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Abstract: This article proposes a new method for sensing THz waves that can allow electric field
measurements traceable to the International System of Units and to the fundamental physical constants
by using the comparison between precision measurements with cold trapped HD+ ions and accurate
predictions of molecular ion theory. The approach exploits the lightshifts induced on the two-photon
rovibrational transition at 55.9 THz by a THz wave around 1.3 THz, which is off-resonantly coupled
to the HD+ fundamental rotational transition. First, the direction and the magnitude of the static
magnetic field applied to the ion trap is calibrated using Zeeman spectroscopy of HD+. Then, a set of
lightshifts are converted into the amplitudes and the phases of the THz electric field components
in an orthogonal laboratory frame by exploiting the sensitivity of the lightshifts to the intensity,
the polarization and the detuning of the THz wave to the HD+ energy levels. The THz electric
field measurement uncertainties are estimated for quantum projection noise-limited molecular ion
frequency measurements with the current accuracy of molecular ion theory. The method has the
potential to improve the sensitivity and accuracy of electric field metrology and may be extended to
THz magnetic fields and to optical fields.

Keywords: electrometer; THz sensing; trapped molecular ions; two-photon spectroscopy; dynamic
Stark shift; Zeeman effect; fundamental constants

1. Introduction

The sensitive detection of electromagnetic fields has a broad range of fundamental and
technological applications, spanning from the search for physics beyond the Standard Model and tests
of fundamental symmetries to time-keeping, navigation, modern communications, geophysics, and
medical imaging. A goal of the metrology community was to make the measurements traceable to
the International System of Units (SI) and to the fundamental physical constants. The measurement
standards based on atoms and molecules were used for the determination of a number of physical
quantities [1–3]—for example, the time (s), the length (m), and the mass (kg)—and of many fundamental
constants [4], including the Rydberg constant, the fine structure constant, and various particle masses.

Atom-based techniques have been extended to the electric fields [5,6], enabling SI traceable
measurements with fine spatial resolution. Microwave power measurement has been performed using
the atomic candle method [7]. The sensitivity of the Rydberg states [8] and the well-known interactions
with the electromagnetic fields were exploited using the electromagnetically induced transparency
(EIT) and the Autler–Townes (AT) splitting phenomena [5,6,9] to probe electric fields oscillating from
the radiofrequency [10] to the sub-terahertz domain [11]. The SI traceability of the electric field
magnitude was ensured by the frequency measurement of the AT splitting, which was assumed
as a linear ac-Stark effect depending on the Planck constant and the known dipole moment of the
transition between the atomic Rydberg states. Comparing to the previous radiofrequency calibrations
performed with standard electromagnetic fields and antenna probes [12,13], which display sensitivities
at the 1 mV/(Hz1/2.cm) level, and fractional accuracies in the range of 5–20%, the method using the
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atomic Rydberg transitions has many advantages for moderate to high-field measurements [6,14].
An improvement in accuracy is allowed by measurements with a fractional uncertainty better than
1% [5,15,16]. However, this method has difficulty to probe weak electric fields where the AT splitting
is unresolved. Using the absorption spectrum, this method allowed detecting an electric field with
the lowest magnitude of 8 µV/cm and a sensitivity of 30 µV/(Hz1/2.cm) [5]. The improvement of
the sensitivity at the level of a few µV/(Hz1/2.cm) was achieved using homodyne detection [17] and
frequency modulation [18], which allowed detecting a weak electric field of 1.8 µV/cm with matched
filtering of the spectra. That corresponds to the current limit of sensitivity given by the photon shot
noise on the detector used to record the spectra, which is three orders of magnitude worse than the
quantum projection noise limit of the atomic sensor [17,18]. The surpassing of the photon shot noise
limitation is nontrivial [19]. The measurements with Rydberg atomic transitions were extended to
vector microwave electrometry with 0.5◦ angular resolution [20] and to a Rydberg-atom-based mixer
for microwave phase shift measurement with an uncertainty better than 0.5 rad [21], offering also the
opportunity to detect weak microwave signals [22].

This work proposes a new method for phase-sensitive vector electrometry based on the comparison
of high-precision measurements with molecular ions with very accurate molecular theory predictions.
The hydrogen molecular ions (HMI) are three-body molecular systems with hundreds of long-lived
rotation–vibration energy levels in the ground electronic state. Starting from the mid-1960s, HMI were
investigated with different experimental techniques (see for example [23–30]). The rotation–vibration
spectroscopy data were addressed in the field of the metrology of particle masses [31]. Trapping HMI
in a radiofrequency trap and sympathetically cooling with laser-cooled Be+ ions allowed measuring
rovibrational lines with uncertainties at the 10−9 level [27,28,30]. New methods for precision
measurements with trapped molecular ions were introduced recently [32,33]. Specifically for HMI, the
sub-Doppler spectroscopy techniques, namely two-photon spectroscopy [34,35] and trapped ion cluster
transverse excitation spectroscopy [36], may improve significantly the resolution and the accuracy.
Recently, the fundamental rotational transition of the HD+ ion was probed with a fractional full-width
at half-maximum (FWHM) linewidth of 3 × 10−12 and a fractional uncertainty of 1.3 × 10−11 [37].
In addition, the two-photon spectroscopy was demonstrated on the (v, L) = (0, 3)→(9, 3) transition
with a fractional uncertainty of 2.9 × 10−12 [38]. The ab initio calculations of physical parameters of
HD+ using a set of fundamental constants reached a fractional accuracy of 7.6 × 10−12 for vibrational
transitions ignoring spin-structure effects [39] and a fractional accuracy at the 10−4 level or better for
dipole moments of E1 transitions [40].

Currently, there is a lack of methods for calibrated measurements of the electric field of THz waves.
A THz electric field may be characterized from the measurements of the ac-Stark shift (lightshift) that
it induces on a two-photon rovibrational transition of HD+. The HD+ ions benefit from relatively high
dipole moments of the transitions between adjacent rotational levels. These transitions are not allowed
in the case of the homonuclear molecular ions such as H2

+. The THz wave is coupled off-resonantly to
an E1 rotational transition from/to the energy levels addressed in two-photon spectroscopy. The THz
electric field is characterized using the comparison between the experimental lightshift and the ab
initio value of the lightshift calculated as a function of the CODATA2014 fundamental constants. A set
of scalar, phase-less accurate optical frequency measurements may be translated into the amplitudes
and the phases of the Cartesian components of the THz electric field, which points to the potential of
this method for the full characterization of the electromagnetic fields. This article proposes converting
two-photon infrared laser spectroscopy measurements with an expected fractional uncertainty at the
10−12 level into THz electric field measurements for which the SI traceability is ensured by estimating
the uncertainties at each stage of the experimental measurements and of the theoretical calculations.
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2. Material and Methods

2.1. Theoretical Model of the HD+ Energy Levels

The vibration and the rotation of the HD+ ions define the most important scales of the energy levels
in the electronic ground state. The rovibrational energy, which is calculated ab initio by neglecting the
spin-structure effects, is the sum of the nonrelativistic Schrödinger energy with a series expansion of
corrections that takes into account the relativistic, radiative, and nuclear-size-related contributions.
The calculations performed up to the order α7 and including partial corrections of the order α8 (α is
the fine structure constant) have a fractional accuracy estimated at the 10−12 level [39].

The interactions between the spins of the electron
→

S e, proton
→

I p, and deuteron
→

I d that compose

the HD+ ion with the rotational angular momentum
→

L lead to a hyperfine structure of energy levels [41].
The hyperfine energy levels are calculated ab initio, assuming the angular momentum coupling scheme
→

F =
→

S e +
→

I p;
→

S =
→

F +
→

I d;
→

J =
→

L +
→

S , by using a Breit–Pauli spin Hamiltonian in the nonrelativistic
limit at the order α2. The eigenvalues are labeled with the quantum numbers |vLFSJJz> for the vibration

v, the squared angular momenta ‖
→

L‖
2
, ‖
→

F‖
2
, ‖
→

S‖
2
, ‖
→

J ‖
2
, and the z-axis projection of

→

J . Upon application
of a small external static magnetic field defining the quantization axis, the HD+ magnetic states are
split. The magnetic energy levels are calculated ab initio using a nonrelativistic Hamiltonian describing
the spin interaction with the external magnetic field [42]. The value of the Zeeman shift of an energy
level may be derived approximately as a quadratic dependence in function of the magnitude of the
magnetic field. The energy of a magnetic state reads:

E(v, L, F, S, J, Jz) = Erv(v, L) + Ehf(v, L, F, S, J) + ∆Ez(v, L, F, S, J, Jz; B), (1)

by adding the rovibrational, hyperfine, and Zeeman energy contributions, respectively.

