly, the magic wavelengths for the 6S1/2 − 5P3/2 are shown in Figure 6 and listed in Table 5.
The figure and table clearly show that none of the evaluated magic wavelengths lying in the range
900–1500 nm for 6S1/2 − 5P3/2 (MJ = ±1/2) and 6S1/2 − 5P3/2 (MJ = ±3/2) transitions offer a scope
for a red detuned trap; however, while exploring the wavelengths in far infrared region, we found
possibility of red detuned traps at 2771 nm for these transitions. In the case of 6S− 5P3/2 transitions,
our results at 1336.5(2) and 1453.3(8) nm match well with the results published in [50]. Similarly in
Figure 6 and Table 6 , we list the λmagic values for all allowed |6S1/2Fn, MF = 0〉 → |5P3/2F′n, MF′ = 0〉
transitions. The F-dependent polarizabilities values at the respective λmagics are listed as well. For this
wavelength range, 34 λmagics are located, out of which 30 λmagics support blue detuned traps.

For the 6S1/2 − 5P1/2 transition, λmagics at 1342.4 and 1421.8 nm are recommended for a
red-detuned and a blue-detuned trap, respectively. The former wavelength offers less sensitivity
to the fluctuations in laser wavelengths as compared to the later magic wavelength. Both these magic
wavelengths are far-detuned and will provide very small photon scattering. λmagics at 1461.7 and
1453.3 nm for the 6S1/2 − 5P3/2(MJ = ±1/2) and 6S1/2 − 5P3/2(MJ = ±3/2) transitions, respectively,
are recommended for experiments with blue-detuned traps and are least sensitive to the fluctuations
in laser wavelengths.
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Table 5. Magic wavelengths (λmagics) (in nm) with corresponding polarizabilities (αJ(ω)s) (in a. u.)
for the 6S− 5P1/2 transition in the Rb atom with the linearly polarized lights along with the resonant
wavelengths (λress) (in nm).

6S1/2− 5P1/2 |Mj| = 1/2 6S1/2− 5P3/2 |Mj| = 1/2 |Mj| = 3/2

Resonance λres λmagic αJ(ω) Resonance λres λmagic αJ(ω) λmagic αJ(ω)

6S1/2 − 10P1/2 867.95 6S1/2 − 10P1/2 867.95
921.96(2) −917 922.281(9) −1351

6S1/2 − 9P3/2 922.71 6S1/2 − 9P3/2 922.71
923.533(3) −917 923.569(2) −1350 923.414(6) −301

6S1/2 − 9P1/2 923.67 6S1/2 − 9P1/2 923.67
1026.58(9) −1090 1027.31(5) −1516 1020.6(6) −467

6S1/2 − 8P3/2 1028.67 6S1/2 − 8P3/2 1028.67
1030.336(9) −1102 1030.395(7) −1526 1030.20(1) −487

6S1/2 − 8P1/2 1030.67 6S1/2 − 8P1/2 1030.67
1290.85(3) −5597 1290.80(3) −5259 1289.70(7) −1583

6S1/2 − 7P3/2 1292.28 6S1/2 − 7P3/2 1292.28
1297.867(7) −6606 1297.841(7) −5671 1297.67(1) −1655

6S1/2 − 7P1/2 1298.28 6S1/2 − 7P1/2 1298.28
6S1/2 − 5P1/2 1323.88 6S1/2 − 5P1/2 1323.88

1342.4(2) 2609 1331.2(1) −9501 1336.5(2) −2095
6S1/2 − 5P3/2 1366.87 6S1/2 − 5P3/2 1366.87

1421.8(7) −7909 1461.7(7) −5872 1453.3(8) −6139
5P1/2 − 4D3/2 1475.65 5P3/2 − 4D3/2 1529.26
6S1/2 − 6P3/2 2732.18 5P3/2 − 4D3/2 1529.37

2771.1(3) 1132 6S1/2 − 6P3/2 2732.18
6S1/2 − 6P1/2 2791.29 2771.0(3) 1501 2771.1(3) 1000

6S1/2 − 6P1/2 2791.29

Table 6. λmagics (in nm) and their corresponding polarizabilities (in a.u.) in Rb (I = 5/2) of transitional
states involved in 6S | Fn, MF〉 → 5P3/2 | F′n, MF′ 〉 transition are listed.

| Fn = 2, MF = 0〉 →| F′n = 1, MF′ = 0〉 | Fn = 2, 3, MF = 0〉 →| F′n = 2, MF′ = 0〉

λmagic αF(λmagic) λmagic αF(λmagic)

921.98(2) −930 919.6(4) −446
923.534(3) −930 923.455(5) −451
1026.60(8) −1100 1023.9(3) −621

1030.337(9) −1110 1030.24(1) −635
1290.49(4) -3781 1289.94(6) −2103

1297.786(8) −4063 1297.71(1) −2228
1332.7(1) −6714 1335.3(2) −3279
1459.1(9) −5950 1455(1) −6082
2771.1(3) 1300 2771.1(3) 1071

| Fn = 2, 3MF = 0〉 →| F′n = 3, MF′ = 0〉 | Fn = 3, MF = 0〉 →| F′n = 4, MF′ = 0〉

λmagic αF(λmagic) λmagic αF(λmagic)

923.507(3) −720 923.559(2) −1201
1025.9(1) −891 1027.12(5) −1367
1030.30(1) −902 1030.377(9) −1377
1290.28(4) −3045 1290.70(3) -4731

1297.753(9) −3259 1297.823(7) −5097
1333.7(2) −5258 1331.7(1) −8520
1457.5(6) −6000 1460.9(9) −5897
2771.1(3) 1201 2771.0(3) 1429

4. Conclusions

We present a list of reliable magic wavelengths for the 7S− 6P1/2,3/2 and 6S− 5P1/2,3/2 transitions
for Cs and Rb atoms, respectively, considering the linearly polarized light. These magic wavelengths
will be useful for the purpose of trapping of atoms in optical traps for constructing active optical
clocks. We calculated static dipolar polarizabilities for the 7S1/2 and 6P1/2,3/2 states of Cs atom, and for
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the 6S1/2 and 5P1/2,3/2 states of Rb atom. The reliability of these results was verified by comparing
the static dipole polarizability values with the other available theoretical and experimental results.
The reported electric dipole matrix elements determined for the evaluation of dipole polarizabilities of
the above states will be very useful for other studies using the Rb and Cs atoms in the future.
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