2.2. Two-Photon Spectroscopy for Sensing Electromagnetic Fields

This work proposes investigating the electromagnetic fields by Doppler-free spectroscopy of
the HD+ ions in a radiofrequency trap that allows narrow linewidths and small systematic shifts.
The parameters characterizing the electromagnetic fields are assumed with no time dependence during
the experimental measurements. The proposed experimental setup (Figure 1a) builds on previous
approaches demonstrated for HD+ spectroscopy [36,38]. Typically, ≈102 HD+ ions are stored together
with ≈103 Be+ ions that are laser-cooled with a 313 nm continuous-wave laser. The electrostatic
interactions embed both ion species in a Coulomb crystal and sympathetically cool the HD+ ion
motional degrees of freedom at the 10 mK level. The number of the HD+ ions is monitored through
the change of the fluorescence of the Be+ ions at 313 nm upon excitation of the secular motion of the
HD+ ions in the trap. A small static magnetic field with no spatial gradient, generated with three coil
pairs in the Helmholtz configuration driven independently with three current sources, is applied to the
ion trap.

Figure 1b indicates the rotation–vibration HD+ energy levels addressed in the sensing scheme.
Two-photon spectroscopy is performed on the rovibrational transition (v, L) = (0, 0)→(2, 0) of HD+ using
a stationary wave from an infrared laser tuned around 55.909 THz. The laser source for two-photon
spectroscopy should have an ultranarrow linewidth, be tunable, and be continuously monitored against
a frequency standard. These requirements may be met, for example, using the linewidth transfer
technique approach [43], with a stabilized frequency comb and frequency down-conversion from
near-infrared to the 5 µm spectral region. A feasible detection method is to dissociate the population
transferred to the (v, L) = (2, 0) level with a 175 nm laser, as it was discussed in [44], without probing
additionally a rotational transition. The population of the HD+ ions is initially distributed among
the rotational levels of the ground vibrational state with a dependence determined by the thermal
equilibrium with the blackbody radiation at room temperature. The blackbody radiation continuously
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recycles the HD+ ions population among these levels by driving electric dipole transitions, which are
quantified here with the appropriate Einstein rate coefficients for spontaneous emission as well as
stimulated absorption and emission. A set of rate equations, describing all transitions driven by the
lasers and the blackbody radiation and taking into account the natural lifetimes of the relevant HD+

energy levels, allows characterizing the time dependence of the HD+ ions population during the
resonance-enhanced multiphoton dissociation (REMPD) detection scheme assuming the hyperfine-free
approximation. The lineshape of the two-photon resonance, probed with a 5362 nm laser, displays a
full-width at half-maximum linewidth of 20 Hz for a two-photon transition rate of 10 s−1, a dissociation
rate of 200 s−1, and an REMPD time of 10 s [44]. A similar approach based on REMPD allowed recently
demonstrating the two-photon infrared spectroscopy of the (v, L) = (0, 3)→(9, 3) transition of HD+ [38].
The REMPD detection scheme proposed here estimates that a single datapoint may be recorded in
30 s, and the two-photon rovibrational line of HD+, which is used as frequency reference, may be
defined within ten minutes. These timescales are comparable with the timescales of the recording
of the rotational lines [37]. It is assumed that the laser can be referenced to the HD+ line with an
uncertainty at a fraction of its linewidth within a ten-minute timescale.
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polarization ellipse) is off-resonantly coupled to the energy levels of the HD+ ions embedded in a 
Coulomb crystal (yellow). Two-photon spectroscopy is performed with a stationary wave from the 
IR laser (red line). Be+ ions are cooled with the 313 nm laser (magenta line). The detection is 
performed by dissociating HD+ ions with the 175 nm laser (green line). The static magnetic field in 
the ion trap (olive line) can be oriented to any direction, which is defined with the Euler angles (α, β) 
in the Cartesian Laboratory Coordinate Frame (x, y, z) (black lines) (LCF). The orientation of the coil 
pairs defines the Coil Coordinate Frame (xc, yc, zc) (dotted black lines) (CCF), with the 
nonorthogonality angles (αx, αy, αz) relative to the laboratory frame. The standard components of the 
THz wave are referenced to the Cartesian Molecular Ion Coordinate Frame (xmi,ymi,zmi) (orange lines) 
(MICF) and related to the laboratory frame through a z–y–z rotation with the Euler angles (α, β, χ = 
0). (b) Rotation–vibration energy levels of HD+ addressed in the THz sensing scheme. The 
two-photon rovibrational transitions are shown with red lines with arrows, the dissociation is shown 
with green lines with arrows, the THz wave-driven electric dipole couplings are shown with blue 
lines with arrows, and the blackbody-radiation-driven transitions are shown with black lines and 
curves with arrows. 
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Figure 1. (a) The experimental setup and the reference coordinate frames. The THz electric field
(blue polarization ellipse) is off-resonantly coupled to the energy levels of the HD+ ions embedded
in a Coulomb crystal (yellow). Two-photon spectroscopy is performed with a stationary wave from
the IR laser (red line). Be+ ions are cooled with the 313 nm laser (magenta line). The detection is
performed by dissociating HD+ ions with the 175 nm laser (green line). The static magnetic field
in the ion trap (olive line) can be oriented to any direction, which is defined with the Euler angles
(α, β) in the Cartesian Laboratory Coordinate Frame (x, y, z) (black lines) (LCF). The orientation
of the coil pairs defines the Coil Coordinate Frame (xc, yc, zc) (dotted black lines) (CCF), with the
nonorthogonality angles (αx, αy, αz) relative to the laboratory frame. The standard components of the
THz wave are referenced to the Cartesian Molecular Ion Coordinate Frame (xmi,ymi,zmi) (orange lines)
(MICF) and related to the laboratory frame through a z–y–z rotation with the Euler angles (α, β, χ = 0).
(b) Rotation–vibration energy levels of HD+ addressed in the THz sensing scheme. The two-photon
rovibrational transitions are shown with red lines with arrows, the dissociation is shown with green
lines with arrows, the THz wave-driven electric dipole couplings are shown with blue lines with arrows,
and the blackbody-radiation-driven transitions are shown with black lines and curves with arrows.

The transitions between the spin states with a maximum total angular momentum J and extreme
values of the projection Jz = ±J (stretched states) of the levels (v, L) = (0, 0) and (v, L) = (2, 0) are weakly
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split by the magnetic field [42]. The lightshifts of these transitions are used as probes for THz electric
fields coupled off-resonantly to Zeeman subcomponents of the rotational transition (v, L) = (0, 0)→
(0, 1) at 1.315 THz or (v, L) = (2, 0)→(2, 1) at 1.197 THz, respectively. The electric quadrupole shifts of
the sublevels of the L = 0 states, induced by couplings with other L = 0 sublevels driven by a THz
electric field with a spatial gradient, vanish [45]. The electric quadruple shifts of the sublevels of the
L = 0 states due to off-resonant couplings to sublevels of the L = 2 states are neglected. In addition,
the same experimental approach based on two-photon rovibrational spectroscopy of HD+ may be
exploited for characterization of the magnetic field in the ion trap. Precision Zeeman spectroscopy with
a 5196 nm laser of a sensitive subcomponent of the (v, L) = (0, 0)→(2, 2) two-photon transition, using a
detection based on the dissociation of the (v, L) = (2, 2) level, may be exploited for determination of the
magnitude of the magnetic field.

The fractional uncertainty of the frequency measurement of a transition is estimated with the
Allan variance for the quantum projection noise limit:

σy(τ) =
1

πQ
√

Nion
×

√
Tc

τ
, (2)

which is expressed with the quality factor of the two-photon transition Q = f2ph/∆fHWHM in terms of
the half-linewidth ∆fHWHM. A single measurement with Nion ions at the two-photon resonance is
performed during the cycle time Tc. The measurements are averaged during the interrogation time
τ. For a single ion spectroscopy experiment with Tc = τ, where the linewidth is the inverse of the
radiative lifetime of the excited energy level [46], the frequency uncertainty for (v, L) = (0, 0)→(2, 0)
line is estimated at 2.49 Hz and for (v, L) = (0, 0)→(2, 2) line at 2.57 Hz.

This proposal is based on precision spectroscopy in an ion trap, frequency control of the
spectroscopy laser, and measurements against a frequency standard, which are approaches that were
previously developed for atomic ion clocks in frequency metrology institutes. The setup is a tabletop
experiment involving specific lasers and optical components. Particularly, ultrastable near-infrared
lasers and a stabilized frequency comb, referenced to a frequency standard, may be down-converted
to the 5 µm spectral region and then amplified for two-photon spectroscopy or exploited with an
enhancement cavity. The laser radiation at 175 nm may be obtained by frequency quadrupling with
nonlinear crystals from a 700 nm amplified laser system.

2.3. Coordinate Frames and External Fields

The coordinate frames used here are represented in Figure 1a. The external fields applied to the
HD+ ions are characterized relative to a Cartesian Laboratory Coordinate Frame locally fixed to the
Earth’s surface LCF

(
→
e x,
→
e y,
→
e z

)
, and its axes are pointing to East–North–Up. The Z-axis is oriented

along the Earth’s ellipsoid normal direction. The magnetic field in the experimental setup is controlled
with three pairs of magnetic coils. Each pair of opposite coils is driven with the same current. The coil
pairs, driven independently by three stabilized current sources, define the Coil Coordinate Frame
CCF

(
→
e c,x,

→
e c,y,

→
e c,z

)
, which is not necessarily orthogonal. The orientations of the CCF axes relative to

the LCF are defined with the Euler angles:
(
αz,π/2 + αy

)
for

→
e c,x,(π/2,π/2−αx) for

→
e c,y, and (0, 0)

for
→
e c,z, respectively. The nonorthogonality of the CCF axes is accounted here relative to the LCF

frame with three small angles αx,αy,αz << 1. The magnetic field vector generated by the coil pairs is
expressed as:

→

B = kxI1
→
e c,x + kyI2

→
e c,y + kzI3

→
e c,z, (3)

as a function of the current-to-field parameters kx,y,z, and the coil currents I1,2,3. The conversion
between the components of a vector in the orthogonal and nonorthogonal frames can be performed
using a linear transformation [47].
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The THz electric field vector, expressed with the complex amplitude ETHz, complex polarization
vector ε̂, and angular frequency ω, is decomposed further in three orthogonal linearly polarized
components, which read:

→

E(t) =
ETHzê

2
× e−iωt + c.c. =

∑
j={x,y,z}

Ej
→
e j

2
× e−i(ωt+ϕj) + c.c., (4)

as a function of real positive amplitudes Ej and phases ϕj. This dependence is represented by the
polarization ellipse of the THz wave, in terms of three field amplitudes and two phases, in which
the third phase is arbitrarily fixed to zero ϕz = 0. To describe the interaction with the radiation, it is
suitable to define the Cartesian Molecular Ion Coordinate Frame MICF

(
→
e mi,x,

→
e mi,y,

→
e mi,z

)
such that

the direction of
→
e mi,z is along the direction of the magnetic field that defines the quantization axis.

The THz electric field vector is expressed in the MICF using the standard components:

→

E(t) =
∑

q={−1,0,1}

(−1)q E−q
→
e q

2
× e−i(ωt+ϕ−q) + c.c., (5)

with real positive amplitudes E0, E±1 and phasesϕ0,ϕ±1 having linear or circular polarizations defined
with

→
e 0 =

→
e mi,z,

→
e±1 = ∓

(
→
e mi,x ± i

→
e mi,y

)
/
√

2. The orientation of the MICF relative to the LCF can be
changed by varying the currents in the coils. The relative orientation of the two coordinate frames
is defined with the Euler angles (α,β,χ = 0) (the third angle being fixed here arbitrarily to zero).
Each standard component of the THz electric field in the MICF, denoted with E(α,β)

π,σ± , couples off-
resonantly to the π or σ± Zeeman subcomponents of the (v, L) = (v, 0)→(v, 1) transitions and induces a
lightshift in proportion with its squared amplitude. The standard components of the THz electric field
in the MICF are related to the polarization ellipse parameters in the LCF:(

E(α,β)
π

)2
= E2

z · cos2(β) +
(
E2

x · cos2(α) + E2
y · sin2(α)

)
· sin2(β)

+Ez · Ex · sin(2β) · cos(α) · cos(ϕx) + Ez · Ey · sin(2β) · sin(α) · cos
(
ϕy

)
+Ey · Ex · sin(2α) · sin2(β) · cos

(
ϕx −ϕy

)(
E(α,β)
σ±

)2
= 1

2

(
E2

x + E2
y + E2

z −

(
E(α,β)
π

)2
)
± Ex · Ey · cos(β) · sin

(
ϕx −ϕy

)
∓Ex · Ez · sin(α) · sin(β) · sin(ϕx) ± Ey · Ez · cos(α) · sin(β) · sin

(
ϕy

)
(6)

2.4. Lightshifts in HD+ Spectroscopy

The coupling between the HD+ energy levels and the THz electric field is expressed in the electric
dipole approximation with the interaction Hamiltonian:

V = −
→

d ·
→

E(t) = −
1
2

ETHz

(
→

d · ε̂
)
× e−iωt + H.c., (7)

where
→

d is the electric dipole operator in the laboratory frame. When the THz electric field is far
from the resonance with another energy level, the lightshift of an energy level, calculated with the
second-order perturbation theory [48], reads:

δEn = −
1
4
|ETHz|

2
∑

r
Re


〈n|

(
→

d · ε̂
)+
|r〉〈r|

(
→

d · ε̂
)
|n〉

Er − En − }ω− i}γr+γn
2

+
〈n|

(
→

d · ε̂
)
|r〉〈r|

(
→

d · ε
)̂+
|n〉

Er − En + }ω+ i}γr+γn
2

, (8)
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in terms of the matrix elements of the dipole operator, the unperturbed energy levels Er, En, and their
decay rates γr,γn. The matrix elements of the dipole operator have been calculated ab initio in the
Born–Oppenheimer approximation using nonrelativistic three-body wavefunctions [40]. The lightshift
can be related to the reduced matrix elements of the dipole operator between rovibrational states,
using the tensor formalism applied to the cyclic components dq of the dipole operator. Equation (8)
can be expanded with the squared modules of the standard components of the THz electric field:

δEn = − 1
4

∑
q={−1,0,1}

(−1)q∣∣∣E−q
∣∣∣2αn,q(ω)

αn,q(ω) = Re
[
〈n|d−q ·

1
H∗−En−}ω

· dq|n〉+ 〈n|d−q ·
1

H−E∗n+}ω · dq|n〉
]

(9)

The last line of Equation (9) introduces the standard dynamic polarizabilities of the HD+ energy
levels αn,q(ω); these are expressed in terms of the complex operator H = H + i}Γ, which is defined as
〈n|H|n′〉 = δnn′En and 〈n|Γ|n′〉 = δnn′γn/2, having the eigenvalues En = En + i}γn/2.

The standard dynamic polarizabilities of the Zeeman sublevels of the (v, L) = (0, 0) and (v, L) = (2, 0)
states, depending on

αv,L,F,S,J,Jz;π/σ±1

(
q, B, fTHz

)
= f

({
E(v′,L′)

rv , E(v′,L′,F′,S′,J′)
hf , Z(v′,L′,F′,S′,J′)

k ,µ,γ(v′,L′), J′z
}
; q, B, fTHz

)
, (10)

are calculated approximately with Equation (9), by summing over the allowed electric dipole couplings
to the sublevels of the (v, L) = (0, 1) and (v, L) = (2, 1) states, respectively. The standard dynamic
polarizability is a function of a set {Ui} of five types of theoretical parameters—the rovibrational energies
(2 parameters from [49]), the hyperfine energies (up to 11 parameters from [41]), the Zeeman energies
calculated approximately with quadratic magnetic field dependences with the parameters Zk = 1,2,3

(up to 33 parameters from [42]) and Jz, the reduced dipole moment (1 parameter from [40]), the natural
linewidths of the energy levels (2 parameters from [46])—and a set of experimental parameters: the
magnitude of the magnetic field B, the polarization q, and the frequency of the THz wave fTHz.

In order to avoid divergences and to maintain the approximation of a far-detuned THz electric
field, the contribution of the resonant coupling was neglected on a small frequency domain centered
on each resonance (assumed at 10 Hz for the polarizabilities of the (v, L) = (0, 0) sublevels, and at
1.1 kHz for the polarizabilities of the (v, L) = (2, 0) sublevels, respectively).

The covariances between the differential standard dynamic polarizabilities are calculated on the basis
of the analytical dependences from Equation (10) by using the error propagation law, the uncertainties
of the theoretical and experimental parameters, and their correlation coefficients. The uncertainties
of the theoretical rovibrational energies are estimated at a fraction u(Erv ) = 10−12

· Erv of their
predicted values [49]. The uncertainty of the theoretical hyperfine energies from [41] is assumed
at u(Ehf) = 500 Hz. The uncertainty of the theoretical Zeeman parameters from [42] is assumed at
u(Z1,2) = 50 MHz/T2, u(Z3) = 5 kHz/T. The uncertainty of the theoretical dipole moments from [40] is
assumed at u

(
µvL,v′L′

)
= 1.3×10−4 a.u.. The uncertainties of the theoretical radiative linewidths of the energy

levels are estimated at u
(
γ(v,L) = (0,1)

)
= 2.5 × 10−7 Hz and u

(
γ(v,L) = (2,0)

)
= u

(
γ(v,L) = (2,1)

)
= 0.49 Hz,

by using values of energy level lifetimes from [46]. In addition, the correlation coefficients
corr(Erv, E′rv) = corr(Ehf, E′hf) = corr

(
Zk1 , Z′k2

)
= corr(µ,µ′) = corr(γ,γ′) = 1 between

these parameters are assumed to be equal to 1. The uncertainty of the magnitude of the magnetic field is
calculated with the error propagation law by exploiting its dependence on the theoretical parameters and on
the Zeeman-shifted molecular ion frequency (the approach is presented in Section 3.1). Finally, the uncertainty
of the THz wave frequency is assumed at a fraction u(fTHz) = 10−12

· fTHz of the experimental value.
The standard dynamic polarizability of a stretched state of the ground rotational level and its

uncertainty are calculated here for a given magnetic field as a function of the THz wave frequency
and plotted in Figure 2. The profile of the standard dynamic polarizability has a narrow resonance
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when the THz wave is resonant with the transition (v, L, F, S, J, Jz) = (0, 0, 1, 2, 2, 2)→(0, 1, 1, 2, 3,
3). The uncertainty increases dramatically at resonance. Using a small detuning to the resonance for
sensing a THz wave enhances the sensitivity at the expense of a loss in the calibration accuracy.
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Figure 2. Standard dynamic polarizability σ+ (red) and its uncertainty (blue) of the stretched state (v, L,
F, S, J, Jz) = (0, 0, 1, 2, 2, 2) as a function of the frequency detuning to 1,314,945,902.3 kHz (the hyperfine
resonance (v, L, F, S, J) = (0, 0, 1, 2, 2)→(0, 1, 1, 2, 3) at zero-magnetic field). Magnetic field: 10−4 T.

3. Results

3.1. Determination of the Magnetic Field Vector

The magnitude of the magnetic field in the ion trap can be determined from the measurements of
the Zeeman shift of a two-photon rovibrational transition (v, L, F, S, J, Jz) = (n, Jz)→(n’, J’z) of HD+ by
adopting the linear approximation:

‖

⇀
B({Vk}; I1, I2, I3)‖ =

fexp−fth
ηth

ηth =
(
Z(n′)

3 J′z −Z(n)
3 Jz

)
/2

(11)

as a function of the experimental frequency fexp that is shifted by the magnetic field from the theoretical
fth zero-field hyperfine frequency. The linear Zeeman coefficient of the two-photon transition ηth

is expressed on the second line as a function of the theoretical parameters Z(n,n′)
3 for the Zeeman

effect [42].
The magnetic field vector is controlled with three currents (I1, I2, I3) that drive the coil pairs

independently. The uncertainty of the current in a coil pair is assumed at a fraction u(I1,2,3) = 10−3
∣∣∣I1,2,3

∣∣∣
of the setting value. The magnetic field vector is fully described with a set {Vk} of nine experimental
parameters: the current-to-field parameters (k1, k2, k3), the nonorthogonality angles

(
αx,αy,αz

)
of the

CCF, and the external bias magnetic field components (B01, B02, B03). As a function of these parameters,
the magnetic field components in the LCF read:

⇀
B
({

k1, k2, k3,αx,αy,αz, B01, B02, B03

}
; I1, I2, I3

)
=

(
k1I1 − k2I2αz + k3I3αy + B01

)
→
e x

+(k2I2 − k3I3αx + B02)
→
e y + (k3I3 + B03)

→
e z

(12)

The set of experimental parameters can be calibrated by inversing Equation (11) using a nonlinear
least-squares minimization. A number of N > 9 Zeeman spectroscopy measurements provide the
Zeeman-shifted frequencies fexp,i at different current setpoints

(
I1,i, I2,i, I3,i

)
. The uncertainty of the
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calibration procedure is evaluated with the 9 × 9 covariance matrix GB of the estimation errors of the
model parameters:

GB =
(
JT
B ·Y

−1
B · JB

)−1
, (13)

which is expressed as a function of the N × N covariance matrix YB of the input data

yi =
(
fexp,i − fth,i

)
/ηth,i and the N × 9 Jacobian matrix JB =

(
∂‖
⇀
B i‖/∂Vk

)
i,k

∣∣∣∣∣
{Vk}={Vk;0}

, which is

calculated for the input data with the assumed values
{
Vk;0

}
of the model parameters. The value of the

theoretical frequency at zero-magnetic field is expressed as the sum fth,i = frv,i + fhf,i of the rovibrational
frequency and the hyperfine frequency. The errors of the input data are estimated as the quadratic sum
of the contributions from the experimental uncertainty of the Zeeman subcomponent u

(
fexp,i

)
= 2.57 Hz,

and from the theoretical uncertainties of the rovibrational frequency u(frv,i) = 10−12
· frv,i, the hyperfine

frequency u(fhf,i) = 0.5 kHz, and the Zeeman shift coefficient u
(
ηth,i

)
= 5 kHz/T. Nondiagonal

elements in the covariance matrix of the input data arise from covariances between the theoretical
parameters. The matrix YB =

{
yb,ij

}
reads:

yb,ij =

(
u(fexp,i)
ηth,i

)2

· δij +
u(frv,i)·u(frv,j)
ηth,i·ηth,j

+
u(fhf,i)·u(fhf,j)
ηth,i·ηth,j

+

(
u(ηth,i)·(frv,i+fhf,i)

η2
th,i

)
·

(
u(ηth,j)·(frv,j+fhf,j)

η2
th,j

) (14)

Let us consider an experiment designed with the following current-to-field parameters
k1 = k2 = k3 = −10−4T/A, which is operated under the Earth’s magnetic field with
components along the directions east B01 = 3.82 × 10−7 T, north B02 = 20.8733 × 10−6 T,
and up B03 = 43.4494 × 10−6 T, with the nonorthogonality angles of the CCF assumed as
αx = αy = αz = 50 mrad. The calibration is performed by Zeeman spectroscopy of the transition (v, L,
F, S, J, Jz) = (0, 0, 1, 2, 2, −2)→(2, 2, 1, 2, 4, 0) of HD+. The frequencies of this Zeeman subcomponent
are measured for 27 sets of current intensities (I1, I2, I3) = (Ioff1 + n1I0, Ioff2 + n2I0, Ioff3 + n3I0),
where I0 = 1 A, Ioff1 = 3.82 mA, Ioff2 = 208 mA, Ioff3 = 422 mA, and n1,2,3 = 0,1,2. These frequency-standard
calibrated measurements may be performed during a timespan estimated by five hours. The errors
of the calibrated parameters

{
Vk;cal

}
, determined from the nonlinear adjustment of the Zeeman

spectroscopy data, are estimated by the covariance matrix GB calculated using Equations (11)–(14).
Particularly, the estimations for the uncertainties are:

u(k1) = 1.9× 10−10 T/A, u(k2) = 5.7× 10−10 T/A, u(k3) = 1.1× 10−9 T/A,
u(αx) = 5.7× 10−6 rad, u

(
αy

)
= 4.0× 10−6 rad, u(αz) = 2.8× 10−6 rad,

u(B01) = 4.7× 10−10 T, u(B02) = 4.4× 10−10 T, u(B03) = 5.6× 10−10 T,
(15)

The Cartesian components X =
(
Bx, By, Bz

)
of the magnetic field in the LCF or, alternatively,

the components in spherical coordinates X =
(
‖

→

B‖,α,β
)

may subsequently be derived on the basis

of Equation (12), using the calibrated parameters and the currents in the coil pairs. The angular
components of the magnetic field define the Euler angles in the LCF for the direction of the quantization
axis. The errors for these quantities are estimated with the covariances evaluated using the error
propagation law:

cov
(
Xi

(
{Vcal}, I1,i, I2,iI3,i

)
, Xj

(
{Vcal}, I1,j, I2,jI3,j

))
=

9∑
p,q=1

∂Xi

∂Vp

∂Xj

∂Vq
GB,pq +

3∑
k=1

∂Xi

∂Ik

∂Xj

∂Ik
u(Ik,i)u

(
Ik,j

)
, (16)
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The previous equation expresses the covariance as the sum of the contributions from the
experimental parameters determined with the magnetic field calibration procedure and from setting
currents in the coil pairs.

The Earth’s magnetic field may be cancelled in the ion trap by setting the current intensities
that yield a null result in Equation (12): Inull1 = −6.34 mA, Inull2 = 230 mA, and Inull3

= 434 mA. The uncertainty is estimated at 85 nT, with the root sum of squares of the
uncertainties of the Cartesian components of the magnetic field in the LCF. The contribution
of the Earth’s magnetic field to the total magnetic field components in the LCF is canceled
when the total current in each coil pair is expressed as the sum of the nulling current
with an offset current. The total currents read (Inull1 + Ioffset1, Inull2 + Ioffset2, Inull3 + Ioffset3) =

(Inull1 + I0 · sinθ · cosφ, Inull2 + I0 · sinθ · sinφ, Inull3 + I0 · cosθ) in Cartesian coordinate parametrization
and in spherical coordinate parametrization, respectively.

The total uncertainties of the spherical components of the magnetic field in the LCF are calculated
using Equations (12)–(16) and shown in Figure 3, in the case where the total currents in the coil pairs are
described by the spherical coordinate parametrization with I0 = 1 A. The uncertainties from the driving
currents yield the dominant contribution to the uncertainty of the magnetic field components that is at the

u
(
‖

→

B‖,α,β
)
=

(
10−7 T, 10−3 rad, 10−3 rad

)
level or better. The contribution to this uncertainty coming

only from the experimental measurements, which is at the u
(
‖

→

B‖,α,β
)
=

(
10−9 T, 10−6 rad, 10−5 rad

)
level, is orders of magnitude smaller. Although the Euler angles do not depend on the value of the
parameter I0, their uncertainties do. As for the magnitude of the magnetic field, these uncertainties
decrease by increasing the value of I0.
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3.2. Determination of the Polarization Ellipse of the THz Wave

The lightshifts induced on a two-photon rovibrational transition of HD+ by coupling the THz
wave to the molecular ions δf(α,β)

k = fTHz ON
exp,k − fTHz OFF

exp,k are exploited here for characterization of the
THz wave. For a given orientation of the magnetic field, three independent lightshift measurements
may allow the determination of the squared modules of the standard components of the THz electric
field in the MICF by solving a system of three equations depending on differential standard dynamic
polarizabilities. The measurements should be performed with nondegenerate transitions that are
experimentally resolved. In order to determine the amplitudes and phases

(
Ex, Ey, Ez,ϕx,ϕy

)
of the THz

electric field components in the LCF, a set of five independent measurements of the squared modules of
the standard components of the electric field in the MICF E(αi,βi)

π , E(αi,βi)
σ±

are required for the inversion
of Equation (6), using at least two different orientations of the magnetic field. The independence of the
measurements means that the relevant systems of equations should be nonsingular. On one hand, that
is possible by using different magnitudes of the magnetic field or by probing lightshifts on different
two-photon hyperfine or Zeeman transitions; on the other hand, that is possible by using a set of
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suitable orientations of the magnetic field that takes into account the periodicity of the trigonometric
functions in Equation (6). The contributions from offset THz electric fields in the LCF, similar to the
blackbody radiation field, are not addressed here, and it is assumed that these fields do not vary when
the THz wave is coupled to the molecular ions.

The lightshift measurements are performed by adjusting the magnitude of the magnetic field
so that the THz wave is near resonant with a Zeeman subcomponent of the (v, L) = (v, 0)→(v, 1)
dipole-allowed transitions of HD+. These resonance frequencies may be tuned up to ±7 GHz by
applying a magnetic field up to 10−4 T. Using a small detuning to the resonance frequency is interesting
for increasing the lightshift. The drawbacks are significant mixings of the Zeeman energy levels that
may invalidate the second-order perturbation theory approach, a change of their populations by
driving rotational transitions with the THz electric field, and a change of the quantization axis relative
to the magnetic field orientation.

This work proposes exploiting six independent lightshift measurements FLS =
{
δf(αi,βi)

i

}
i=1,2,3,4,5,6

performed on a set of two-photon transitions:

δfi

(
I1,i, I2,i, I3,i

)
= −

1
4

∑
q={−1,0,1}

(−1)q
∣∣∣∣E(αi,βi)

q

∣∣∣∣2∆αi,−q

({
Uj

}
, ‖
→

B
(
{Vk}, I1,i, I2,i, I3,i

)
‖, fTHz

)
, (17)

by setting suitable currents
(
I1,i, I2,i, I3,i

)
in the coil pairs such as (αi,βi) = (0,π/2) for

i = 1, 2, 3 and (αi,βi) = (π/2,π/2) for i = 4, 5, 6. These measurements may be
performed during a timespan by two hours. These lightshifts are related to the squared
modules of the standard components of the THz electric field, which are expressed as

E2
STD =

{∣∣∣∣E(0,π/2)
σ+

∣∣∣∣2,
∣∣∣∣E(0,π/2)
π

∣∣∣∣2,
∣∣∣∣E(0,π/2)
σ−

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
σ+

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
π

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
σ−

∣∣∣∣2}, by using the

corresponding differential standard dynamic polarizabilities ∆αi,−q for the two-photon transitions.

These are calculated as a function of the relevant set of theoretical parameters
{
Uj

}
, the magnitude of

the magnetic field expressed with the experimental parameters {Vk} that was calibrated previously
by Zeeman spectroscopy, and the frequency of the THz wave. Equation (17) can be written in the
matrix form by introducing a 6 × 6 matrix A

(
∆αi,−q

)
, which is composed of two 3 × 3 diagonal

blocks having as matrix elements the differential standard dynamic polarizabilities multiplied with
the suitable prefactors. The standard components of the THz electric field are derived by inversion

E2
STD =

[
A
(
∆αi,−q

)]−1
· FLS, and their covariances are estimated from the covariances of the inverse

matrix elements and the covariances of FLS:

cov
(
E2

STD,i, E2
STD,j

)
=

∑
k,l

A−1
ik A−1

jl cov
(
FLS,k, FLS,l

)
+

∑
s,t

FLS,sFLS,tcov
(
A−1

is , A−1
jt

)
cov

(
A−1

i1j1
, A−1

i2j2

)
=

∑
p,r,s,t

A−1
i1pA−1

rj1
A−1

i2sA−1
tj2

cov
(
Apr, Ast

)
cov

(
∆αp1,q1

(({
Ui1

}
, ‖
→

Bp1
‖, fTHz

))
, ∆αp2,q2

({
Ui2

}
, ‖
→

Bp2
‖, fTHz

))
=

∑
i1,i2

∂∆αp1,q1
∂Ui1

∂∆αp2,q2
∂Ui2

cov
(
Ui1 , Ui2

)
+
∂∆αp1,q1

∂‖
→

Bp1 ‖

∂∆αp2,q2

∂‖
→

Bp2 ‖
cov

(
‖

→

Bp1
‖, ‖
→

Bp2
‖

)
+

∂∆αp1,q1
∂fTHz

∂∆αp2,q2
∂fTHz

u2(fTHz)

(18)
The errors of FLS are assumed to be uncorrelated, and the uncertainties u(δfi) =

√
2 ·2.49 Hz are the

same. The second line of Equation (18) indicates the expression of the covariance of the inverse matrix
elements calculated with the approach presented in [50]. The last two lines give the expression of the
covariance between the differential standard dynamic polarizabilities, which are determined with the
error propagation law from the covariances between the theoretical parameters

{
Uj

}
, the dependences

on the magnetic field magnitude, and the frequency of the THz wave, respectively. The covariances of{
Uj

}
are indicated in Section 2.4, the covariance of the magnetic field magnitudes may be calculated
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with Equation (16), and the uncertainty of the THz wave frequency u(fTHz) = 10−12
· fTHz is assumed

fractionally at the ppt level.
Furthermore, the amplitudes and phases of the THz electric field components in the LCF

are derived from these standard components by inverting the nonlinear system of equations of
Equation (6). The solutions X0 =

(
Ex,0, Ey,0, Ez,0,ϕx,0,ϕy,0

)
are expressed with the analytic dependences

on E2
STD,0 =

(∣∣∣∣E(0,π/2)
σ+

∣∣∣∣2,
∣∣∣∣E(0,π/2)
σ−

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
σ+

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
π

∣∣∣∣2,
∣∣∣∣E(π/2,π/2)
σ−

∣∣∣∣2) for this particular choice

of orientations:

Ex,0 =

√(∣∣∣∣E(π/2,π/2)
σ+

∣∣∣∣2 + ∣∣∣∣E(π/2,π/2)
π

∣∣∣∣2 + ∣∣∣∣E(π/2,π/2)
σ−

∣∣∣∣2)− (∣∣∣∣E(0,π/2)
σ+

∣∣∣∣2 + ∣∣∣∣E(0,π/2)
σ−

∣∣∣∣2)
Ey,0 =

∣∣∣∣E(π/2,π/2)
π

∣∣∣∣
Ez,0 =

√(∣∣∣∣E(0,π/2)
σ+

∣∣∣∣2 + ∣∣∣∣E(0,π/2)
σ−

∣∣∣∣2)− ∣∣∣∣E(π/2,π/2)
π

∣∣∣∣2
ϕx,0 = arcsin


∣∣∣∣E(π/2,π/2)
σ−

∣∣∣∣2−∣∣∣∣E(π/2,π/2)
σ+

∣∣∣∣2
2Ex,0Ez,0


ϕy,0 = arcsin


∣∣∣∣E(0,π/2)
σ+

∣∣∣∣2−∣∣∣∣E(0,π/2)
σ−

∣∣∣∣2
2Ey,0Ez,0



(19)

In order to estimate the uncertainties, Equation (6) is linearized around these solutions:

E2
STD,i = E2

STD,i,0 +
∑

k={x,y,z}

∂E2
STD,i
∂Ek

(Ek − Ek,0) +
∑

k={x,y}

∂E2
STD,i
∂ϕk

(ϕk −ϕk,0)

E2
STD,i − E2

STD,i,0 =
5∑

k=1

(
JE2

STD

)
ik
(Xk −Xk,0)

(20)

The second line expresses the linear dependence in a compact form with the 6 × 6 Jacobian matrix

JE2
STD

=

{(
∂E2

STD,i/∂Xk
)
i,k

∣∣∣∣
{Xk}={Xk,0}

}
, which is calculated using the solution X0. The errors for the

amplitudes and phases of the electric field components in the LCF are given by the 5 × 5 covariance
matrix GE of the estimation errors of the model parameters:

GE =
(
JT
E2

STD
·Y−1

E2
STD
· JE2

STD

)−1
, (21)

as a function of the 6 × 6 covariance matrix YE2
STD

of the standard components at (α,β) = (0,π/2) and

(α,β) = (π/2,π/2), which is calculated using Equation (18).
Let us discuss the application of this method for the characterization of a THz wave that is linearly

polarized along an arbitrary direction. The amplitudes of the Cartesian components of the electric
field are parametrized in the LCF as

(
Ex,0, Ey,0, Ez,0

)
= (E0 · sin θ · cosφ, E0 · sin θ · sinφ, E0 · cos θ),

as a function of the amplitude of the THz wave and two spherical angles (E0,φ, θ). The relevant
phases are assumed as ϕx,0 = ϕy,0 = 0. Here, the frequency of the THz wave is assumed at
fTHz = 1,314,947,502.3 kHz (a detuning of 1.6 MHz to the frequency of the (v, L, F, S, J) = (0, 0,
1, 2, 2)→(0, 1, 1, 2, 3) hyperfine transition at zero-magnetic field) and the intensity at 1 W/m2

(E0 = 27.42 mV/m). A set of six lightshifts are measured for the two-photon transition between the
stretched states (v, L, F, S, J, Jz) = (0, 0, 1, 2, 2, 2)→(2, 0, 1, 2, 2, 2) of HD+ for two orientations of
the magnetic field (α,β) = (0,π/2), (α,β) = (π/2,π/2) in the case of three different values of the
magnitude of the magnetic field B1 = 10−6 T, B2 = 5 × 10−6 T, and B3 = 10−5 T. The total uncertainties
of the Cartesian components of the THz wave in the LCF and of their phases are calculated using
Equations (16)–(21) on the basis of the standard dynamic polarizabilities given by Equation (10)
and by using the calculated covariance matrix GB of the magnetic field components derived from
Equations (11)–(14). The results are plotted in Figure 4 using the spherical angle parametrization
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(
φi, θj

)
=

(
10−11 + (πi/60) rad, 10−11 + (πj/60) rad

)
for i = 0–30, j = 0–30. The total uncertainties are

estimated at:

u(Ex,0) = 6.5× 10−7 V/m, u
(
Ey,0

)
= 6.5× 10−7 V/m, u(Ez,0) = 5.7× 10−6 V/m,

u(ϕx,0) = 1.7× 10−3 rad, u
(
ϕy,0

)
= 2.8× 10−3 rad,

(22)

for a broad range of angular parameters. The uncertainty of the polarization orientation may be
conservatively estimated by assuming that the total electric field uncertainty is perpendicular to the
electric field direction. Summing quadratically the uncertainties of the amplitudes of the Cartesian
components from Equation (22) and dividing to the amplitude yields an angular uncertainty of
2.1 × 10−4 rad.
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The THz electric field parameters cannot be determined for the following sets of angular
parameters

(
φ = 10−11, θ

)
,

(
φ = π/2 + 10−11, θ

)
,

(
φ, θ = 10−11

)
,

(
φ, θ = π/2 + 10−11

)
because

of exceedingly high uncertainties. In this case, the THz electric field may be properly
characterized by using a different set of orientations (αi,βi) of the magnetic field. The lowest
uncertainties of the parameters are reached for different orientations of the polarization of the
THz wave: u(Ex,0) = 1.4 × 10−8 V/m for (φ � π/30,θ � 7π/15) , u

(
Ey,0

)
= 1.4 × 10−8 V/m for

(φ � 7π/15,θ � 7π/15) , u(Ez,0) = 1.8× 10−6 V/m for (φ � π/30,θ � π/30) , u(ϕx,0) = 6.7 ×10−5 rad
for (φ � π/30,θ � π/4) , and u

(
ϕy,0

)
= 1.2 × 10−4 rad for (φ � 7π/15,θ � π/4) . That points at the

importance of the choice of the orientation of the magnetic field respective to the polarization of
the THz wave and to the potential accuracy with this method. Moreover, even if the uncertainties
of the differential standard dynamic polarizabilities are assumed to be zero, the results plotted in
Figure 4 remain nearly the same. Therefore, for these measurements, the uncertainty of the electric
field characterization is dominated by the experimental uncertainties of the lightshift measurements.

The sensitivity of this method is estimated with the lowest amplitude of the THz
wave for which the amplitudes and phases of the Cartesian components of the THz electric
field can be determined with uncertainties smaller than the corresponding nominal values.
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The limit of vector detection of linearly polarized THz waves is estimated here at 350 µV/m,
for which the parameters of the THz electric field can be characterized with uncertainties at
the u

(
Ex,0, Ey,0, Ez,0,ϕx,0,ϕy,0

)
=

(
10−6 V/m, 10−6 V/m, 10−4 V/m, 1 rad, 1 rad

)
levels or better.

The requirement for the uncertainties of the amplitudes is satisfied alone for a broad range of angular
parameters. The requirement for the determination of the phases is satisfied only for narrow ranges of
orientation of the THz wave polarization.

4. Discussion and Conclusions

This article proposes a new method to measure a THz electric field by using precision measurements
of the lightshifts induced on Zeeman subcomponents of the two-photon rovibrational transition
(v, L) = (0, 0)→(2, 0) of cold trapped HD+ ions detected by resonance-enhanced multiphoton dissociation.
The fractional frequency uncertainty of the infrared transition measurements is estimated at the
10−12 level. An electric field oscillating by 1.3 THz is off-resonantly coupled to the electric-dipole
allowed (v, L) = (0, 0)→(0, 1) rotational transition of HD+. The lightshifts of the magnetic subcomponents
of the ground rotational level may be measured with uncertainties estimated with the molecular ion
quantum projection noise limit at 3.5 Hz, using state-selective two-photon rovibrational spectroscopy.
The THz electric field is calibrated by comparing the frequency measurements of the lightshifts against a
frequency standard and the ab initio predictions of the molecular theory for the energy levels [39,41,42]
and for the dipole moments [40]. This approach takes also into account the uncertainties from the
theoretical calculations and ensures traceability to the SI units and to a set of fundamental constants,
namely the Rydberg constant, the fine structure constant, the proton, deuteron, and electron masses,
the proton and deuteron radii, the electric charge, the Planck constant [4], and the deuteron electric
quadrupole moment [51].

The lightshift measurement allows scalar sensing of a THz wave. The extension toward
polarization measurement is allowed by introducing a directional reference for the molecular
ions—that is the quantization axis, which is defined with a static magnetic field. The SI traceability
of the magnitude and of the orientation of the magnetic field is allowed by comparing two-photon
rovibrational frequencies from Zeeman spectroscopy referenced to a frequency standard, with frequency
measurement uncertainty estimated with the molecular ion quantum projection noise limit at 2.57 Hz,
with the theoretical predictions for the HD+ energy levels. The comparison of theory and spectroscopy
results based on the (v, L, F, S, J, Jz)=(0, 0, 1, 2, 2, −2)→(2, 2, 1, 2, 4, 0) transition allows the calibration
of the magnetic field magnitude with an accuracy at the 10−7 T level, and it also allows defining the
quantization axis with an angular accuracy at the mrad level.

The electric field of a THz wave can be fully characterized using the response of the HD+

molecular ions with respect to the quantization axis direction. The lightshift, depending on the
standard components of the THz electric field, is quantified with the dynamic polarizabilities of the
HD+ energy levels that are calculated here with their uncertainties. This work proposes an algorithm
to calculate the values and the uncertainties of the Cartesian components of the THz electric field in
the laboratory frame and their relative phases from a set of six independent lightshift measurements
performed for two different orientations of the quantization axis. Although similar to the approaches
demonstrated with Rabi rate measurements using coherent population transfer [52,53], this method
based on lightshift measurements can allow direct referencing of the response to a frequency standard.

The application of this method to a linearly polarized THz wave with an intensity of 1 W/m2

(THz electric field amplitude 27.42 mV/m), which is detuned by 1.6 MHz from the (v, L, F, S, J) = (0, 0, 1,
2, 2)→(0, 1, 1, 2, 3) hyperfine component of the fundamental rotational transition of HD+, can allow SI
calibration of the Cartesian components of the THz electric field with µV/m accuracy and of their phases
with mrad accuracy for a broad range of orientations of the THz wave polarization. The accuracy of the
phase measurement is two hundred times better than the previous result in microwave electric field
phase measurement obtained with the Rydberg atom mixer [21]. The orientation of the polarization is
determined with 0.21 mrad accuracy, which is forty times better than the vector microwave electrometry
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result obtained with Rydberg atom spectroscopy [20]. The lowest THz electric field vector that can be
completely characterized with this method has an amplitude estimated at 350 µV/m. The detection
limit in scalar THz electrometry at 11 µV/m estimated for HD+ ion spectroscopy [54] represents a
16 times improvement to the result obtained in Rydberg atom-based scalar microwave electrometry [18].
That points to the potential of lightshift measurements for THz electric field sensing—a method
extensible to a number of cold trapped molecular ion species, to the optical fields, and to the magnetic
components, which is compatible with the quantum enhancement techniques [32,33]. The significant
improvements in performances allowed by this method compared to the traditional techniques can be
of general relevance to the field of the electric field metrology.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015,
87, 637–701. [CrossRef]

2. Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev.
Mod. Phys. 2009, 81, 1051–1129. [CrossRef]

3. Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [CrossRef]
4. Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants:

2014. Rev. Mod. Phys. 2016, 88, 035009. [CrossRef]
5. Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with

Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819–824. [CrossRef]
6. Holloway, C.L.; Gordon, J.A.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G.

Broadband Rydberg atom-based electric-field probe for SI traceable, self-calibrated measurements. IEEE Trans.
Antenna Propag. 2014, 62, 6169–6182. [CrossRef]

7. Camparo, J.C. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett.
1998, 80, 222–225. [CrossRef]

8. Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 1994.
9. Mohapatra, A.K.; Jackson, T.R.; Adams, C.S. Coherent optical detection of highly excited Rydberg states

using electromagnetically induced transparency. Phys. Rev. Lett. 2007, 98, 113003. [CrossRef]
10. Miller, S.A.; Anderson, D.A.; Raithel, G. Radio-frequency modulated Rydberg states in a vapor cell. New J. Phys.

2016, 18, 053017. [CrossRef]
11. Gordon, J.A.; Holloway, C.L.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G.

Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms. Appl. Phys. Lett. 2014,
105, 024104. [CrossRef]

12. Kanda, M.; Driver, L. An isotropic electric-field probe with tapered resistive dipoles for broad-band use,
100 kHz to 18 GHz. IEEE Trans. Microw. Theory Tech. 1987, 35, 124–130. [CrossRef]

13. Hill, D.A.; Kanda, M.; Larsen, E.B.; Koepke, G.H.; Orr, R.D. Generating Standard Reference Electromagnetic
Fields in the NIST Anechoic Chamber, 0.2 to 40 GHz; NIST Tech. Note 1335; National Institute of Standards and
Technology: Boulder, CO, USA, 1990.

14. Anderson, D.A.; Miller, S.A.; Gordon, J.A.; Holloway, C.L.; Raithel, G. Optical measurements of strong
microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl. 2016, 5, 034003. [CrossRef]

15. Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Dienstfrey, A.; Anderson, D.A.; Raithel, G. Electric field metrology
for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in
atomic vapour. J. Appl. Phys. 2017, 121, 233106. [CrossRef]

16. Fan, H.; Kumar, S.; Sheng, J.; Shaffer, J.P.; Holloway, C.L.; Gordon, J.A. Effect of vapor-cell geometry on
Rydberg-atom-based measurements of radio-frequency electric fields. Phys. Rev. Appl. 2015, 4, 044015.
[CrossRef]

17. Kumar, S.; Fan, H.; Sheng, J.; Shaffer, J.P. Atom-based sensing of weak radio frequency electric fields using
homodyne readout. Sci. Rep. 2017, 7, 42981. [CrossRef]

http://dx.doi.org/10.1103/RevModPhys.87.637
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.89.035002
http://dx.doi.org/10.1103/RevModPhys.88.035009
http://dx.doi.org/10.1038/nphys2423
http://dx.doi.org/10.1109/TAP.2014.2360208
http://dx.doi.org/10.1103/PhysRevLett.80.222
http://dx.doi.org/10.1103/PhysRevLett.98.113003
http://dx.doi.org/10.1088/1367-2630/18/5/053017
http://dx.doi.org/10.1063/1.4890094
http://dx.doi.org/10.1109/TMTT.1987.1133614
http://dx.doi.org/10.1103/PhysRevApplied.5.034003
http://dx.doi.org/10.1063/1.4984201
http://dx.doi.org/10.1103/PhysRevApplied.4.044015
http://dx.doi.org/10.1038/srep42981


Atoms 2020, 8, 70 16 of 17

18. Kumar, S.; Fan, H.; Kübler, H.; Jozani, A.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using
frequency modulation spectroscopy in room temperature vapour cells. Opt. Express 2017, 25, 8625–8637.
[CrossRef]

19. Fan, H.; Kumar, S.; Sedlacek, J.; Kübler, H.; Karimkashi, S.; Shaffer, J.P. Atom based RF electric field sensing.
J. Phys. B At. Mol. Opt. Phys. 2015, 48, 202001. [CrossRef]

20. Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Shaffer, J.P. Atom-based vector microwave electrometry using
rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 2013, 111, 063001. [CrossRef]

21. Simons, M.T.; Haddab, A.H.; Gordon, J.A.; Holloway, C.L. A Rydberg atom-based mixer: Measuring the
phase of a radio frequency wave. Appl. Phys. Lett. 2019, 114, 114101. [CrossRef]

22. Gordon, J.A.; Simons, M.T.; Haddab, A.H.; Holloway, C.L. Weak electric-field detection with sub-1 Hz
resolution at radio frequencies using a Rydberg atom-based mixer. AIP Adv. 2019, 9, 045030. [CrossRef]

23. Wing, W.H.; Ruff, G.A.; Lamb, W.E.; Spezeski, J.J. Observation of the infrared spectrum of the hydrogen
molecular ion HD+. Phys. Rev. Lett. 1976, 36, 1488–1491. [CrossRef]

24. Leach, C.A.; Moss, R.E. Spectroscopy and quantum mechanics of the hydrogen molecular cation: A test of
molecular quantum mechanics. Annu. Rev. Phys. Chem. 1995, 46, 55–82. [CrossRef] [PubMed]

25. Critchley, A.D.J.; Hughes, A.N.; McNab, I.R. Direct measurement of a pure rotation transition in H2
+.

Phys. Rev. Lett. 2001, 86, 1725–1728. [CrossRef] [PubMed]
26. Osterwalder, A.; Wüest, A.; Merkt, F.; Jungen, C. High-resolution millimeter wave spectroscopy and

multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen.
J. Chem. Phys. 2004, 121, 11810–11838. [CrossRef]

27. Koelemeij, J.C.J.; Roth, B.; Wicht, A.; Ernsting, I.; Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb
accuracy. Phys. Rev. Lett. 2007, 98, 173002. [CrossRef]

28. Bressel, U.; Borodin, A.; Shen, J.; Hansen, M.; Ernsting, I.; Schiller, S. Manipulation of individual hyperfine
states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 2012,
108, 183003. [CrossRef]

29. Haase, C.; Beyer, M.; Jungen, C.; Merkt, F. The fundamental rotational interval of para-H2
+ by MQDT-assisted

Rydberg spectroscopy of H2. J. Chem. Phys. 2015, 142, 064310. [CrossRef]
30. Biesheuvel, J.; Karr, J.-P.; Hilico, L.; Eikema, K.S.E.; Ubachs, W.; Koelemeij, J.C.J. Probing QED and fundamental

constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 2016, 7, 10385.
[CrossRef]

31. Roth, B.; Koelemeij, J.; Schiller, S.; Hilico, L.; Karr, J.-P.; Korobov, V.; Bakalov, D. Precision spectroscopy of
molecular hydrogen ions: Towards frequency metrology of particle masses. In Precision Physics of Simple
Atoms and Molecules; Karshenboim, S.G., Ed.; Springer: Berlin, Germany, 2008; Volume 745, pp. 205–232.

32. Wolf, F.; Wan, Y.; Heip, J.C.; Gebert, F.; Shi, C.; Schmidt, P.O. Non-destructive state detection for quantum
logic spectroscopy of molecular ions. Nature 2016, 530, 457–460. [CrossRef]

33. Chou, C.-W.; Kurz, C.; Hume, D.B.; Plessow, P.N.; Leibrandt, D.R.; Leibfried, D. Preparation and coherent
manipulation of pure quantum states of a single molecular ion. Nature 2017, 545, 203–207. [CrossRef]

34. Tran, V.Q.; Karr, J.-P.; Douillet, A.; Koelemeij, J.C.J.; Hilico, L. Two-photon spectroscopy of trapped HD+ ions
in the Lamb-Dicke regime. Phys. Rev. A 2013, 88, 033421. [CrossRef]

35. Constantin, F.L. THz/infrared double resonance two-photon spectroscopy of HD+ for determination of
fundamental constants. Atoms 2017, 5, 38. [CrossRef]

36. Alighanbari, S.; Hansen, M.; Korobov, V.; Schiller, S. Rotational spectroscopy of cold and trapped molecular
ions in the Lamb–Dicke regime. Nat. Phys. 2018, 14, 555–559. [CrossRef]

37. Alighanbari, S.; Giri, G.S.; Constantin, F.L.; Korobov, V.; Schiller, S. Precise test of quantum electrodynamics
and determination of fundamental constants with HD+ ions. Nature 2020, 581, 152–158. [CrossRef]

38. Patra, S.; Germann, M.; Karr, J.-P.; Haidar, M.; Hilico, L.; Korobov, V.I.; Cozijn, F.M.J.; Eikema, K.S.E.;
Ubachs, W.; Koelemeij, J.C.J. Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion
level. Science 2020, 369, 1238–1241. [CrossRef]

39. Korobov, V.I.; Hilico, L.; Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular
ions with few ppt uncertainty. Phys. Rev. Lett. 2017, 118, 233001. [CrossRef]

40. Bakalov, D.; Schiller, S. Static Stark effect in the molecular ion HD+. Hyperfine Interact. 2012, 210, 25–31.
[CrossRef]

http://dx.doi.org/10.1364/OE.25.008625
http://dx.doi.org/10.1088/0953-4075/48/20/202001
http://dx.doi.org/10.1103/PhysRevLett.111.063001
http://dx.doi.org/10.1063/1.5088821
http://dx.doi.org/10.1063/1.5095633
http://dx.doi.org/10.1103/PhysRevLett.36.1488
http://dx.doi.org/10.1146/annurev.pc.46.100195.000415
http://www.ncbi.nlm.nih.gov/pubmed/24328942
http://dx.doi.org/10.1103/PhysRevLett.86.1725
http://www.ncbi.nlm.nih.gov/pubmed/11290233
http://dx.doi.org/10.1063/1.1792596
http://dx.doi.org/10.1103/PhysRevLett.98.173002
http://dx.doi.org/10.1103/PhysRevLett.108.183003
http://dx.doi.org/10.1063/1.4907531
http://dx.doi.org/10.1038/ncomms10385
http://dx.doi.org/10.1038/nature16513
http://dx.doi.org/10.1038/nature22338
http://dx.doi.org/10.1103/PhysRevA.88.033421
http://dx.doi.org/10.3390/atoms5040038
http://dx.doi.org/10.1038/s41567-018-0074-3
http://dx.doi.org/10.1038/s41586-020-2261-5
http://dx.doi.org/10.1126/science.aba0453
http://dx.doi.org/10.1103/PhysRevLett.118.233001
http://dx.doi.org/10.1007/s10751-012-0569-8


Atoms 2020, 8, 70 17 of 17

41. Bakalov, D.; Korobov, V.I.; Schiller, S. High-precision calculation of the hyperfine structure of the HD+ ion.
Phys. Rev. Lett. 2006, 97, 243001. [CrossRef]

42. Bakalov, D.; Korobov, V.I.; Schiller, S. Magnetic field effects in the transitions of the HD+ molecular ion and
precision spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 025003. [CrossRef]

43. Akamatsu, D.; Nakajime, Y.; Inaba, H.; Hosaka, K.; Yasuda, M.; Onae, A.; Hong, F.-L. Narrow linewidth laser
system realized by linewidth transfer using a fiber based frequency comb for the magneto-optical trapping
of strontium. Opt. Express 2012, 20, 16010–16016. [CrossRef]

44. Constantin, F.L. Double-resonance two-photon spectroscopy of hydrogen molecular ions for improved
determination of fundamental constants. IEEE Trans. Instrum. Meas. 2019, 68, 2151–2159. [CrossRef]

45. Bakalov, D.; Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a
molecular ion clock. Appl. Phys. B 2014, 114, 213–230. [CrossRef]

46. Amitay, Z.; Zajfman, D.; Forck, P. Rotational and vibrational lifetime of isotopically asymmetrized
homonuclear diatomic molecular ions. Phys. Rev. A 1994, 50, 2304–2308. [CrossRef] [PubMed]

47. Pfeifer, L. Orthogonalization of nonorthogonal vector components. In Proceedings of the IEEE Position
Location and Navigation Symposium ‘Navigation into the 21st Century’, Orlando, FL, USA, 29 November–2
December 1988; pp. 553–559.

48. Le Kien, F.; Schneeweiss, P.; Rauschenbeutel, A. Dynamical polarizability of atoms in arbitrary light fields:
General theory and application to cesium. Eur. Phys. J. D 2013, 67, 92. [CrossRef]

49. Moss, R.E. Calculations for vibration-rotation levels of HD+, in particular for high N. Mol. Phys. 1993,
78, 371–405. [CrossRef]

50. Lefebvre, M.; Keeler, R.K.; Sobie, R.; White, J. Propagation of errors for matrix inversion. Nucl. Instrum.
Methods Phys. Res. A 2000, 451, 520–528. [CrossRef]

51. Pyykkö, P. Year-2017 nuclear quadrupole moments. Mol. Phys. 2018, 116, 1328–1338. [CrossRef]
52. Köpsell, J.; Thiele, T.; Deiglmayr, J.; Wallraff, A.; Merkt, F. Measuring the polarization of electromagnetic

fields using Rabi-rate measurements with spatial resolution: Experiment and theory. Phys. Rev. A 2017,
95, 053860. [CrossRef]

53. Thiele, T.; Lin, Y.; Brown, M.O.; Regal, C.A. Self-calibrating vector atomic magnetometry through microwave
polarization reconstruction. Phys. Rev. Lett. 2018, 121, 153202. [CrossRef]

54. Constantin, F.L. Sensing electromagnetic fields with the ac-Stark effect in two-photon spectroscopy of cold
trapped HD+. In Proceedings of the SPIE 11347, Quantum Technologies 2020, Strasbourg, France, 6–10 April
2020; Diamanti, E., Ducci, S., Treps, N., Whitlock, S., Eds.; SPIE: Bellingham, WA, USA, 2020. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.97.243001
http://dx.doi.org/10.1088/0953-4075/44/2/025003
http://dx.doi.org/10.1364/OE.20.016010
http://dx.doi.org/10.1109/TIM.2018.2890182
http://dx.doi.org/10.1007/s00340-013-5703-z
http://dx.doi.org/10.1103/PhysRevA.50.2304
http://www.ncbi.nlm.nih.gov/pubmed/9911145
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1080/00268979300100291
http://dx.doi.org/10.1016/S0168-9002(00)00323-5
http://dx.doi.org/10.1080/00268976.2018.1426131
http://dx.doi.org/10.1103/PhysRevA.95.053860
http://dx.doi.org/10.1103/PhysRevLett.121.153202
https://doi.org/10.1117/12.2555336
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Theoretical Model of the HD+ Energy Levels 
	Two-Photon Spectroscopy for Sensing Electromagnetic Fields 
	Coordinate Frames and External Fields 
	Lightshifts in HD+ Spectroscopy 

	Results 
	Determination of the Magnetic Field Vector 
	Determination of the Polarization Ellipse of the THz Wave 

	Discussion and Conclusions 
	References

